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A B S T R A C T   

Head pose estimation (HPE) under infrared imaging has become more and more common in the human-computer 
interaction. In this paper, we proposed a novel HPE with convolutional neural network and established a precise 
head pose database under 5◦ angle (HPD5A) for human attention recognition. Specially, the HPD5A database 
includes 729 infrared head pose images from different subjects with and without glasses, which corresponds to 
drivers who wear glasses or do not wear glasses. To verify the availability and usability of the HPD5A database, 
the benchmark evaluations are performed on our database using traditional standard HPE classification methods 
with and without principal component analysis. The methods include linear discriminant analysis, K-nearest 
neighbor, random forest and Naïve Bayes classifiers. We also design and implement a convolutional neural 
network architecture as one of elementary assessments. All the results are provided for future reference. The 
developed deep learning technique could obtain the state-of-the-art performance on the HPD5A database. This 
database will certainly help in the development of model for infrared HPE and be beneficial to the attention 
recognition in human-computer interaction system.   

1. Introduction 

Head posed estimation (HPE) under infrared (IR) imaging is lever
aged to automatically estimate human head pose from an image or a 
video and predict the directions at which human are focusing on, which 
is beneficial for many practical applications [1–3], such as online 
learning [4–6], human-computer interaction [1,7], and assisted driving 
[8]. According to the latest statistics provided by the world health or
ganization, about 1.3 million people annually die in traffic accidents 
around the world. Human factors, including driver distraction, fatigue 
driving, are main factors leading to traffic accidents [9,10]. To ensure 
the safety of drivers and passengers, many researchers focus on intelli
gent driving assistance systems [11]. However, most of them did not 
take into account the night driving environment, which will lead to 
traffic accidents increasing. Furthermore, thanks to the popularity and 
low cost of night infrared cameras, car manufacturers are committed to 
developing better advanced assistance systems. Undeniably, head pose 
signal can provide rich information about human motivation, intention 
and attention (Fig. 1). Assistance systems can estimate drivers’ condition 
such as fatigue, distraction by tracking the head of drivers. 

HPE has become a key focus area of intelligent driving assistance 

systems. Unfortunately, there are few nights infrared head pose data
base. This paper proposes and establishes the start-up assistance driving 
infrared head pose (HPD5A) database for human-computer interactive 
system. First, we will describe the design, collection, and annotation of 
the HPD5A database. Then, we carry out the benchmark evaluations on 
the proposed infrared head pose database through using not only several 
facial features-based methods, including linear discriminant analysis 
(LDA) [12], K-nearest neighbor (KNN) [13], random forest (RF) [14] 
and Naïve Bayes classifiers (NB) [15], but also an emerging approach, 
namely convolutional neural network (CNN). To decrease the compu
tational complexity, we will apply a dimensionality reduction technique 
before classification as comparative experiments, namely principal 
component analysis (PCA) [16]. The performance of the proposed 
database can be proved by the evaluation result in the HPE task. 

Over the past decade years, there are some existing databases for the 
HPE task. The database includes the Bosphorus [17], AFLW [18], MALF 
[19], BIWI Kinect [20], 300W-LP [21], AFLW2000-3D [21], MTFL [22], 
WFLW [23], Pointing’04 [24], CAS-PEAL-RI [25], and CMU Multi-PIE 
[26]. In fact, it is very difficult to achieve the high-quality HPE data
bases. The major reason can be summed as two aspects. Firstly, the 
artificial database often contains several angles, which cannot describe 
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all the head pose in the human-computer interaction. Secondly, the 
time-consuming manual labeling of spontaneous expressions and the 
difficulty of setting up the scene often discourage the researchers who 
plan to establish the HPE database. Thus, we usually produce the image 
label manually for the existing HPE databases. In Table 1, we sum the 
head posed database in the past decades, including the type, released 
time, pose description, condition, and samples. 

The infrared head pose databases do not exist, since the research is 
focus in visible-light imagery for the HPE task. From Table 1, we can 
observe that the images of these databases are visible images that can 
prove the above argument. Since the widespread use of the infrared 
cameras and the lack of infrared head pose databases, we plan to 
establish a precise IR HPE database, which can mitigate the issue and 
enrich the existing database in the assisted driving systems. 

The rest of this paper is structured as follows. Section 2 introduces 
the setup for infrared imaging capturing. Section 3 presents the details 
about the data acquisition processing and environment. The benchmark 
evaluations and analysis are presented in Section 4. Section 5 concludes 
this article. 

2. Setup for HPE image capturing 

To set up the head pose dataset, we construct a photographic room in 
our laboratory. Since we prepare to mark on the tubes and the ceiling, a 
spacious attic is chosen. It is only two meters high which makes it very 
convenient for us to mark. It includes four parts in the head pose 
recording system, such as a chair lift in a fixed position, tagged scenes, a 
network-linked person computer and an IR camera system. In Fig. 2, we 
have demonstrated the image acquisition system in details. 

2.1. Scene layout 

As shown in Fig. 2, 27 markers are set at yaw angle direction with 5◦

intervals increasing. The yaw angles appear as a sector form. The 
considered yaw angles are between − 65◦ and 65◦. In each yaw angle 
direction, we label all the pitch angles. In other words, we marked it on 
the benchmarks from the ground to the ceiling. All the pitch angles are 
ranged in [− 65◦, − 60◦, − 55◦, − 50◦, − 45◦, − 40◦, − 35◦, − 30◦, − 25◦, 
− 20◦, − 15◦, − 10◦, − 5◦, 0◦, 5◦,10◦, 15◦, 20◦, 25◦, 30◦, 35◦, 40◦, 45◦,50◦, 
55◦, 60◦, 65◦]. To ensure that all the subject eyes can stare on the 
markers, we set a lifted chair to adjust the height of the subjects. The 
pitch angle is initialized as 0◦ in the sector center. To produce a simple 
background, we place a folding screen behind every subject. To acquire 
an accurate marked position, we calculated it through the geometric 

relationship, precise measuring tools and strict mathematical 
computation. 

2.2. Setup of infrared camera 

To capture the infrared images, a DS-IPC-S12A-IWT (4 mm) infrared 
camera is introduced. The image resolution is 1080 × 1920. An infrared- 
cut removable (ICR) filter is leveraged for day and night conversion 
modes. To achieve the accurate groundtruth label of each HPE image, 
the experimenters are required to stare on each marker through 
adjusting their head gestures instead of turning their eyeballs. However, 
most person are habituated to stare on the markers by rolling their eyes 
when it comes to taking exaggerated poses. For instance, the experi
menter will look at the markers with oculogyration involuntarily rather 
than head rotation when pitch angle is at 65◦ and the yaw angle is at 65◦. 
To suppress the errors caused by artificial factors, we arrange a volun
teer to assist the experiment in finishing the specified head pose. 

2.3. Glass in the infrared imaging 

When performing HPE experiments, the important information can 
be disguised by wearing the glasses. We requested subjects to take two 
sets of photos, one with glasses, one without glasses. It can make the 
HPD5A database effective in scenario cases. Their own glasses and the 
provided one can be selected in the capturing process. 

3. Data acquisition for HPE database 

3.1. Subjects 

In our experiments, we recruit 40 healthy volunteers as subjects, 
including 18 females and 22 males. All the subjects are asked to sit 
straightly just like the assisted driving poses. They could finish the 
specified head poses. Each is informed that the HPE images are only used 
in the scientific research before the experiment. All the subjects will 
receive compensation for participating after finishing the experiments. 
In this paper, the total of 27 × 27 marked positions for each subject (729 
markers). Two groups of HPE images (without and with glasses) are 
captured for each subject. Each group includes about 729 images. 

3.2. Procedure 

During our experiments, we record two groups head poses for every 
subject. The procedure is provided in detail as follows. (1) We introduce 

Fig. 1. Infrared HPE for aided driving at night with few ambient light sources.  
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the experimental procedure for the subjects, including how to roll their 
head, the meaning of valence and arousal. (2) The chair is moved to the 
sector center as the initialization. The subjects are asked for sitting 

upright on the side opposite the tube where the yaw angle was 0◦. We 
raised or lowered the chair to make sure that the marker and their eyes 
are at the same horizontal line. Then the subject can gaze on the markers 
where its pitch was at 0◦. (3) The IR camera is placed between the tube 
and the subject. It is rather remarkable that the IR camera must be 
pointed directly at the subject’s eyes. The IR camera is connected with 
the personal computer when it starts. The captured images can be 
transferred to the personal computer. (4) To locate the subjects and label 
all the pose images correctly, we required the subjects to finish each 
posture in an orderly manner. Namely, the subjects turn around their 
hand starting from yaw angle at − 65◦ and pitch angle at − 65◦. Then we 
capture one image with the head rotation 5◦ angle. For the yaw direc
tion, there are 27 head pose images to be captured. The head pose im
ages are stored in our personal computer one by one. 

3.3. Design of database 

After recording all the data, we clip all the images and unified them 
into 224 × 224 sizes as our database for formal use. In total, the HPD5A 
database contains 58,320 images from 40 different subjects. Each sub
ject displays 729 specified head pose. Fig. 3 shows example images of a 
subject. Indeed, each subject has to accomplish the same head pose two 
times. In Fig. 4, we show one group IR head pose images without and 
with the glasses. 

4. Benchmark evaluations and experiments 

In this section, we presented the procedures to achieve the bench
mark evaluation results on the proposed HPD5A database by using 
standard HPE methods. Those elementary assessments provide an 
insight to the usability and effectiveness of database. In general, the 
existing approaches could be briefly classified into two streams: (1) 
traditional methods, i.e., facial features-based HPE; (2) state-of-the-art 
approaches, i.e., deep learning-based HPE. The distinction of them is 
that the patterns of features extraction are unlike. For an image, the 
former, depending on the corresponding descriptor, are invariant and 
the necessary element for classifying, while the latter are updated iter
atively to achieve the most incarnated features in the training process. 
We conducted HPE experiments using different types of methods belong 
to two streams. Details and results of baseline evaluation are provided in 
the following sections. 

4.1. Facial features-based methods 

4.1.1. Feature extraction 
The head pose feature extraction can determine the accuracy of the 

HPE task. Three different traditional feature extraction techniques are 
selected, such as grayscale intensities, Gabor wavelets and histogram of 
oriented gradients. 

Grayscale intensities (GI): Among the conventional HPE, most of them 
are GI-based methods [27–29]. The kind of methods do not depend on 

Table 1 
Comparison of head pose databases.  

Databases Type Released 
time 

Pose description Condition Samples 

BIWI Visible 2013 Roll: from − 50◦

to 50◦. 
Pitch: from 
− 60◦ to 60◦ . 
Yaw: from − 75◦

to + 75◦. 

Lab 15 K 
images 

Multi-PIE Visible 2009 Yaw: [− 90◦, 
− 75◦, − 60◦, 
− 45◦, − 30◦, 
− 15◦, 0◦ , 15◦ , 
30◦, 45◦, 60◦, 
75◦, 90◦]. 

Lab More 
than 
750,000 
images 

Bosphorus Visible 2009 Pitch: Strong 
upwards, Slight 
upwards, Slight 
downwards, 
Strong upwards. 
Yaw: [− 90◦, 
− 45◦, 10◦, 20◦, 
30◦, 45◦, 90◦]. 
Cross Rotations: 
[(45◦ yaw, 20◦

pitch), (45◦

yaw, − 20◦

pitch)]. 

Lab 4666 
images 

CAS-PEAL- 
RI 

Visible 2008 Pitch: [− 45◦, 
− 30◦, − 15◦, 0◦, 
15◦, 30◦,45◦] 
Yaw: [− 30◦, 0◦, 
30◦].  

Lab 30,863 
images 

Pointing’04 Visible 2004 Pitch: [− 90◦, 
− 60, − 30◦ , 
− 15◦, 0◦ , 15◦ , 
30◦, 60◦, 90◦]. 
Yaw: [− 90◦, 
− 75◦, − 60◦, 
− 45◦, − 30◦, 
− 15◦, 0◦ , 15◦ , 
30◦, 45◦, 60◦, 
75◦, 90◦].  

Lab 2790 
images 

AFLW2000- 
3D 

Visible 2016 Annotated by 
algorithm 

Web 2000 
images 

300W-LP Visible 2016 Annotated by 
algorithm 

Web 122,450 
images 

MTFL Visible 2014 Yaw: [− 60◦, 
− 30◦, 0◦ , 30◦ , 
60◦] 

Web 12,995 
images 

AFLW Visible 2011 Annotated by 
algorithm. 

Web 25 K 
images  

markers IR camera

subject

chair

markers

IR camera subject

5

5

(a) (b)

Fig. 2. 2D plan of the shooting environment. (a) Side view of the image capturing. The red dot denotes pitch angles increasing the interval 5◦ from − 65◦ to +65◦. (b) 
Top view of the image capturing. The red dot means a yaw angle from − 65◦ to +65◦. 
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any special hardware, only a webcam can work normally. Thus, it is easy 
to promote and use, and the related research achievement yield the 
most. It is worth noting that facial images need to be preprocessed since 
the pixel intensities vary from 0 to 255, i.e., they were normalized as a 
Gaussian distribution with zero mean value. Whereafter, the pixel in
tensities of the preprocessed image were used as feature vectors to 
classify head pose. 

Gabor wavelets (GW): GW transform has good time-frequency local
ization characteristics. That is, it is very easy to adjust the fundamental 
frequency bandwidth, the directions of Gabor filter, and center fre
quency so as to trade off the resolution of the signal in the space-time 
and frequency domains. GW transform has a multi-resolution charac
teristic, namely a zooming capability. That is to say, using a multi- 
channel filtering technique, a set of GW with different time-frequency 

domain characteristics is introduced to the image transformation. The 
local features of input images can be extracted by each channel. Thus, 
the images can be analyzed at different coarse and fine granularities as 
needed. In [30], it found that Gabor filters are well suitable for texture 
separation and expression. A 2D Gabor filter in the spatial domain is a 
Gaussian type function, which is modulated by a sinusoidal plane wave. 
In the field of image processing, Gabor function is a linear filter for edge 
feature extraction. The orientation and frequency of the Gabor filters are 
very similar to those of the human visual system. In consequence, many 
image processing researchers [31–33] are keen on it for capture 
discriminative features. In our implementation, we opted to use four 
orientations and six scales; thus twenty-four Gabor filters banks 
described in Fig. 5. 

Histogram of oriented gradients (HOG):The optical and geometric 

Fig. 3. Head pose images in the proposed HPD5A dataset. From left to right (from bottom to top), the yaw (pitch) angles are increased from − 65◦ to +65◦, 
respectively. 
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deformation of the face images can be well extracted by the HOG 
operator. It is also one of the best features for representing the object 
boundary and geometric information. It consists of calculating and sta
tistic the gradient orientation histogram of the local region of the image 
to form the feature vector. The specific implementation method is 
illustrated as follows. Firstly, the facial image is divided into several 
small related regions. They are called as the cell units. Then, we can 
obtain the edge direction and gradient histogram of each pixel in the cell 
units. Finally, a feature descriptor can be constructed by these histo
grams. In some studies [38], HOG descriptors have been employed as 
HPE and perform much better than other feature filters. As a result, we 
selected the HOG feature as one of the benchmark features of our 
experiments. 

4.1.2. Head pose classification 
HPE can be considered as a standard pattern classification problem 

which commonly adopts various machine learning methods. After 
extracting facial feature described in Section 4.1.1, several classification 

models are implemented in our experiments. Dimensionality reduction 
of input eigenvectors is required, which is a vital step before introducing 
classification techniques. The input eigenvectors are achieved by the 
feature extraction operators, such as HOG, GI, and GW. And the reason 
for that is, the dimensionality of the input data is overabundant which 
results in great computational complexity. In our experiment, PCA will 
be chosen as a dimensionality reduction tool. 

We conduct PCA + KNN, PCA + LDA and PCA + NB classifiers for 
extracting features in head pose classification. In order to compare with 
the performances with and without applying PCA, we also perform 
solely those classification techniques. In addition to the above these 
individual classifiers, an ensemble learning model will also be imple
mented in our experiments. Random forest (RF) is constructed and 
combined through decision trees. It is deemed to the typical represen
tative the ensemble learning and achieves higher robustness. 

Fig. 4. One group data of a subject with and without glasses for nine different head pose, i.e, (− 45◦,45◦), (0◦,+45◦), (+45◦,+45◦), (− 45◦,0◦), (0◦,0◦), (+45◦,0◦), 
(− 45◦, − 45◦), (0◦,− 45◦), and (+45◦,− 45◦). 

Original image

Gabor filters

Filtering process

Feature map

Fig. 5. Gabor features extraction. In this paper, we opted to use four orientations and six scales (Gabor orientation: 0◦, 45◦, 90◦, 145◦; scales: 7 × 7, 9 × 9, 11 × 11, 
13 × 13, 15 × 15, 17 × 17). 
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4.2. Deep learning-based methods 

Apart from the implementation of our experiments with the above 
traditional methods, convolutional neural network (CNN), as the most 
common technology for HPE nowadays, is proposed for baseline eval
uation as well. Since Massimiliano et al. [35] deeply studied CNN with 
dropout and adaptive gradient method, then they introduced it into HPE 
for the first time and obtained good performance. In the following two 
years, multifarious CNN-based HPE methods had sprung up like mush
rooms. For instance, FAN [36] built a multi-dimensional detector using 
CNN and constructed abundant facial landmark datasets. Multi-loss CNN 
[34] adopted a coarse-to-fine strategy by using three separate classifi
cation and regression losses to constrain head pose. QuatNet [1] estab
lished a multi-regression loss CNN model to directly predict the angles of 
head pose represented by unit quaternion instead of Euler angle. To 
facilitate accurate key-points detection, KEPLER [37] proposed a multi- 
task network for capturing structured features from local to global. 3D 
pose of the face prediction was also provided as a by-product. In [6], the 
authors exploited the soft stage-wise architecture and feature aggrega
tion to develop an attention network for HPE. Therefore, CNN has 
already yielded unusually brilliant results in the field of HPE which is 
the primary cause of applying CNN-based method as our benchmark 
evaluation. 

In this work, we developed a lightweight CNN architecture consist
ing of three convolutional layers and several fully connected layers. The 
last layer is the softmax layer, which returns the predicted classification 
result of input images. Details are shown in Fig. 6, the input of our CNN 
architecture is a fixed-size 224 × 224 image because of the specific size 
of our proposed database. Convolutional layers use a convolution kernel 
with a smaller receive domain of 3 × 3 in this architecture. Convolu
tional layers are followed by a max pooling layer, which is major utilized 
for reducing the feature dimension and over-fitting problems, com
pressing the number of data and raising the robustness of model. A most 
special noteworthiness is, as shown in Fig. 6, there may be a normali
zation layer between the pooling layer and the convolution layer, which 
can effectively prevent gradient dispersion and accelerate network 
training. We implemented experiments with and without the normali
zation layer separately. In the end, the output size of the last full con
nected layer is twenty-seven, which represents the number of head pose 
of yaw angle or pitch angle. 

In the proposed architecture, the first three-convolutional layer acts 
as the backbone net to extract common features shared by different 
databases. The corresponding parameters are initialized by pre-trained 
models. Moreover, it follows the fundamental that the front convolu
tional layers share features and the later fully connected layers learn the 
features representation for specific tasks. 

In pre-training step, the ground-truth labels and the predicted clas
sification probabilities are transmitted into the corresponding loss 
functions. Then the classification scores transmit through softmax 

activation function. It obtains the corresponding predicted probabilities 
in inference step. This compact modification makes the architecture easy 
to be trained and achieves comparable performance on our database for 
HPE with fewer model parameters. We choose it to pre-train our model 
on the 300w-lp HPE database. It is a large HPE database which contains 
not only 122,450 facial images but also a great deal of persons. Based on 
this, the pre-trained model can extract the general features of head pose 
to improve its generalization capability. However, there is one detail 
that merits attention. We need to preprocess the images and make them 
greyscale images of 224 × 224 × 1 in order to ensure the same input 
format as our database. 

4.3. Results and analysis 

The experiments were performed with the software library tensor
Flow, and which was used to implement our proposed CNN architecture. 
We carried out on a workstation with Intel Xeon Gold 6126 CPU and 
Nvidia Tesla V100 GPU. HPD5A database was divided into three com
ponents: training, validation and testing sets. The ratio is set as 0.7: 0.2: 
0.1 for fair and meaningful experimental comparisons. It is noteworthy 
that the division is based on person independent. This is not only to 
consider the actual situation that the system will be tested on persons 
who were not labelled on the training phase, but also to prevent the 
problem of data leakage during the experiment. Adam optimizer is 
adopted to update the model parameters for 50 epochs and the batch 
size is 64. The learning rate is initialized to 1e-4 and reduced by a factor 
of 0.1 every 5 epochs. 

4.3.1. Performances of different feature extractors 
As observed from Tables 2-4, the results of relevant evaluation 

metrics are provided in our experiment. Firstly, based on the perspective 
of time-cost, PCA technique can reduce considerable time complexity 
whether utilizing KNN, LDA and NB as classification approaches. 
Nevertheless, there is little distinction between the two while utilizing 
RF. The reason behind this is that it consists of a number of decision 

3x3x1x1 C
onv1_1, 224x224x32

3x3x1x1 C
onv1_2, 224x224x32

B
N

,  224x224x32

2x2x1x1 M
ax pool, 112x112x32

3x3x1x1 C
onv2_1, 112x112x64

3x3x1x1 C
onv2_2, 112x112x64

B
N

,  112x112x64

2x2x1x1 M
ax pool, 56x56x64

3x3x1x1 C
onv3_1, 56x56x128

3x3x1x1 C
onv3_2, 56x56x128

B
N

,  56x56x128

2x2x1x1 M
ax pool, 28x28x128

FC
, 1x1x1024

FC
, 1x1x27

Softm
ax, 1x1x27

Input image:224x224x1 Convolution layer 1 Convolution layer 2 Convolution layer 3 Full connected layer

Fig. 6. Architecture of our CNN-based HPE method. The architecture is one of our experiment based on CNN. In another experiment, it is similar to this architecture 
in the figure except for the non-normalization layer. 

Table 2 
Comparison of MAE, accuracy, and time-cost by different approaches with GI.  

Approaches Accuracy (%) MAE (◦) Time-cost 

Pitch Yaw Pitch Yaw 

KNN 84.94 83.69 8.10 8.56 15.24 s 
PCA + KNN 86.17 89.56 7.69 7.31 1.24 s 
LDA 83.46 81.11 8.79 8.92 58.35 s 
PCA + LDA 85.99 85.63 7.61 7.55 5.25 s 
NB 80.33 78.58 13.10 11.61 5.69 s 
PCA + NB 81.49 79.46 12.33 10.77 0.78 s 
RF 89.64 88.67 7.33 7.01 153.06 s 
PCA + RF 91.79 90.74 7.11 6.99 150.69 s  
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trees. The parameter is set 500 for the number of decision trees, and the 
maximum depth parameter for searching is 30 in our experiment. This 
results in a negligible reduction in time complexity even with PCA, and 
it may take more time to make voting decisions because of the alteration 
of algorithms. 

Then, based on the overall performances of the accuracy and MAE, it 
is obvious that these different feature extractors have their strengths and 
weaknesses. In general, the highest accuracy for yaw and pitch angle are 
90.74% and 91.86%, respectively. As Tables 2 and 4 show, when 
choosing GI and HOG as classification feature respectively, the corre
sponding highest accuracy obtained by RF classifier with PCA are almost 
comparable. Further, HOG features yielded better results than GI with 
MAE of yaw angle about 6.12◦ and pitch angle about 5.66◦. And they are 
also the best results in all non-deep learning techniques. However, NB 
has poor performance whether utilizing GI, GW or HOG. The reason for 
the incorrect classification is that, NB model is based on the indepen
dence of sample attributes. This assumption only exists in the ideal and 
is often hard to hold in practical applications. Hence, the classification 
consequence may be not good because of the correlation of the attri
butes. Undoubtedly, the attributes of face images contain textured 
property which have evident spatial correlation characteristics. So with 
that being said, NB may be not a suitable tool for searching the model 
that need to minimize the intra-class distance and maximize the inter- 
class distinction. But it perhaps is a better choice in real-time applica
tion on account of the low computational complexity compared to other 
models. 

Finally, based on local performances of the accuracy and MAE, 
excluding tine-cost, the performance of each classifier with and without 
PCA varied greatly or little. It is observed that the performances with 
PCA are better than without PCA. We surmise by referring to the rele
vant literature that the original features vector before dimension 
reduction contains a great deal of redundant information. It may be the 
cause of the classification function overfitting, thus reducing the 
robustness of the model. 

4.3.2. Performance of deep learning-based 
We show the results in terms of accuracy and MAE between deep 

learning-based method and facial features-based method in Table 5. The 
first three methods are the best in facial features-based methods from 

Tables 2-4. Among all the methods, deep learning -based methods, being 
compared with facial features-based methods, manifest better perfor
mance and present higher accuracy and lower MAE. Compared with 
CNN (without normalization), CNN (with normalization) has 
2.59–3.49% improvement in Accuracy and 41.39–41.80% in MAE. 
Moreover, CNN (with normalization) attains the best performance in 
both accuracy and MAE. It proves that CNN (with normalization) is a 
high-performance framework and has the capability to extract accurate 
head pose features from our database. This section focuses on the per
formance comparison of the latter two methods. 

We severally analyzed the convergence speed of accuracy and MAE, 
observing the value during each of the 50 epochs. We plotted the 
schematic diagram of convergence results for both accuracy and MAE in 
the Fig. 7. Whether it is accuracy or MAE, they achieved convergence 
after the 10th epoch iteration. The accuracy for yaw angle by using 
normalization method converged to 96% approximately. It was signifi
cantly higher than the accuracy without using normalization method, 
which converged to about 95% in Fig. 7(a). A similar experimental 
phenomenon also occurred at the pitch angle as shown in Fig. 7(b). On 
the other side, by observing from Fig. 7(c) and 7(d), we could also find 
that curve of MAE was gradually starting to converge after reaching the 
10th epoch. MAE of yaw angle and pitch angle converged to 2.5 by deep 
learning-based with normalization layer. And those values were signif
icantly lower than those without normalization. Brightening, these re
sults were the best of all experimental methods, including the facial 
features-based methods mentioned above. 

For our proposed network architecture, the choice of active function 
and the number of fully connected layers affect performance directly. 
Several comparative experiments were used to reveal the correlation 
between model performance and parameters. Three activation functions 
(Tanh function, Sigmoid function, and ReLU) and four different number 
of fully connected layers were selected for the comparison experiment 
on our proposed database. Fig. 8 manifested the MAE value about 
several parameters on histograms. For the active function, the experi
mental results proved that the ReLU functions achieved the smallest 
MAE with all fully connected layers. Furthermore, Fig. 8 also shows that 
ReLU achieves the highest accuracy with all fully connected layers. 
ReLU makes some neuron output zero which causes sparsity in the 
network and reduces the interdependence of parameters. Thus, the 
model generalization and robustness capacity are enhanced by using 
ReLU. Moreover, we explore the effect of different number of fully 
connected layers on model performance. Figs. 8 and 9 displayed that 
three-layer fully connected network with ReLU activate function 
reached the best performance. Because deeper structure does not only 
increase the difficulty of the gradient propagating process when back
propagation, but also makes the training process unsmooth. Therefore, 
the three-layer network may be suggested to avoid this problem. 

In summary, we have the following three conclusions about the ex
periments we have done. First, RF classifier is a better choice for HPE 
among the facial features-based methods. Compared with the best per
forming LDA classifier, the results of the two are not much different even 
if GW feature is selected. And the results by using RF classifier are the 
best if we choose other features. Then, whether it is from the perspective 
of accuracy or MAE, CNN using normalization methods performs 

Table 3 
Comparison of MAE, accuracy, and time-cost by different approaches with GW.  

Approaches Accuracy (%) MAE (◦) Time-cost 

Pitch Yaw Pitch Yaw 

KNN 88.67 87.52 8.60 9.14 394.61 s 
PCA + KNN 88.11 87.94 8.32 9.01 5.36 s 
LDA 86.31 85.14 8.36 8.11 3498.15 s 
PCA + LDA 89.11 88.60 6.52 7.04 15.68 s 
NB 79.02 76.14 14.80 10.02 47.30 s 
PCA + NB 76.15 79.68 13.74 12.47 1.48 s 
RF 84.02 83.63 8.62 8.14 150.33 s 
PCA + RF 86.09 85.34 8.63 8.10 148.96 s  

Table 4 
Comparison of MAE, accuracy, and time-cost by different approaches with HOG.  

Approaches Accuracy (%) MAE (◦) Time-cost 

Pitch Yaw Pitch Yaw 

KNN 86.72 86.11 9.26 8.01 0.0103 s 
PCA + KNN 87.54 86.08 8.55 7.94 0.0063 s 
LDA 78.22 75.39 15.13 13.19 0.0360 s 
PCA + LDA 80.96 79.63 13.99 12.77 0.0165 s 
NB 79.10 78.63 14.95 14.41 0.0096 s 
PCA + NB 76.73 77.90 13.33 13.19 0.0033 s 
RF 89.07 88.06 7.89 7.74 15.6942 s 
PCA + RF 91.86 90.14 5.66 6.12 7.6961 s  

Table 5 
Comparison of accuracy and MAE between facial features-based method and 
CNN-based method.  

Approaches Accuracy (%) MAE (◦) 

Pitch Yaw Pitch Yaw 

PCA + RF (GI) 91.79 90.74 7.11 6.99 
PCA + LDA (GW) 89.11 88.60 6.52 7.04 
PCA + RF (HOG) 91.86 90.14 5.66 6.12 
CNN (without normalization) 92.23 93.92 4.45 4.18 
CNN (with normalization) 95.82 96.51 2.59 2.45  
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significantly better than without normalization methods. Finally, the 
performance of CNN-based methods is better than that of facial features- 
based methods. Although MAE of CNN without normalization layer is 
sometimes lower than that obtained by using RF, we can conclude that 
the designed CNN has a shallower network layer and a simpler structure. 
It results in insufficient extracted features to obtain the best 
classification. 

4.3.3. Applications 
To demonstrate the applications of assisted driving in the night 

environment and infrared HPE, we collected and annotated thousands of 
images of the actual scene. Fig. 10 shows six different zones, namely, 
left, right, forward, center console, speedometer, and center rear-view 
mirror. The drivers often gaze on those zones when they are driving. 

Each zone is determined by a series of different head poses. Some testing 
images are shown in Fig. 11. The confusion matrix represents the results, 
as shown in Fig. 12. We observe that most gaze zones are effectively 
classified. Some mistakes occur between the “speedometer” and “for
ward” zones. Because the head poses are similar when the driver gazes at 
these zones. The results show that the approach is beneficial to driving 
assistant. 

5. Conclusion 

In this paper, we construct an infrared database contains 729 kinds of 
HPE in human computer interaction. In order to obtain accurate data, 
we use strict mathematical geometric formulas and precision measuring 
instruments in the experimental scene layout. During the data recording 
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phase, we arrange volunteers to assist the subjects to strictly complete 
the specified head pose. We implemented many baseline algorithms for 
infrared HPE with facial features-based methods and deep learning- 
based methods to verify the effectiveness and usability of the HPD5A 
database, and provide reference evaluation results for researchers for 
further improvement. We also compare the advantages and disadvan
tages of facial features-based methods and the performance distinction 
between facial features-based methods and deep learning-based 
methods. 
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