
Efficient Nodes Representation Learning
with Residual Feature Propagation

Fan Wu1, Duantengchuan Li2(B), Ke Lin3, and Huawei Zhang1

1 School of Computer Science and Technology, Wuhan University of Technology,
Wuhan 430070, China

2 National Engineering Research Center for E-Learning,
Central China Normal University, Wuhan 430079, China

3 Department of Control Science and Engineering,
Harbin Institute of Technology Shenzhen, Shenzhen 518055, China

Abstract. Graph Convolutional Networks (GCN) and their variants
have achieved brilliant results in graph representation learning. However,
most existing methods cannot be utilized for deep architectures and can
only capture the low order proximity in networks. In this paper, we have
proposed a Residual Simple Graph Convolutional Network (RSGCN),
which can aggregate information from distant neighbor node features
without over-smoothing and vanishing gradients. Given that node fea-
tures of the same class have certain similarity, a weighted feature propa-
gation is considered to ensure effective information aggregation by giving
higher weights to similar neighbor nodes. Experimental results on sev-
eral datasets of node classification demonstrate the proposed methods
outperform the state-of-the-art methods in terms of effectiveness and
efficiency.

Keywords: Graph convolutional networks · Graph representation
learning · Feature propagation · Node classification

1 Introduction

The goal of graph representation learning is to represent nodes on the graph
by low-dimensional dense vectors while maintaining the property characteristics
of nodes and the structural features of graphs. Graph convolutional networks
(GCN) [5], a variant of Convolutional Neural Networks (CNNs), have shown
efficacious performance in graph representation learning. GCN can learn appro-
priate node representation by aggregating neighbor node information. Moreover,
in order to capture the high-order similarity of nodes, a non-linear transforma-
tion is introduced in each layer of GCN propagation [8,17]. Recently, GCN have
been widely utilized in graph structure data researches, such as node classifi-
cation [9], node clustering [21], graph classification [10], and link prediction [6].
In addition, researchers have successfully applied GCN and subsequent variants
to their application areas, such as knowledge graph [13], computer vision [11],
natural language processing [18], and recommendation system [19].
c© Springer Nature Switzerland AG 2021
K. Karlapalem et al. (Eds.): PAKDD 2021, LNAI 12713, pp. 156–167, 2021.
https://doi.org/10.1007/978-3-030-75765-6_13

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-75765-6_13&domain=pdf
https://doi.org/10.1007/978-3-030-75765-6_13


Efficient Nodes Representation Learning with Residual Feature Propagation 157

In GCN, because each layer of graph convolution needs to aggregate features
from the connected node, the dependence relationship between nodes should be
known before model training. This makes the optimization method of min-batch
no longer applicable to GCN, which will make GCN training very difficult.

Considering these limitations of GCN, many researchers have made some
improvements to solve the above problems. In [2], the authors introduced Graph-
SAGE, a general inductive manner for learning node representation on large
graph structure data. This method randomly sampled a fix-sized neighborhood
for each node and aggregated node features from this neighborhood by a spe-
cific aggregator. Moreover, in order to resolving dependence relationship between
nodes, Zeng et al. [20] constructed mini-batch by sampling the training graph
and built a complete GCN on the sampled subgraph for each iteration. Although
the large graph structure data can be processed by these methods, it is hard to
stack more layers to obtain high-order node information.

Inspired by the great success of residual connections, dense connections and
dilated convolution in deep learning, Li et al. [7] adapted these ideas into GCN
to solve the vanishing gradients problem and proposed Deep Graph Convolu-
tional Networks (DeepGCNs). Although DeepGCNs can extract deeper node
information in the graph and have several advantages over previous methods.
Unfortunately, it consumes bulky computing resources and prodigious time in
the inference process, which means its application to large graph structure data
would be difficult. The large graph structure data are very common in practical
applications. However, previous works fail to efficiently aggregate deeper node
information and separate dependence relationship between nodes during training
processes in large graph structure data.

To build a high-efficiency graph representation learning model and separate
dependence of nodes during training processes, a Residual Simple Graph Con-
volutional NetWork (RSGCN) by removing the non-linear activation function
of DeepGCNs is proposed. In RSGCN, residual feature propagation enables the
model to learn higher order node information and restrain the over-smoothing of
the graph. Furthermore, as average aggregation confuses the importance of dif-
ferent classes to nodes itself, we propose a weighted feature propagation model
RSGCN+ to learn the important information from similar nodes. RSGCN+
ensures effective information aggregation by giving higher weights to similar
neighbor nodes, which is measured by the cosine similarity between node fea-
tures. Finally, our models can learn accurate node representation. The major
contributions of this paper are summarized as follows.

– A Residual Simple Graph Convolutional Network (RSGCN) is proposed by
removing the non-linear activation function of DeepGCNs. With the residual
feature propagation, RSGCN can aggregate information from distant neigh-
bor node features without over-smoothing and vanishing gradients. More
importantly, RSGCN can achieve high effectiveness and efficiency during
training process.

– Given that node features of the same class have certain similarity, we pro-
pose a weighted feature propagation model RSGCN+ to ensure effective



158 F. Wu et al.

information aggregation by giving higher weights to similar neighbor nodes,
which further improves the node representation and the robustness of the
model.

– To verify the performance of the proposed methods, three standard bench-
mark datasets for citation networks are taken as the comparing experiments.
The results demonstrate that our models obtain significant improvements for
the semi-supervised node classification tasks in the terms of both prediction
accuracy and the training efficiency.

2 Preliminaries and Related Work

2.1 Primary Definition

Given an undirected attributed graph G = (V,A), where V = {νi }i=1,...,n

represents the nodes and A = {aij} ∈ R
n×n is the adjacency matrix of the graph

G. If there is an edge between node vi and node vj , then aij = 1, otherwise it
equals to 0. For ease of notation, the neighbor set of node vi can be denoted as
Ai = [j|aij = 1]. Note that Ã = A + I denotes the adjacency matrix A with
self-loops and the degree matrix D̃ = diag{d1, d2, ..., dn} ∈ R

n×n is a diagonal
matrix where the i-th value on the diagonal di =

∑
j ãij is equal to the degree

of the i-th node of matrix Ã. For the semi-supervised node classification tasks,
we observe the labels of a subset of the nodes in the graph G. The goal of node
classification is to predict the unknown node labels based on the graph structure
and node features we known the labels.

2.2 Graph Convolutional Network

For each node vi ∈ V, h0
i represents initial node representation, which is d-

dimensional feature vector xi ∈ R
d. Then, GCN can learn node representation

for each node based on node initial features and graph structure. Specifically, for
each node vi in the graph convolution layer, the node representation is updated
recursively with the following three steps: feature propagation, linear transfor-
mation, and non-linear activation.

Feature Propagation. For each node vi, the feature propagation step aggre-
gates the node information from node itself representation hk

i at previous layer
k and graph neighbors Ai,

hi
(k+1) =

1
di + 1

hi
(k) +

n∑

j=1

aij√
(di + 1) (dj + 1)

hj
(k) (1)

where di denotes the degree of node vi. Besides, the update of entire graph
can be expressed as a simple matrix operation. The symbol S = D̃− 1

2 ÃD̃− 1
2



Efficient Nodes Representation Learning with Residual Feature Propagation 159

represents the “normalized” adjacency matrix with added self-loops. Thus, the
update process in Eq. (1) for all nodes can be expressed as,

H̄(k+1) = SH(k) (2)

Intuitively, this step makes each node aggregate information from connected
node and eventually has a positive influence on node classification tasks. Theo-
retically, feature propagation output layer is regarded as the Laplacian smooth-
ing of the node features at the previous layer [8,15].

Linear Transformation and Non-linear Activation. After feature propa-
gation, linear transformation and non-linear activation is identical to a standard
multilayer perceptron. In a GCN layer, there is a learned weight Wk as linear
transformation after the feature propagation, which can transform node repre-
sentation linearly. Finally, a non-linear activation produces the node representa-
tion of the (k + 1)-th layer as,

H(k+1) = σ
(
H̄(k+1)Wk

)
(3)

where σ(·) is a non-linear activation function.

2.3 Simplifying Graph Convolutional Network

Recently, considerable literature has grown up around the theme of simplifying
GCN in order to reduce training time and memory. A Simple Graph Convolu-
tional Network (SGCN) is proposed [16], which removes the non-linear activation
function in Eq. (3) as,

H(k) = SS . . .SH(0)W0W1 . . .Wk (4)

where W0W1 . . .Wk can be rewritten as a single matrix W and the repeated
multiplication with the matrix S can be simplified to a single matrix Sk. The
above linear matrix multiplication turns to,

H(k) = SkH(0)W (5)

With the simplification of SGCN, k times feature propagation Sk can be cal-
culated before training, and the parameters are much less than GCN, which
makes it easy to apply SGCN to large graph structure data. Many experiments
show that removing the non-linear activation function in GCN does not have a
negative impact on performance in many graph tasks. However, [16] shows that
SGCN has the best node classification performance at feature propagation depth
of 2 or 3. When feature propagates for too many times, the node representation
information propagated to well-connected node rapidly increase. This leads to
the over-smoothing issue, which means the features of each node are mixed by
too many neighbors and lose locality.



160 F. Wu et al.

2.4 Deep Graph Convolutional Networks

In GCN, the depth has a crucial function: after k layers each node can aggre-
gate feature information from the nodes that are k-hops away in the graph.
However, GCN with deep layers will lead to vanishing gradients, which makes
accuracy drop sharply in classification tasks. Inspired by the success of the Deep
CNNs technology, DeepGCNs [7] employed residual/dense connections to solve
the above problem.

ResNet [3] can alleviate the problems of vanishing gradients and network
degradation caused by increasing depth in deep neural networks. The node rep-
resentation of the (k + 1)-th layer in ResGCN can be defined as:

Hk+1
res = σ

(
SH(k)Wk

)
+ H(k) (6)

where Wk has the same dimension as H(0). Although DeepGCNs can effectively
stack more layers, and the performance does not decline severely with depth
increasing like GCN, it consumes abundant computing resources and prodigious
time in the training process. Thus, it is difficult to apply it to large graph struc-
ture data.

3 Our Proposed Methods

In this section, we propose Residual Simple Graph Convolutional Network
(RSGCN), a model of node representation learning that extracts deep node
information. The overall architecture of the proposed models is shown in Fig. 1,
which can be summed as two processes: (1) For mitigating over-smoothing,
we propose residual feature propagation RSGCN (dashed-blue) to retain more
node itself information. (2) On the basis of residual feature propagation, we
adjust the final node features by adding weighted feature propagation RSGCN+
(dashed-red).

Fig. 1. Outline of our models framework.



Efficient Nodes Representation Learning with Residual Feature Propagation 161

3.1 Residual Feature Propagation

Considering that non-linear activation functions have almost no benefit in the
node representation, we can simplify ResGCN by removing the non-linear acti-
vation functions. Hence, Eq. (6) can become as follows:

H(k+1)
R = SH(k)

R Wk + H(k)
R

(7)

In order to better mine the node feature information and simplify the model,
we move the linear transformation to the end of each layer, so Eq. (7) could be
changed to Eq. (8).

H(k+1)
R = (S + I)H(k)

R Wk′
(8)

where I ∈ R
n×n denotes the identity matrix. The node representation of the

k-th layer can be defined as:

H(k)
R = (S + I) (S + I) . . . (S + I)H(0)W0′

W1′
. . .Wk′

(9)

where W0′
W1′

. . .Wk′
can be rewritten as a single matrix W and the repetitive

multiplication operation of the matrix S+ I can be simplified to a single matrix
(S + I)k. The node representation of residual feature propagation can be defined
as:

H(k)
R = (S + I)k H

(0)
W (10)

In residual feature propagation, their node features of inputs are added to
the inputs of the next feature propagation, which means that node features can
be well preserved. In this way, RSGCN enables more feature propagation, which
can aggregate information from more distant neighbor nodes with weaker over-
smoothing impact. In addition, as residual feature propagation can be calculated
before training, the scale of parameters in RSGCN is lessened and the training
efficiency is raised vastly. Thus, the matrix H(k)

R can be expanded as:

H(k)
R =

(
Sk + C1

kS
k−1

+ . . . + I
)
H

(0)

W (11)

In general, lower order neighbor nodes contain more important information,
whereas higher order neighbor nodes may contain some noisy information. In
addition, SiH(0) contains the information about the 1 to i-hop neighbors node
features and initial node features. Equation (11) represents that the more distant
neighbor node features are given smaller weights, which enables the node to
aggregate less noisy information.

3.2 Weighted Feature Propagation

Currently, most graph neural networks use mean aggregation to learn node rep-
resentation. Valid information and noise are treated equally, which may hurt
the performance of models. The graph attention network [14] introduces the
attention mechanism into the GCN by assigning a learned weight parameter



162 F. Wu et al.

for neighbor nodes of each node. The huge performance improvement in node
classification tasks illustrates that assigning a suitable weight to neighbor node
is a better way of feature propagation. However, the attention mechanism sig-
nificantly increases parameters of model, thus it is difficult to apply it to large
graph structure data. Therefore, we can change our mind to consider assigning
a weight to neighbor nodes based on their initial features before training.

On condition that the node features of the same class have more similarity,
cosine similarity is utilized as a criterion for determining the similarity of two
node features. The cosine similarity matrix Θ can be defined as:

Θij = aij ·
√∑d

p=1 xpyp
√∑d

p=1 xp

√∑d
p=1 yp

(12)

where xp is the p-th feature of vi and y is the p-th feature of vj . In order to
balance the cosine similarity scale, we normalize them by using the softmax
function by row. Hence, the node weight matrix can be defined as:

Φij =
exp(Θij)∑n

j=1 exp(Θij)
(13)

In order to retain more information from the node itself features, we borrowed
the idea of residual feature propagation into the weighted feature propagation.
The weighted feature propagation can be defined as:

H(k)
Φ = (Φ + I)k H

(0)
W (14)

By using residual feature propagation to obtain the final node features, RSGCN
can learn part of the useful information from the node features and the graph
structure. In addition, weighted feature propagation can extract further useful
information about neighbor nodes and reduce the influence of irrelevant neighbor
node. This information may contain some information that is not contained in
the residual feature propagation. In order to preserve the useful features of both
two feature propagation, we merge them in a stacked manner. Therefore, the
final weighted feature propagation can be defined as:

H(k)
F = H(k)

R + H(k)
Φ (15)

The weighted feature propagation can assign a weight to neighbor node based
on their similarity to node itself features. Although weighted feature propaga-
tion increases some memory to some extent, the neighbor node features can be
aggregated more efficiently and rationally. In addition, weight feature propaga-
tion can be completed before training, and weighted feature propagation can be
performed separately for each node, which is ideal for large graph structure data.

3.3 Classifier

Similar to common classification tasks, we can use a softmax function as a classi-
fier after feature propagation and linear transformation. For a node classification



Efficient Nodes Representation Learning with Residual Feature Propagation 163

task with C classes, the class prediction Ŷ ∈ R
n×C in RSGCN of k times feature

propagation can be defined as:

Ŷ = softmax
(
H(k)

F

)
(16)

where softmax(x) = exp(x)/
∑C

c=1 exp(xc). For multi-class node classification
tasks, we generally take cross entropy as the loss function.

4 Experiments and Discussions

4.1 General Setting

Datasets. Cora, Citeseer, and Pubmed [5] are employed to evaluate the semi-
supervised node classification task, which are the standard benchmark datasets
for citation networks. The statistics of datasets are summarized in Table 1. The
above dataset composed of diverse scientific publications are classified into dif-
ferent classes. Each publication in the dataset is described by a 0/1-valued word
vector indicating the absence/presence of the corresponding word from the dic-
tionary. And the edges in the datasets represent the citation relationship between
articles. In order to obtain unbiased and objective results, we have leveraged
10%–20%–70% train-validation-test settings.

Comparison Algorithms. We compared the proposed RSGCN and RSGCN+
with many state-of-the-art methods, including DeepWalk [12], GCN [5], SGCN
[16], FastGCN [1], GraphSAGE [2], and DeepGCNs [7]. Since GraphSAGE and
DeepGCNs have a variety of models, we choose GraphSAGE-mean and ResGCN
with good effects as representatives.

Experimental Implementation. The parameters of compared methods are
adjusted as the suitable ones according to their papers. On all citation networks
datasets, RSGCN is trained for 200 epochs using Adam optimizer [4] with learn-
ing rate 0.2. And the setting of hyper parameters like the feature propagation
depth and weight decay are manually adjusted according to the validation set
results. We select the model with the best performance of validation sets dur-
ing the training to test the performance of test sets. RSGCN+ has the same
parameters setting as RSGCN.

Table 1. Dataset statistics of the citation networks

Dataset Cora Citeseer Pubmed

#Nodes 2708 3327 19717

#Edges 5429 4732 44338

#Features 1433 3703 500

#Classes 7 6 3



164 F. Wu et al.

Table 2. Test Micro-F1 Score (%) averaged over 10 runs. The best and second values
are marked by the bold font and underlines.

Method Cora Citeseer Pubmed

DeepWalk [12] 73.51 55.06 79.36

GCN [5] 83.01 72.03 86.41

SGCN [16] 83.35 71.71 85.60

FastGCN [1] 80.36 70.15 85.42

GraphSAGE [2] 81.26 71.30 85.63

ResGCN [7] 82.85 71.94 86.30

RSGCN 84.06 73.06 86.33

RSGCN+ 85.10 74.06 86.95

4.2 Results and Discussion

Performance. For accuracy comparison of DeepWalk, GCN, SGCN, FastGCN,
GraphSAGE, ResGCN, RSGCN on all three datasets, the highest Micro-F1 of
each model are summarized in Table 2. Table 2 shows that the performance of
RSGCN is superior to GCN and its variants on the citation networks. In par-
ticular, on the Cora and Citeseer datasets, RSGCN has 1% improvement in
Micro-F1 score than GCN. On the Pubmed dataset, RSGCN has similar per-
formance to GCN result. The improvement of RSGCN performance comes from
two aspects. On the one hand, RSGCN can propagate feature more times than
GCN, which allows each node to aggregate feature information from more distant
neighbor nodes. On the other hand, RSGCN has fewer parameters compared to
GCN. This means that RSGCN has a strong generalization capability and suffers
less from overfitting. Furthermore, RSGCN+ achieve the higher Micro-F1 score
than RSGCN on the citation datasets. It proves that the RSGCN+ is a high-
performance graph model and has the capability to enhance model effectiveness
by weighted feature propagation.

Efficiency. In Table 3, we show the time to train comparison methods and our
models for 200 epochs on the citation networks and the number of layers is set
to be 2 for all models. In particular, RSGCN and RSGCN+ take into account
the time of residual feature propagation and weighted feature propagation. The
training time is measured by a PC Server equipped with an Intel(R) Xeon(R)
CPU E5-2620 V4 @2.10GHz, NVIDIA TITAN V, and 64 GB RAM.

Table 3 shows RSGCN is faster than comparison methods. RSGCN
achieves 80.2%/75.9%/78.3% improvement of time in training of the
Cora/Citeseer/Pubmed dataset than GCN. As for other methods besides SGCN,
feature propagation in each epoch with enormous parameters make training inef-
ficient. Since SGCN with only one learned parameter matrix performs less than
satisfactory, the providing source code uses two learned parameters matrix to
obtain accurate classification performance. However, our models perform well



Efficient Nodes Representation Learning with Residual Feature Propagation 165

Table 3. Training time (seconds) on citation networks averaged over 10 runs. The
values of brackets represent performance improvement compared to GCN method.

Method Cora Citeseer Pubmed

GCN [5] 3.99 4.15 4.51

SGCN [16] 1.24 1.73 1.74

FastGCN [1] 2.15 2.32 2.63

GraphSAGE [2] 8.35 8.79 9.12

ResGCN [7] 12.64 46.15 21.78

RSGCN 0.79 (↑ 80.2%) 1.00 (↑ 75.9%) 0.98 (↑ 78.3%)

RSGCN+ 2.07 (↑ 52.0%) 3.15 (↑ 24.1%) 4.08 (↑ 9.5%)

using one learned matrix and therefore faster than SGCN. RSGCN+ consumes
more time due to calculating cosine similarity, which is still faster than GCN.

Fig. 2. Training processes of all models compared with Micro-F1 score on (a) Core,
(b) Citeseer, and (c) Pubmed.

Because FastGCN and GraphSAGE will be affected by random sampling, the
training has greater volatility, so they are not recorded in Fig. 2 and Fig. 3. The
Micro-F1 score at a training process is depicted in Fig. 2. Figure 2 illustrates the
relationship between the Micro-F1 score and the epoch on the Cora, Citeseer, and
Pubmedand datasets. One can see that the proposed RGSCN and RSGCN+ not
only achieve the highest Micro-F1 score in the validation set, but also require
fewer epochs to converge than traditional GCN. During the training process,
RSGCN and RSGCN+ demonstrate high efficiency, which shows good industrial
conversion application prospects.

Training Depth Analysis. Figure 3 shows the performance in test sets of
GCN, SGCN, ResGCN, RSGCN, RSGCN+ measured by Micro-F1 score with
different depth on three citation datasets. For the case of 1 to 3 depth, the Micro-
F1 score of above methods increases with more layers added, which suggests
that deeper feature propagation may be useful. From Fig. 3, RSGCN achieve the



166 F. Wu et al.

Fig. 3. Performance in test sets of five models measured by Micro-F1 score with dif-
ferent depth on (a) Core, (b) Citeseer, and (c) Pubmed.

best classification performance at depth between 4 and 6, while others achieves
the best classification performance at depth between 2 and 3. Due to gradient
vanishing problem caused by the deep network and the over-smoothing caused
by the feature propagation, GCN performance decreases sharply at depth of
4. In addition, the performance of ResGCN also starts to decrease sharply at
depth of 7 because enormous parameters in the ResGCN lead to over-fitting.
With increasing depth of model, the effect of SGCN, RSGCN, and RSGCN+ on
classification performance is less pronounced. This is largely due to the fact that
SGCN, RSGCN, and RSGCN+ have fewer parameters and not over-fitting. Due
to the slower feature convergence, the performance of RSGCN in shallow layers
is slightly inferior to other models. However, the performance of RSGCN, and
RSGCN+ is still better than SGCN. An explanation is that the residual feature
propagation in RSGCN can effectively slow down the smoothness, which also
gives RSGCN some edge in depth.

5 Conclusion

In this paper, we have proposed a Residual Simple Graph Convolutional Network
(RSGCN), which can aggregate information from distant neighbor node features
without over-smoothing and vanishing gradients. Given that node features of the
same class have certain similarity, a weighted feature propagation is considered
to ensure effective information aggregation by giving higher weights to similar
neighbor nodes. Experimental results indicate that the proposed method per-
forms better than compared methods on both accuracy and training efficiency
in terms of quantitative assessments.

References

1. Chen, J., Ma, T., Xiao, C.: Fastgcn: fast learning with graph convolutional networks
via importance sampling. In: International Conference on Learning Representations
(2018)



Efficient Nodes Representation Learning with Residual Feature Propagation 167

2. Hamilton, W., Ying, Z., Leskovec, J.: Inductive representation learning on large
graphs. In: Advances in Neural Information Processing Systems, pp. 1024–1034
(2017)

3. He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition.
In: IEEE Conference on Computer Vision and Pattern Recognition, pp. 770–778
(2016)

4. Kingma, D., Ba, J.: Adam: a method for stochastic optimization. In: International
Conference on Learning Representations (2014)

5. Kipf, T.N., Welling, M.: Semi-supervised classification with graph convolutional
networks. arXiv preprint arXiv:1609.02907 (2016)

6. Kipf, T.N., Welling, M.: Variational graph auto-encoders. arXiv preprint
arXiv:1611.07308 (2016)

7. Li, G., Muller, M., Thabet, A., Ghanem, B.: Deepgcns: can gcns go as deep as cnns?
In: IEEE International Conference on Computer Vision, pp. 9267–9276 (2019)

8. Li, Q., Han, Z., Wu, X.M.: Deeper insights into graph convolutional networks for
semi-supervised learning. In: AAAI Conference on Artificial Intelligence (2018)

9. Li, R., Wang, S.: Adaptive graph convolutional neural networks. In: AAAI Con-
ference on Artificial Intelligence (2018)

10. Ma, Y., Wang, S., Aggarwal, C.C., Tang, J.: Graph convolutional networks with
eigenpooling. In: Proceedings of the 25th ACM SIGKDD International Conference
on Knowledge Discovery & Data Mining, pp. 723–731 (2019)

11. Monfardini, G., Di Massa, V., Scarselli, F., Gori, M.: Graph neural networks for
object localization. Frontiers in Artificial Intelligence and Applications. pp. 665–
669 (2006)

12. Perozzi, B., Al-Rfou, R., Skiena, S.: Deepwalk: online learning of social represen-
tations. In: Proceedings of the 20th ACM SIGKDD International Conference on
Knowledge Discovery and Data Mining, pp. 701–710 (2014)

13. Shang, C., Tang, Y., Huang, J., Bi, J., He, X., Zhou, B.: End-to-end structure-aware
convolutional networks for knowledge base completion. In: AAAI Conference on
Artificial Intelligence (2019)

14. Velickovic, P., Cucurull, G., Casanova, A., et al.: Graph attention networks. In:
International Conference on Learning Representations (2018)

15. Wang, X., He, X., Wang, M., Feng, F., Chua, T.S.: Neural graph collaborative
filtering. In: Proceedings of the 42nd international ACM SIGIR conference on
Research and development in Information Retrieval, pp. 165–174 (2019)

16. Wu, F., Souza, A., Zhang, T., Fifty, C., Yu, T., Weinberger, K.: Simplifying graph
convolutional networks. In: International Conference on Machine Learning, pp.
6861–6871 (2019)

17. Xu, K., Hu, W., Leskovec, J., Jegelka, S.: How powerful are graph neural networks?
In: International Conference on Learning Representations (2018)

18. Yao, L., Mao, C., Luo, Y.: Graph convolutional networks for text classification. In:
AAAI Conference on Artificial Intelligence, pp. 7370–7377 (2019)

19. Ying, R., He, R., Chen, K., Eksombatchai, P., Hamilton, W.L., Leskovec, J.: Graph
convolutional neural networks for web-scale recommender systems. In: Proceedings
of the 24th ACM SIGKDD International Conference on Knowledge Discovery &
Data Mining, pp. 974–983 (2018)

20. Zeng, H., Zhou, H., Srivastava, A., Kannan, R., Prasanna, V.: Graphsaint: graph
sampling based inductive learning method. In: International Conference on Learn-
ing Representations (2019)

21. Zhang, X., Liu, H., Li, Q., Wu, X.M.: Attributed graph clustering via adaptive
graph convolution. In: AAAI Conference on Artificial Intelligence (2019)

http://arxiv.org/abs/1609.02907
http://arxiv.org/abs/1611.07308

	Efficient Nodes Representation Learning with Residual Feature Propagation
	1 Introduction
	2 Preliminaries and Related Work
	2.1 Primary Definition
	2.2 Graph Convolutional Network
	2.3 Simplifying Graph Convolutional Network
	2.4 Deep Graph Convolutional Networks

	3 Our Proposed Methods
	3.1 Residual Feature Propagation
	3.2 Weighted Feature Propagation
	3.3 Classifier

	4 Experiments and Discussions
	4.1 General Setting
	4.2 Results and Discussion

	5 Conclusion
	References




