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ABSTRACT

The recommendation systems in the online platforms often suffer from the rating data sparseness and
information overload issues. Previous studies on this topic often leverage review information to construct
an accurate user/item latent factor. To address this issue, we propose a novel confidence-aware recom-
mender model via review representation learning and historical rating behavior in this article. It is
motived that ratings are consistent with reviews in terms of user preferences, and reviews often contain
misleading comments (e.g., fake good reviews, fake bad reviews). To this end, the interaction latent factor
of user and item in the framework is constructed by exploiting review information interactivity. Then, the
confidence matrix, which measures the relationship between the rating outliers and misleading reviews,
is employed to further improve the model accuracy and reduce the impact of misleading reviews on the
model. Furthermore, the loss function is constructed by maximum a posteriori estimation theory. Finally,
the mini-batch gradient descent algorithm is introduced to optimize the loss function. Experiments con-
ducted on four real-world datasets empirically demonstrate that our proposed method outperforms the
state-of-the-art methods. The proposed method also further promotes the application in learning

resource adaptation. The source Python code will be available upon request.

© 2021 Elsevier B.V. All rights reserved.

1. Introduction

Recommendation systems have been widely employed in many
domains, such as news [1], e-commerce [2], movies [3,4], and
learning resource adaptation [5] in recent years. Choosing suitable
products on online platforms is increasingly becoming difficult for
consumers due to information overload. Thus, recommender sys-
tems, which play an information filtering role in many online plat-
forms, such as Amazon and Yelp, learn the hobbies and interests of
users through their historical behavior data and predict user
preference.

Many algorithms have been proposed for recommendation sys-
tems over the past decades [3,4,6]. Matrix factorization (MF) [7-
11] can be considered a famous collaborative filtering-based
methodology, which aims to model the proper item features and
user preferences from the rating matrix of historical data. Although
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these techniques have shown impressive results, their perfor-
mance is ineluctably poor with rating matrix sparsity.

Numerous studies leverage extra information to tackle the
aforementioned issue and raise the recommendation performance,
such as social networks [12-14], demography of users [15], images
[16,17], and reviews [18-20]. Many kinds of information are intro-
duced to construct an accurate latent factor of the user or item. In
other words, additional knowledge can be utilized to constrain the
latent factor of users and items in recommendation models. Thus,
according to the difference of latent factor constraints, all the rec-
ommendation methods can be mainly classified into the following
three categories: single latent factor (SLF), double latent factor
(DLF), and user-item interactivity latent factor (ILF) constraint
methods. The SLF method only utilizes extra information related
to the users or items to construct an accurate user or item latent
factor. In [21], Fan et al. restricted the construction of user latent
factors through the similarities of interests between different users
in social networks. Kim et al. [22] additionally leveraged descrip-
tion documents of items to improve the rating prediction accuracy
by constructing an accurate latent factor of items.
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The DLF methods, which can be regarded as a twin-tower struc-
ture, constrain the latent factor of users and items through user-
related information and item-related information, respectively.
Such as, user social information, item description information, user
and item side information, and user and item review information.
In addition, the review usually contains rich information regarding
the preferences of an individual user and the characteristics of the
items. Using reviews to extract item features and user preference is
a useful approach to alleviate the data sparsity problem. Many
DLF-based studies [19,23] model the latent factor of users and
items respectively through user and item review texts, and further
improve recommendation accuracy by deep learning technique. In
fact, review text actually contains abundant semantic information
of users and items. This can be regarded as an interactive behavior
of the user on the item, and user review can also be regarded as an
evaluation of the interactive behavior of the user on the item. This
characteristic of review is first named as user-item interactivity in
this paper. However, the aforementioned methods [19,21-23]
ignore that the review is the interactive information between users
and items. Therefore, we propose model based on ILF constraint,
which utilizes the interactive information of user review to con-
strain the latent factors of users and items at the same time.

Moreover, reviews usually contain fake good and bad reviews,
which are called misleading reviews in this article. It is reported
in many studies [24,25] that recommender systems attracted
many malicious users to submit misleading reviews information
about items to manipulate or trap the recommendation systems.
Because of financial incentives, on numerous e-commerce plat-
forms, many businesses try to game the recommender system by
posting misleading reviews to either promote or defame their tar-
geted items [26], which will mislead the prediction results of the
recommendation system. These misleading reviews can harm the
fairness of e-commerce markets and ill-posed recommendations.
The widely-used recommender methods based on matrix factor-
ization suffer from varying levels of performance degradation. This
is because the model is not aware of misleading reviews when it is
designed, and the item/user representations are extracted from
such misinformation, so it is unreliable and biased. There have
been some research efforts on misleading reviews [27,28]. Several
methods improve performance by considering the probabilistic
distribution of users’ behaviors [29] or user behavior patterns
[30]. In Rayana’s work [31], they combine features such as review
texts, time-stamps, and user behavioral information. However,
these methods ignore the fact that the misleading reviews inten-
tionally imitate true reviews in language expression, grammar
style, and other aspects, and these kinds of reviews are confusing.
Although misleading reviews can easily be concealed by users,
eliminating the difference between user rating behaviors corre-
sponding to misleading reviews and historical rating behaviors is
difficult. In this article, ratings, which have a large deviation from
the historical ratings of users and items, are called outliers. The rat-
ing outliers can help identify the misleading reviews because the
ratings are consistent with the review information, and the outliers
of rating correspond to the large possibility of misleading reviews.
Fig. 1 shows review-based recommendation process.

Thus, a novel constraint method based on ILF, which is called
the confidence-aware recommender model (CARM) via review rep-
resentation learning and historical rating behavior, is presented.
First, a single review text information is extracted by convolutional
neural networks (CNNs). Then, the review latent factor is regarded
as a priori constraint of interaction between user and item latent
factors. Finally, a confidence matrix is constructed through the
relationship between rating outliers and misleading reviews to fur-
ther improve model accuracy and reduce the influence of mislead-
ing reviews on the model construction. The major contributions of
this article are summarized in three aspects.
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e The interactivity of review information is revealed to model the
interaction of latent factor between user and item. Then, the
user-item interactivity is used to construct the recommenda-
tion model by exploiting single review information. The authors
believe that interactivity features are introduced for the first
time in the recommendation system field.

A confidence matrix is explored and designed to measure the
relationship between the rating outliers and misleading
reviews, which helps improve the performance and robustness
of the recommender system.

Four real-world datasets are selected to validate the perfor-
mance of the proposed methods. Experimental results demon-
strate that the models achieve significant improvements
considering prediction accuracy and training efficiency.

The remainder of this article is organized as follows. Section 2
overviews the related work about the recommendation systems.
Section 3 introduces our proposed CARM and CARM-C algorithms
in detail. The optimization algorithm and parameters determina-
tion are presented in Section 4. Section 5 presents and analyzes
the experiments on four public datasets. Section 6 draws a conclu-
sion of this article and presents the future work.

2. Related work
2.1. Matrix factorization

MF, one of the most common collaborative filtering (CF)
approaches [32,33], is also the most extensive model-based CF
approach. The MF model aims to construct latent factors of items
and users by mapping item and user features to shared space.
The notations in this article provide the following conventions:
bold lowercase letters denote vectors, bold capital letters indicate
matrices, and non-bold letters denote indexes or scalars. Given m
items and n users and the observed rating matrix R € R™", the
most popular rating prediction model in MF can be formulated as
follows:
where u; € R and v € R¥ are represented as the k-dimensional
latent factors, , T represents the overall average rating, the symbols
7; and ; denote the observed deviations of users and items, respec-
tively. That is, the problem of the recommendation systems is con-

verted to predict the unobserved rating R; using the R; derived
from the above MF model. Many studies attempt to enhance the
expression capability of the MF model based on this conversion.
Koren et al. [34] utilized the neighborhood information to represent
the latent factors of users and items. In [35], the authors extended
MF to factorization machines for the generic modeling of latent fac-
tors. Though these methods have achieved good results, the perfor-
mance of the MF model will significantly degrade when the rating
matrix becomes substantially sparse.

2.2. Recommendation based on additional information

To alleviate the problem of sparse data, a number of additional
information is introduced to enhance recommendation perfor-
mance. Social recommendation [36,37] utilizes social relations or
trust relations: Ma et al. [36] connected the social network struc-
ture and the user-item rating matrix through the shared user latent
feature space. In [37], Jamali et al. further restrained the user latent
factor vector to approximate the weighted average of his neighbors
in social network. For side information, some researches employed
stacked denoising autoencoder [38,39] to estimate the prior of
latent factors from the additional information introduced to the
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Fig. 1. Review-based recommendation process: reviews actually contain many true reviews and misleading reviews. Tick mark represents real reviews that the model needs;
cross marks indicate misleading reviews that will have an impact on the accuracy of the recommended model.

recommendation system. Review-based recommendation [40-42]
employs the content of items or users to address data sparse issue,
such as explicit factor models (EFM) [40], rating-boosted latent
topics (RBLT) [41], and hidden factors as topics (HFT) model [42].
These methods integrated topic factors of the review into the MF
models to build the latent factors to improve the rating prediction
performance and address the sparse issue. The experimental
results also further prove that the introduction of additional infor-
mation can further improve the recommendation performance.

2.3. Recommendation based on deep learning

Although the aforementioned review-based have shown signif-
icant improvements compared with conventional latent models,
they have some limitations. These studies ignore local context
information and word order, which result in the loss of specific
information in the form of phrases and sentences. Deep learning
has recently become a crucial research instrument in many
domains [3-5,43]. Many models facilitate CNN architecture to cap-
ture the review contextual information to improve the capability of
deep feature representation and attempt to combine CNN struc-
tures with MF frameworks to raise the recommendation perfor-
mance. In [22], Kim et al. utilized CNNs to capture the contextual
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information of documents by considering local context and word
order. DeepCoNN [44] uses CNNs to model the hidden latent fea-
tures of users and items separately based on all their associated
reviews. Chen et al [23] constructed a recommendation model
using neural attention mechanism network to learn useful reviews
information. CARL [45] exploits mutual and local attention of CNNs
to learn the relevant features from reviews via a linear fusion
mechanism. However, these CNN-based models have a common
trait: that is, these models use aggregated review text from users
and items to model users and item, respectively. Moreover, they
spend a long time in the training process. Hence, the latent factors
of item and user are learned statically and independently. This arti-
cle argues that the review text contains semantic information of
users and items, which is also a kind of interaction information
related to users and items.

3. Proposed CARM method
3.1. Outline of CARM

The proposed CARM method is summarized as three main mod-
ules, namely, confidence matrix, review latent factor representa-
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tion learning and confidence-aware recommender model. The
pipeline is shown in Fig. 2.

In the confidence matrix module, a confidence matrix is
designed to measure the relationship between the rating outliers
and misleading reviews, which improves the performance and
robustness of the recommender system. In review latent factor
representation learning, review text is input into CNN, which could
capture the contextual information and reserve the weight of
words for reviews analysis, and generate the feature vector of
review text. In confidence-aware recommender model, we place
zero-mean Gaussian priors on users and items latent factor vectors,
respectively. At the same time, their Hadamard product, which
denotes the interaction features between users and items, is sub-
jected to a constraint of the multi-dimensional Gaussian prior dis-
tribution, whose mean is indicated by the review text feature
vector. Review text information will blend in item and user factor
vectors by placing these priors and confidence matrix on item and
user latent factors.

3.2. Review latent factor representation model

The goal of the review latent factor representation learning is to
generate latent factor of user reviews of products by use CNNs. In
Fig. 3, we illustrate the review latent factor representation learning

Review latent factor
representation learning

Confide_:nce
matrix
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review latent factor
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T

User i la}tent factor Itemj late?t factor

Item latent factor
matirx

User latent factor
matrix
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Fig. 2. Outline of the proposed CARM framework.

286

Neurocomputing 455 (2021) 283-296

process, which contains four layers, such as the weighted word
representation layer, convolution layer, pooling layer, and output
layer.

The first layer is the weighted word representation layer. A pre-
trained word vector model [22] (word2vec) is used to convert the
original text information into digital information. First, the embed-
ding matrix converts the input text into a dense real-valued
matrix, each column vector of the matrix is the vector representa-
tion of the corresponding word in the text, and the matrix is uti-
lized as the input of the convolutional layer. Then the entire text
is represented as a matrix. The review matrix D € R*? can be
rewritten as,

Wi1 Wi Wiyp -,
| | |

where [ denotes the length of the input review text, and p is the
dimension of the embedding vector of the word.

In fact, the word vector in the pre-training model word2vec has
been able to describe the representation of the word more accu-
rately. In order to reduce model parameters, improve model effi-
ciency, and at the same time enable the network to have better
generalization capabilities, we replace the training method of word
vectors instead of training the original vectors by introducing the
parameter ¢; with weights to train the networks. That is, ¢; is trea-
ted as a parameter in the network for learning, and the networks is
trained by mini-batch gradient descent (MBGD) algorithm. This
ensures the training efficiency of the model as well as the general-
ization ability of the model. Each word vector w; is assigned a
weight ¢;, then the output will be formulated as,

\ | |
GiiWii1 QWi Wi -+ |,

Finally, the contribution of the scoring result is reflected by the
weight of each word in each review. The contextual features in the
review are extracted by convolution operation. The contextual fea-

ture vector cﬂ € R is extracted through the j-th sharing weight

D= )

H= 3)

W e RP, and the window size t defines the number of surround-
ing words,

(4)

where i represents the current index of the filter on the review
matrix, = is a convolution operator, t is the length of the sliding win-

¢ = Relu (W’ * Hjie-1y) + bi)7

dow filter, and b’ € R denotes a bias for W. We employ the activa-
tion function Relu to avoid the problem of gradient disappearance.
Then review contextual feature vector ¢ € R-""'of review with W
is constructed by

] (5)

The third layer is the pooling layer, which is also called as the
down-sampling layer. In fact, there will be many redundant fea-
tures and repetitive features in the text feature vector extracted
by the previous convolutional layer. Therefore, in order to reduce
the excessive useless context features in ¢, max pooling will be
used from the context feature vector to extract the most valuable
features. The output of the pooling layer d € R"can be rewritten as,

(6)

The fourth layer is the output layer. The previous three layers
are used to learn local features of the review text. In order to obtain
global features, a fully connected network is used to combine these

d d

J | A J
C_[Cl ) i Gl

d = [max ('), max (c?),...,max (c),...].
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Fig. 3. Review latent factor representation model.

local features. Thus, d is projected into a k-dimensional space for
our subsequent task, which is the same as the item and user latent
vector. Finally, the traditional nonlinear projection is leveraged to
obtain the review latent factor,

s = tanh (W, {tanh (W;d + by)} + b), (7)

where W; € R™™ W, e R®™  are  weight matrics and
b, € R", b, € R* denote the bias vector for W; and W, respectively.
s € R¥ is the output. Eventually, the CNN architecture is regarded as
a function which takes the original reviews as input, and the review
feature vector that is k-dimension as output through the above
process,

sij = CNNo (X;) (8)

where @ denotes all variables in our network, and Xj; is regarded as
the user i's a raw review on item j, and s; represents the single
review feature representation which is defined as review latent fac-
tor in this paper.

3.3. Confidence-aware recommender model
In this section, we derive the objective function of the model

from the view of probability (see in Fig. 4). Given m items and n
users and the observed rating matrix R = [r] . our goal is to

Fig. 4. Graphical model for CARM: CNNs part in up (dashed-red); latent factor part
in down (dotted-green).
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construct appropriate item and user vectors (U e R*™ and
V € R®M) that represent latent factors of items and users.

3.3.1. Ratings modeling

According to the rating data observation model (1), the measure
errors in the rating score data are modeled as Gaussian noise. The
likelihood function of observed ratings over training data can be
written as,

PRIUV, 3,9, 7) = [[[][4

i=1j=1

1.
rlJ|rlJ7 )Y,

9
where 4 (x|u, 6%) is the probability density function of the Gaus-
sian distribution with variance ¢? and mean u. The symbol 1;

denotes the indicator function that equals as 1 if user i rates on item
j, and equals as 0 otherwise.

3.3.2. Items and users modeling
The spherical Gaussian priors is introduced on user and item
latent factors. For the item prior probability, it is defined as,

n

p(Viay) = [[ 4 (vil0, a?1). (10)
j=1
For the user prior probability, it is defined as,
p(Uloy) = [ [/ (w0, a31), (11)

i=1

where g1 and o] are the covariance matrix of item latent matrix V
and user latent matrix U, respectively.

3.3.3. Single review modeling

The k dimension vector u; o v;, which denotes the Hadamard
product of user latent factor w; and the item latent factor v;, can
be regarded as the interactive information representation of the
user i and the object j. In addition, high scores are usually accom-
panied by positive reviews, and low scores are usually accompa-
nied by negative reviews. There is consistency between the
rating and the review text. That is, the difference between u; o v;
and the review latent factor representation from user i to item j
is very small. This difference is considered to obey the Gaussian
distribution. In this study, the zero-mean Gaussian independent
and identically distributed (IID) noise is usually assumed to exist.
Consequently, the Hadamard product of u; and v; is represented as,

ujov;= CNNg (X,]) + €r, €Er~ V’V(O, UI%I) (12)
Then, the conditional distribution of u; o v; can be formulated,
p(ll,' o V,-|X,-j, @, 0,23) = ./V(lli o Vj|CNN® (XU)’ O'IZQI), (13)
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The conditional distribution of observed reviews over training is set
as

p(U,V|X, 0, 03) (14)

m n
= [II T (wiov;|CNNe (Xy), o71).
ij

Integrating the above equations, the posterior probability of our
model is constructed as,

p(UVlR,X, ))7'#7 0,0,0y,0v, O-R)

p(R|U,V,y,¥,0)p(U|oy)p(V|oy)p(U,V|X, 0, aR)
a P(R.X.7,¥,0,0,0y,0v,0r)

(15)

The maximum a posteriori (MAP) estimation is introduced on
the Eq. (15), we can achieve,
maxuyp(U,VIR,X,7,¥,0,0,0y,0v,0r)

=max pR|U,V, .4, 9) - p(UJou)p(V|av) - p(
likelihood probability prior probability

U,V|X,0,07) .

review prior probability

(16)

There are three probability density functions need to be defined,
such as likelihood probability, prior probability, and review prior
probability. By taking negative logarithm on Eq. (16). It can be writ-
ten as,

=logp(R|U,V,7,¥,0) +1ogp(U,VIX, 0, or) + log p(U|oy)
+logp(V|ay)
1)

1 m
= 20222%(u h T’%Z
1

X Z (Ui oVj— CNNe (Xij))TI’l (ui oV — CNNe (Xij))

1 & T-1
+T‘%]Zi:(“i) I - (17)
After some manipulation, the constant C can be safely dropped.

And the maximization of this posterior probability distribution is
equivalent to the following regularized minimum problem,

m n q. R
Ecarm-c = ZZ% <Rij - Rij>2
ZRZZH (u;0v; — CNNg (X; ||F )UZHul”F
A
S
j

where Jy, v, ix are set as a2/0%, 02 /0%, 6% /a2, respectively.

However, reviews contain misleading reviews, which are harm-
ful to model construction. Thus, a confidence matrix is introduced
to the review data since not all of the data play the equal role to
model the latent factors. The value in the confidence matrix mea-
sures the degree of trust in each review, and the reviews corre-
sponding to the outliers in the rating matrix should be given low
confidence, and vice versa. Thus, the corresponding energy func-
tional is rewritten as,

mon 1. .2 m n
oS5 - 55
i o]
AR 2 AU 2
x 5 || (i o v — CNNo (X)) [ + 5 > llwille

;LV 1 2
25l
)

Zv,lv,

j

(18)

(19)
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where Q; represents an element in confidence matrix Q. The value
of each element in matrix Q will be determined in detail in the next
section.

3.4. Confidence matrix

The confidence matrix, which is calculated by confidence
degree function .7 (-), represents the levels of contribution of differ-
ent reviews to the model. The elements of this matrix represent the
reciprocals of the probability of the outlier rating. The matrix Q can
be regarded as the relative adjustment of regularization at each
review. For convenience, the element values are scaled to the range
[0, 1].

On the one hand, large element values should be selected for
true reviews to learn the review interaction information from the
review latent factor representation learning. On the other hand,
small element values of the confidence matrix Q can be selected
to construct the latent factor from the rating data. Thus, the follow-
ing confidence degree function % (-) determines the element values

in matrix Q,
—Relu ( z RiPRi]/i) —Relu ( Z RQ,RU/)’>
P#iRjp<3 q#iR; <3
g e P v Rij <3
Q=7 Ry p) = ’
—Relu ( Z R,pR,v/-/f) —Relu ( Z RWR,jlf)
e p#j.Rjp>3 q#iRy>3 , Rq > 3
(20)

where f represents a threshold of deviation, which is set as 0.8 in
this article. Misleading reviews are mainly caused by fake good
and bad reviews. When a user gives a high score to an item, this
score substantially deviates from the historical high score behavior
average of the user and the historical score average of the item.
Then, abnormal points are highly possible. Therefore, the corre-
sponding reviews are also given a low weight. In Fig. 5, we illustrate
the process of building confidence values.

4. Optimization and parameters determination
4.1. Optimization

Currently, a variety of optimization methods [46,47] are devel-
oped to optimize the objective function. In order to optimize our
loss function, the mini-batch gradient descent (MBGD) algorithm
is utilized to optimize the model (19). The update rule for all vari-
ables in CARM is provided as follows.

Update the U: The U estimation subproblem corresponds to
minimize,

v m n lij .2 AR m
Ecarm = Z Z 5 (Rij - Rij) Z llwillf + Z
i

30, 10 v; — NN (%)) @
J

Then, the updated formulation can be defined by,

U
OE
u; — u; — o —ARM
i

n n
—u - 1{21,(11, —Ry ) v+ Aot + > 15Qqk (u 0V, — CNNo (X;) ovj)}. (22)
J 1

Update the V: Since V and U are equivalent, the objective func-
tion with respect to V can be written as,
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Vj —Vj— O(Oggvﬂ

i
m ~
=v; 7u{Z1U(R,‘j -R
i

Update the v, y: Similarly, the updated formulation of y,y can
be written as

m
U) Wi+ Vi + > 13Qy/k (W 0 V; — CNNg (X;) o u,»)}. (24)
i

OE! u -~
Do A=y, ) 1 (R - Ry) (25)
and,
EY
U — Wi — oca C‘ZRM v — aZlU(RU — ,j) (26)

Update the ©: Since the gradients of the parameters in the
internal structure of CNN are too complicated, the gradient of ®
is replaced by the partial derivative operator of CNNe (X;) function,

5D > Qyll(wi0v; — CNNo (X)) I (27)
i

E?ARM = 2

Then, the updated formulation can be denoted as,

6ECARM
O—0 -0 26
S ACNNg (X;
—@—oc{iRE > Q,»j(u,-ovj—CNN@(x,-j).iag( ”)} (28)
i

where o denotes the learning rate in CARM. After parameters of
U,V,y, and y are optimized, the unknown ratings can be predicted
by Eq. (1). The parameters updating rule and optimazation process
of CARM-C model are similar with CARM.

4.2. Parameters determination

In the CARM model, there are four parameters that need to be
discussed. In review latent factor representation learning, k
denotes the dimensionality of the review text and user/item latent
factor vectors, which can control the representation ability of the
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Confidence matrix

User

28

Fig. 5. The detailed process of confidence values determination in the proposed CARM model.

proposed models. Meanwhile, the hyperparameter ¢ that affects
the generalization ability refers to the parameter in dropout. The
function of parameters iy, Ay, and /g is to balance the constraint
strength of regularization items in optimizing user and item
representations.

To select the best values for the parameters, some approaches
have been proposed to determine this parameter automatically
such as the L-curve method [48], discrepancy principle [49], and
generalized cross-validation (GCV) [50]. In this paper, the GCV
algorithm is used to validate the parameter values in a large range
and determine the best ones automatically. In other words, the
parameters are determined heuristically. We suggest that promis-
ing performance can be achieved with the parameters ¢=0.5, k=10,
b = 256, iy = iy €[0.0001, 0.001, 0.01, 0.1, 1] and /¢ €[0.01, 0.1, 1,
10, 100]. More parameters details will be discussed in next section.
The proposed algorithm is presented as Algorithm 1.

Algorithm 1. Confidence-aware recommender model via
review representation learning and historical rating
behavior

Input: R: User-item rating matrix, X: Review text of items set

Set: Dimensionality k, learning rate «, batch size b;

1: Initialize U, V,y,y randomly;

2: While not Ecsgy is converged do:
i) Sample a mini batch from R and corresponding review
text Xj; in size b;
ii) Calculate the output result of the review representation
learning model for the review samples;
iii) Calculate the confidence value Q;; of the current review
based on the historical rating behavior;
Update U,V,y,y, © via (22), (24), (25), (26), (28) with mini
batch.

End while

Output: U, V,y,¢, 0

5. Experiments and discussion
5.1. Experiment preparation

5.1.1. Evaluation metrics

The well-known root mean square error (RMSE) and mean
absolute error (MAE) are adopted for recommendation perfor-
mance evaluation,
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Table 1
Comparison of characteristics by the traditional approaches and CNN-based technology.
Characteristics Offset PMF HFT DeepCoNN [44] NARRE [23] CARL [45] CARM-C CARM
Ratings I I I I I v I I
Textual reviews - - 17 17 v %4 I I
Deep learning - - - I v I v v
Pre-train word vector - - - v %4 %4 I I
Review confidence degree - - - - - - - v
Table 2
Statistical details of the four public datasets for recommendation.
Datasets Users Items Ratings & Reviews Density
Automotive 2,928 1,835 20,473 0.381%
Movies_and TV 14,169 17,795 673,342 0.267%
Video_Games 24,303 10,672 231,780 0.090%
Yelp_2018 36,989 48,813 1,578,463 0.087%
1 2 record in the datasets includes the review text and corresponding
RMSE = m Z € Reest (Rij - Rij) ) (29) rating score (from 1 to 5). Because the Yelp_2018 and Movies_And_TV
es| . .
Ry data sets are too large for the experimental environment, they are
d preprocessed to ensure that all users and items have at least 20 rat-
and, ings data. The detailed statistics of the four public datasets are
MAE 1 R R 30 shown in Table 2. In our experiments, each rating dataset is divided
"~ Riest] RZR: IRy — Rilaps, (30) into 80% training and 20% testing, which are executed by using five-
ij ERtest

where |Reg| represents the cardinality of the testset, and |e |,
means the absolute value operation.

5.1.2. Tested methods

To compare with the proposed model, several the state-of-the-
art recommendation methods are selected as follows. Their con-
ceptual differences are illustrated in Table 1.

o Offset: The offset method takes the average of all the training set
ratings as predictions in the test set.

PMF [51]: It constructs the latent factors of items and users by
adopting Gaussian distribution. This method corresponds to
the model represented by Eq. (1).

HFT[42]: It is a famous topic-based method, which utilizes topic
model to learn latent factors from review.

DeepCoNN [44]: This method uses two parallel CNNs to extract
the latent factors from item and user review documents.
NARRE [23]: It adopts neural attention mechanism to build
latent feature vectors of items and users by selecting highly-
useful review.

CARL[45]: A novel approach is proposed in the CARL model,
which introduces a dynamic linear fusion mechanism and CNNs
to construct the feature vectors.

CARM-C: This method is proposed in this article, we propose a
novel constraint method based on user-item interactivity latent
factor by single review feature representation learning model,
which does not introduce the confidence matrix.

CARM: CARM is a variation of CARM-C, which reduces the
impact of misleading reviews on the model by introducing con-
fidence matrix Q.

5.1.3. Datasets

The proposed models are evaluated on four public datasets. The
first datasets subsets are selected from Yelp Dataset Challenge.!
The other three datasets (Automotive, Video_Games, and
Movies_and_TV) are selected from Amazon dataset.” Note that each

T https://www.yelp.com/dataset_challenge.
2 http://jmcauley.ucsd.edu/data/amazon.
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fold cross-validation technique.

5.2. Experimental implementation

The parameters of the comparison methods are adjusted as the
suitable ones according to their papers. In CARM-C, word latent
vectors are initialized by the GoogleNews word vectors. In review,
the feature representation learning, various window sizes with
shared weights are adopted to grasp the surrounding information
of various length words. Subsequently, the dropout rate ¢ is set
at 0.5, the number of latent factor k is equal to 10, the number of
batch size b is set as 256, and the learning rate « is set as 0.001.
CARM has the same parameter settings as CARM-C. The experi-
ment was performed on a PC server equipped with an Intel(R)
Core(TM) i7-7700K CPU@4.2 GHz, NVIDIA GeForce GTX 1080 Ti
GPU, and 32 GB RAM and are implemented by utilizing the soft-
ware library TensorFlow [52].

5.3. Results and discussion

5.3.1. Accuracy analysis

All the recommendation methods are carried out on the four
public datasets. The comparisons of rating prediction results are
summarized in Table 3. The best results are highlighted in bold
font. According to the prediction results, the comparative analysis
can be obtained as three aspects.

First, the metric values of HFT, DeepCoNN, NARRE, and CARL
methods are less than those of PMF and Off-set methods in Table 3.
The former four methods consider the reviews for the rating pre-
diction, whereas the two latter methods only consider the rating
information. The latent factor representation ability is improved
greatly due to the rich side information in the review text.

Second, comparing with the traditional method using review
and rating data, the deep learning-based methods (e.g., DeepCoNN,
NARRE, and CARL) achieve prodigious improvement in RMSE and
MAE on four datasets. The reason is that the contextual features
of review can be extracted by the deep learn-ing techniques non-
linearly. Moreover, the dropout operation in deep learning-based
methods can avoid the overfitting issue and raise recommendation
performance potentially.
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Comparison of rating prediction results by using the proposed method and six comparison methods. The best values are marked by bold font. A% denotes the improvement of

CARM over the best baseline performer.

Automotive Movies_And_TV Video_Games Yelp_2018

Methods RMSE MAE RMSE MAE RMSE MAE RMSE MAE

Offset 0.9691 0.7339 1.1853 0.9268 1.1992 0.9436 1.1997 0.9757
PMF [51] 1.0768 0.8564 1.0428 0.7878 1.3965 1.0981 1.1938 0.9191
HFT [42] 1.0222 0.7277 1.0267 0.7579 1.1115 0.8435 1.1252 0.8702
DeepCoNN [44] 0.9305 0.6925 1.0096 0.7323 1.0706 0.8050 1.1218 0.8633
NARRE [23] 0.9187 0.6446 0.9947 0.7162 1.0607 0.7938 1.1106 0.8454
CARL [45] 0.9078 0.6207 0.9831 0.7048 1.0637 0.7942 1.1204 0.8494
CARM-C 0.9072 0.6152 0.9787 0.6830 1.0581 0.7770 1.0997 0.8374
CARM 0.8960 0.5965 0.9742 0.6797 1.0531 0.7691 1.0936 0.8261

A% 1.30% 3.90% 0.90% 3.56% 1.00% 3.11% 1.53% 2.28%

Thirdly, the proposed methods obtain the lowest values at the
MAE and RMSE metrics in Table 3. It shows that CARM-C has a cer-
tain improvement in performance. This also shows that the review
latent factor learned from a single review is useful for the construc-
tion of user and item true unbiased preference vector. Further-
more, the performance of CARM, which considers the impact of
user rating behavior on review confidence, is improved compared
to CARM-C model. This also illustrates that assigning a lower
weight to misleading reviews will help to achieve a more accurate
model. Specifically, comparing with the PMF model, CARM
achieves 6.6%-24.6% improvement in RMSE and 10.1%-30.3% in
MAE. CARM demonstrates bet-ter prediction performance than
CARM-C at the aspects of MAE and RMSE because it reduces influ-
ence of misleading review on the model construction. Thus, the
proposed models outperform all the baseline methods
consistently.

5.3.2. Training efficiency analysis of CARM

Afterward, DeepCoNN, NARRE, and CARL use aggregated review
text to model user/item feature vectors. This comparison will cause
the input text to be extremely large in each training iteration.

Thus, the scale of model parameters is extremely large in the
aforementioned model. NARRE lags far behind DeepCoNN as the
attention mechanism over feature extraction incurs extra burden.
Similarly, CARL adopts factorization machines to constrain the rep-
resentations of item and user vector, which increases the training
time cost for each epoch. Unlike these methods, CARM-C and
CARM train the model with only one review text at a time, thereby
enhancing model training efficiently and reducing the scale of
model parameters prominently. Experimental results prove that
CARM achieves better performance on training efficiency when
compares with DeepCoNN, NARRE, and CARL methods. In Fig. 6,
we plot the training process of these methods with epoch number
increasing. CARM method (red line in Fig. 6) achieves high con-
verge speed and stability. Moreover, the lowest RMSE values illus-
trate that the proposed method can extract the review features
efficiently by network in Fig. 3.

5.3.3. Sensitivity analysis of the parameters

From the objective function Eq. (18) of the CARM-C model and
the objective function Eq. (19) of the CARM, it can be seen that the
values of the hyperparameters Ay, Ay and /g will directly affect the
performance of the model, so it is necessary to explore the influ-
ence of different values on the model. Fig. 7 analyze the impact
of Ay and Ay on RMSE values by four datasets. Fig. 8. shows the
impact of /y, Ay and /g different values on the mean square error
of the model rating prediction on all datasets.

Regarding the changes of the best performing values of /iy and
Ay from Fig. 7(a)-(d), we insert different number of batch size
Ju, v €[0.0001, 0.001, 0.01, 0.1, 1.0] to observe the impact of differ-

ent Jy and Ay on RMSE values by four datasets. We found that
when Jy is equal to /1y, model can produce the best results. This
result is also in line with the assumptions of the previous model.
That is, we place zero-mean spherical Gaussian priors on users
and items latent factor vectors respectively. Since the prior
assumptions of both user latent factors and item latent factors
are consistent with Gaussian distribution, it is reasonable to set
their regularization parameters /y and Jy consistently. Experimen-
tal results in Fig. 7 demonstrate that the reasonableness of setting
Jy and Ay to be the same.

By observing the best parameters in the Fig. 8 experimental
results, when the rating matrix becomes sparse, the best values
of 4y and Ay will become smaller and the best value of 1z becomes
larger. To be precise, the best values of /y, Ay and /g for CARM
model on four datasets are (0.1, 0.1, 1), (0.1, 0.1, 1), (0.01, 0.01,
10), and (0.01, 0.01, 10), respectively. This result is reasonable
because relatively large value of /z will increase the contribution
of review information to latent factors of users and items when rat-
ing data is insufficient to construct accurate latent factors. Appro-
priate /iy and Ay can raise the generalization ability of model
representation, but too large will make the model difficult to fit
the rating data. That is, when / is increasing, the latent factor rep-
resentation of users and items will be more dependent on review
information rather than rating data. In other words, /i is leveraged
in the proposed model to tradeoff the contribution of the rating
information and the review information. Thus, the suitable param-
eters Ay,/y and Jg can balance the importance of ratings and
review texts and obtain the optimal result.

Moreover, the parameter k is robust on different datasets. Fig. 9
depicts the performance of CARM by various the latent factor
dimension size k €[5, 10, 15, 20]. The model achieves the lowest
RMSE and MAE values when k is equal to 10 on all four datasets.
In addition, it is necessary to analyze the number of batch size.
The different number of batch size b € [32, 64, 128, 256, 512] are
inserted to observe the impact of different batch sizes on RMSE
and MAE values by four datasets, and the learning rate is set at
0.001. The experimental results, which is presented in Fig. 10,
demonstrate that the number of batch size has little effect on
CARM model performance. Furthermore, when the number of
batch size b are set as 256 and 512, the model performance is
almost the same and achieves good results on RMSE and MAE val-
ues. Taking into account the use of GPU memory and the efficiency
of the model, the number of batch size b is suitable to set as 256 for
our proposed models.

The dropout ratio ¢ plays an important role in enhancing the
generalization ability of the proposed CARM. The experiments
are carried out on four different datasets with the changing drop-
out ratio ¢. In Fig. 11, we plot the RMSE and MAE values by using
CARM method. The experimental results demonstrate that the
optimal dropout ratio on the four datasets is 0.5. Dropout can
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Fig. 6. Comparison of RMSE values by four different methods with the number of training epochs increasing. (a) Automotive, (b) Yelp_2018.
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Fig. 7. Parameter analysis of 1y and /4y in CARM on RMSE values by four datasets. (a) Automotive, (b) Movies_and_TV, (c) Video_Games, (d) Yelp_2018.

improve the predication performance effectively. Thus, the drop-
out ratio ¢ is suggested as 0.5 in real scenarios.

5.3.4. Word weight analysis

The weight values of the word vector in the review latent factor
representation learning can reflects the contribution of the word to
the model construction. Fig. 12 shows that some reviews are
selected to perform weighted visualization experiment results. In
order to extract the features between contexts, which can also be
considered as phrase information (e.g., bigrams or trigrams), mul-
tiple convolution kernels (e.g., 2 x 2,3 x 3, 4 x 4) of different sizes
are introduced to extract contextual features. Thus, our model can
finally show the contribution of the word and phrases (e.g.,
bigrams or trigrams) to the model construction. One review corre-
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sponding to a five-point rating from the Automotive dataset of
Amazon and another review with a one-point rating are randomly
selected. In Fig. 12, the highlighted words are valuable to the final
rating. The most significant words are highlighted in red, the mod-
erately important words are highlighted in light orange, and the
insignificant words are not highlighted. Fig. 12 reveals that stop
words, prepositions, and some nouns are given low weights. This
finding illustrates that these words unimportant to the results.
Meanwhile, the weights of adverbs, adjectives, and interjections
are highlighted in red. These words play important roles in our
model due to their strong subjective color. This experiment intu-
itively shows the influence of different words in the review to
model construction, which strengthens the interpretability of the
proposed model.
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Fig. 8. Regularization parameter discussion in the proposed CARM method. The robustness of the parameters can be verified on different datasets. (a) Automotive, (b)
Movies_and_TV, (c) Video_Games, (d) Yelp_2018.
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Fig. 9. Discussion of dimension number k in CARM on four different datasets. (a) RMSE. (b) MAE.

According to the previous quantitative analysis, the Table 4 pro- properties include the method type, latent factor constraints type,
vides a qualitative evaluation of all the methods in terms of speed input data type, computing speed, and performance. The proposed
and performance, using the PMF method as a benchmark. The method achieves the highlight performance.
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Fig. 12. Word weight analysis in user review, the darker the color, the greater the weight.
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Table 4

Comparison the performance between the proposed method and the state-of-the-art
methods. Speed indicates the model training time in seconds, and RMSE is utilized to
measure the performance of all models.

Methods Latent Input data Speed Performance
factor type (s) (RMSE)
constraints
type

PMF [51] SLF Ratings *hhkk  hk

HFT [42] SLF Ratings&Reviews *x*x% * Kk

DeepCoNN [44] DLF Ratings&Reviews  kk s *HeK T

NARRE [23] DLF Ratings&Reviews % b 2.2.8 ¢

CARL [45] DLF Ratings&Reviews k% £.3.8 8 o4

CARM ILF Ratings&Single 22,2 .2 SABIEE 27272 2 ¢

review

6. Conclusion

In this study, we propose a novel confidence-aware recommen-
dation model via review representation learning and historical rat-
ing behavior. To reduce the rating data sparseness issue, we
introduce a novel constraint method based on user-item interac-
tivity by exploiting single review information to construct interac-
tion latent factors of items and users. Meanwhile, the confidence
matrix is introduced considering the impact of misleading reviews
on the model to further improve the accuracy of the recommenda-
tion. The loss function is also constructed by maximum a posteriori
estimation theory. Finally, the mini-batch gradient descent algo-
rithm is introduced to optimize the loss function. Experiments
demonstrate the effectiveness of the proposed review representa-
tion learning scheme and user-item interactivity as well as the sig-
nificant and consistent improvements over other state-of-the-art
recommendation methods. The proposed CARM model will pro-
mote the application of recommendation system in the field of
learning resource adaptation. In the future, user-side and rating
time series cues will be introduced to build accurate recommenda-
tion models.
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