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MFDNet: Collaborative Poses Perception and Matrix
Fisher Distribution for Head Pose Estimation

Hai Liu"?, Senior Member, IEEE, Shuai Fang

Abstract—Head pose estimation suffers from several problems,
including low pose tolerance under different disturbances and
ambiguity arising from common head pose representation. In
this study, a robust three-branch model with triplet module and
matrix Fisher distribution module is proposed to address these
problems. Based on metric learning, the triplet module employs
triplet architecture and triplet loss. It is implemented to maximize
the distance between embeddings with different pose pairs and
minimize the distance between embeddings with same pose pairs.
It can learn a highly discriminate and robust embedding related
to head pose. Moreover, the rotation matrix instead of Euler
angle and unit quaternion is utilized to represent head pose. An
exponential probability density model based on the rotation matrix
(referred to as the matrix Fisher distribution) is developed to
model head rotation uncertainty. The matrix Fisher distribution
can further analyze the head pose, and its maximum likelihood
obtained using singular value decomposition provides enhanced
accuracy. Extensive experiments executed over AFLW2000 and
BIWI datasets demonstrate that the proposed model achieves state-
of-the-art performance in comparison with traditional methods.

Index Terms—Head pose estimation, Triplet loss, Rotation
matrix, Matrix Fisher distribution, Metric learning.

1. INTRODUCTION

EAD pose estimation (HPE) has become an important
H topic, and it is realized by detecting the direction of the
face and judging the rotation of the head. HPE has been ap-
plied in various areas, such as emotion detection [1], gaze detec-
tion [2], human-computer interaction [3], and human behavior
analysis [4], etc. Recently, HPE from RGB images has gradually
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(a) The same person with different poses

(b) The same pose by different persons

Fig. 1. Head pose estimation suffers from low pose tolerance. (a) The images
have the same identity but different poses. (b) The images have different identi-
ties and the same pose as one of the images in (a). The facial regions indicated
by the boxes are fed into HopeNet for extracting the facial features. The images
with different poses share more similar facial features than the images with the
same pose.

become popular because it does not always require expensive
devices, such as sensors, nor additional depth information. The
majority of previous studies [5], [6] used the Perspective-n-Point
method to determine the projection relationship of 2D facial
landmarks with the 3D generic head model and obtain head
poses. For the limitations in facial landmark detection, sev-
eral competitive methods based on convolutional neural network
(CNN) [7], [8] have been proposed, these methods directly pre-
dict head poses without facial landmarks. Despite these devel-
opments, two fundamental problems in HPE remain.

The first problem is that HPE is susceptible to disturbances,
such as identity, illumination, and occlusion. The problem can
be observed in Fig. 1, which we refer to as low pose tolerance.
Taking several images with different and similar poses from
Fig. 1 as examples, the facial features from the facial regions
marked by the boxes are extracted using HopeNet [7]. Then a
cluster analysis is conducted on these facial features. As shown
in Fig. 1(a), the facial features marked by red boxes are highly
similar, whereas in Fig. 1(b), these images with the same pose
from different persons have different facial features. Specifi-
cally, the features closely related to the head pose may be unre-
lated to identity, and the similar facial features in the images with
different poses may result in a confusing prediction for HPE. To
address the low pose tolerance, the common features in images
with the same pose should be explored. It is reasonable to be-
lieve that the multiple images with the same pose as an input
can provide additional information on the head pose. Hence, the
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triplet architecture is adopted here, and triplet loss is proposed to
constrain the irrelevant features and learn a highly discriminate
and robust embedding related only to the head pose.

The second problem that needs to be addressed is how to
represent the angles of the head pose effectively. In previous
studies [7], [9], two representations, namely, Euler angles and
unit quaternion, were often adopted. Using Euler angles can
cause the ambiguity problem called gimbal lock [10]. If it oc-
curs, the representation system will lose one degree of freedom,
and the head poses will not be independent of one other and
will rotate in all three directions simultaneously. Another rep-
resentation is unit quaternion, which also suffers from the am-
biguity problem since its double embedding may lead to the
existence of two disconnected local minimal values. Moreover,
Zhou et al. [11] demonstrated that any rotation representation
in four or fewer dimensions is discontinuous, which is a nui-
sance in the optimization of the training network [12]. To over-
come the ambiguity problem, the rotation matrix representation
is adopted in this study. In geometry, the 3D rotation group, of-
ten denoted SO(3), is the group of all rotations around the origin
of three-dimensional Euclidean space. The task of image-based
HPE represented by rotation matrix is equivalent to estimating
rotation matrix on SO(3). However, due to the uncertainty of the
head pose, the rotation matrix is difficult to be predicted directly.
For dealing with the pose uncertainty, various probability dis-
tributions for rotations are defined in directional statistics [13],
[14]. The matrix Fisher distribution is an exponential probabil-
ity density for rotation matrices introduced in [15], [16]. The
matrix Fisher distribution on SO(3) can be defined by 9 param-
eters, and it is corresponding to the Gaussian distribution in R3
which is defined by the three dimensional mean, and the six di-
mensional covariance. The matrix Fisher distribution on SO(3)
can subsequently constrain the rotation matrix and model pose
uncertainty for further analysis and estimation.

The matrix Fisher distribution network (MFDNet) model is
proposed based on these two solution schemes. MFDNet con-
sists of triplet module and matrix Fisher distribution module.
The main contributions of this work are summarized below.

1) Unlike traditional paradigms that learn embeddings from

a single image, our method considers that the multiple
images can provide additional information on the head
pose. A triplet module employs triplet architecture with
triplet loss is proposed, and it needs three images as the
input, two of the images share the same pose, and the
other image has another pose. Using the triplet loss, the
difference in their embeddings is computed to obtain the
highly discriminate and robust embeddings related to the
head pose. The extracted embeddings can further enhance
the pose tolerance.

2) In contrast to previous rotation representations, the matrix
Fisher distribution based on the rotation matrix is utilized
to represent the angles of the head pose and model the un-
certainty of head rotation. The matrix Fisher distribution
can effectively avoid the ambiguity problem and dramat-
ically improve the accuracy of HPE.

3) Our method is evaluated on two protocols trained on
300W-LP and BIWI datasets. The experimental results
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demonstrate that the proposed method outperforms state-
of-the-art methods based on RGB images and is even fa-
vorable against heavy methods adopting depth and time
information on AFLW?2000 and BIWI datasets.

The rest of the paper is structured as follows. Current work
related to HPE is presented in Section II. The details of the
MFDNet model and its different modules (triplet module and
matrix Fisher distribution module) are introduced in Section III.
The experimental results and discussion of different datasets are
reported in Section IV. Section V concludes this study.

II. RELATED WORK
A. Head Pose Estimation

Head pose estimation has existed as a studied task in computer
vision in the past few years. Recently, with the rapid develop-
ment of CNN, it is leveraged more commonly in estimating head
pose. Many methods have been proposed to estimate head poses
on different modalities of images, such as RGB images, depth
images, and videos. The existing approaches for HPE on RGB
images can be coarsely categorized into landmark-based and
landmark-free methods.

Landmark-based methods predict head poses by solving the
correspondence between 2D facial landmarks and 3D head mod-
els, therefore, they require an accurate facial landmark detec-
tor and a head model generator. Sun et al. [17] proposed a
cascade convolution network to generate the facial landmark
detector. In [18], [19], a supervision-by-registration approach
was proposed to relieve the effects of inaccurate labels and
improve the performance of facial landmark detection. A face
alignment network (FAN) [5] that can extract facial landmarks
through heatmap regression has also been presented. In [20], the
spherical parameterization method was developed to generate a
morphable 3D head model for determining the accurate pro-
jection relationship. Landmark-free methods directly estimate
head poses without facial landmarks. These approaches mainly
adopted Euler angles to represent the angles of head pose. A
multi-task strategy that can localize facial landmarks and es-
timate head poses was adopted in [21], [22]. Zhu et al. [23]
proposed a 3D dense face alignment (3DDFA) method that can
utilize facial landmarks to fit a 3D face model and homeopath-
ically estimate the head pose. HopeNet was presented in [7],
which adopted a coarse-to-fine strategy by using classification
and regression losses for constraining head poses. An improved
method based on the HopeNet was presented in [24]. In this
method, the direct regression procedure is modified to average
top-k regression for estimation. Moreover, Yang et al. [8] ex-
ploited the soft stage-wise architecture and feature aggregation
to obtain head poses. In [25], a spatial channel-aware residual
attention structure (SCR-AT) was developed to construct Gaus-
sian distribution as the ground truth and incorporate the attention
module to estimate the head pose. A feature decoupling network
(FAN) that can replace the Kullback Leibler (KL) divergence
loss with cross entropy loss and calculate the intra-class gap of
each Euler angle by using cross-category center loss was pre-
sented for HPE in [26]. In addition, unit quaternion has also
been utilized to represent head poses. Hsu er al. [9] proposed a
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quaternion network (QuatNet) to predict the angles of head pose
represented by unit quaternion instead of Euler angle.

Several methods have also been developed for different image
modalities, such as depth images and videos. Fanelli et al. [27]
employed the random forest algorithm to estimate the head pose
from depth images. In [28], DeepHeadPose that combined RGB
images and depth information to regress head poses was pre-
sented. Meyer et al. [29] proposed a morphable face model and
registered it to depth images for HPE. Moreover, in [30], Gu et al.
utilized the recurrent neural network to solve facial videos for es-
timating head pose. Different from these approaches, the current
study employs a triplet architecture with triplet loss. Then a ma-
trix Fisher distribution based on the rotation matrix is proposed
to represent the angles of the head pose for HPE on RGB images.

B. Metric Learning

Metric learning refers to the embedding of data with highly
discriminate and robust capability based on a similarity mea-
sure defined by an optimal distance metric [31]. Metric learn-
ing is widely used for face recognition [32] and person re-
identification [33], [34]. The Siamese network [35] and Triplet
network [36], which are the twin or triplet architecture with the
same subnetworks, respectively, are commonly leveraged meth-
ods. Early methods based on the Siamese network with con-
trastive loss [37] exhibit superior performance by measuring the
distance of pairwise samples. Schroff et al. [32] proposed an ef-
fective paradigm and used the triplet network with triplet loss to
minimize the distance between the positive pairs that share the
same label while maximizing the distance between the negative
pairs that have different labels. Moreover, Hermans et al. [38]
claimed that the triplet loss and its variants outperform other
published methods by a large margin. In view of the observed
phenomenon regarding low pose tolerance, we argue that using
multiple images as the input may provide additional informa-
tion about head pose. Hence, the triplet network with triplet loss
is adopted here to learn a discriminate and robust embedding
related to head pose.

C. Rotation Matrix Representation

It is extremely important to determine the representation of
the pose in pose estimation. Several studies that used deep learn-
ing model regarded the Euler angle [20] or unit quaternion [9]
as representations for pose estimation. However, these represen-
tations suffer from the ambiguity problem due to their proper-
ties. Therefore, the rotation matrix is used for pose estimation
to address this issue. Prokudin et al. [39] explored the rotation
matrix combined with singular value decomposition for pose es-
timation. In [40], Lee adopted matrix Fisher distribution [15] to
represent the uncertainties of attitude estimates and constructed
a pose estimator according to the Bayesian framework. Mohlin
et al. [41] proposed an approximating the normalizing constant
of the matrix Fisher distribution method to estimate object orien-
tation. Wang et al. [42] represented large uncertainties in pose by
combining the matrix Fisher distribution with the Gaussian dis-
tribution. With regard to the representation problem commonly
encountered in HPE, rotation matrix representation and matrix
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Fisher distribution not only avoid the ambiguity problem but
also further analyze the uncertainty of head rotation.

III. METHODOLOGY

In this section, we firstly introduce the head pose estimation
problem and describe some details of the proposed MFDNet
model. Secondly, the triplet module for extracting a more dis-
criminate and robust embedding related to head pose is pre-
sented. Then, we introduce the rotation matrix representations
and the matrix Fisher distribution module for predicting head
pose. Finally, we present the optimization for training.

A. Problem Formulation

Generally, head pose estimation task can be briefly summa-
rized as follows. Given a facial image = and its corresponding
head pose vy is represented by the Euler angles including yaw
angle ¢, pitch angle 6 and roll angle 1. HPE is to find a mapping
function F to estimate § = F'(z). The § should fit the real head
pose y as much as possible. The function F' can be obtained by
minimizing the error of the prediction ¢ and the ground truth y.
The error is expressed as L(y, y) where is the loss function.

B. Overview of the Proposed MFDNet Model

The proposed MFDNet model is shown in Fig. 2, which con-
tains two modules, such as triplet module and matrix Fisher
distribution module. During training phase, the model can be
trained with an end-to-end strategy. It employs triplet network
architecture, which takes three images as input and fed them into
the backbone to obtain embeddings related to head pose. These
extracted embeddings are firstly put into triplet module to com-
pute triplet loss for improving the robustness of the network.
Then these feature maps are passed to fully connected layers
to obtain the unconstrained matrix M for constructing matrix
Fisher distribution, and calculate MFD loss with ground truth
respectively. In the end, we combinate the triplet loss and three
MFD losses to train model. In the inference phase, the triplet
module will be discarded and MFDNet takes one image as in-
put. Then the extracted embedding is entered into matrix Fisher
distribution module to generate the predicted head pose repre-
sented by rotation matrix. In addition, considering the network
depth and width, EfficientNet-b0 [43] is selected as the feature
extractor in our model.

The details of two modules and the optimization will be de-
scribed in subsequent sections.

C. Robust Pose Embedding Extraction With Triplet Module

Unlike the previous methods for head pose estimation, we
take multiple images as inputs for obtaining additional informa-
tion about head pose. The selection of triplet samples depends
on the different coarseness of head pose. Considering the time
cost and computation efficiency, we firstly define the binned
poses which are partitioned into 12 bins separated by 15 de-
grees. Then triplet samples (z", 2%, 2P) are randomly selected
as inputs according to binned pose, where (z”,z%) indicates
different binned poses, and (%, zP) indicates the same binned
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Fig. 3. Comparison of the distance between embeddings of different image
pairs. The first row shows the different pose pairs and the same pose pairs, the
second row is the feature extractor using HopeNet. The third row displays the
extracted embeddings. Lastly the distance of embeddings from different poses
and the same pose pairs is computed.

pose. The triplet samples are input into the backbone to obtain
the embeddings f(z™), f(z*) and f(xP) respectively. Then we
take advantage of Euclidean distance D(-, -) to measure the sim-
ilarity between different embeddings. This measurement can be
expressed as

D(z1,22) = || f(z1) — fa2) |3 (1

Considering the low pose tolerance, as illustrated in Fig. 3,
HopeNet [7] is utilized to extract the embeddings of triplet sam-
ples. By computing their Euclidean distance, it can be observed
that the similarity of embeddings with different pose pairs is

lustration of the proposed MFDNet model. (a) The triplet module that computes the difference of three embeddings. (b) The matrix Fisher distribution

smaller than the distance of embeddings with the same pose
pairs.

However, we expect f(z%) to be more similar to f(zP)
than f(z™), which can be expressed by D(z%, z™) < D(z®, zP).
Therefore, the triplet module is proposed as illustrated in
Fig. 2(a), where the green dashed box and red dashed box sep-
arately indicate the embeddings from different pose pairs and
the same pose pairs. The triplet loss is utilized to maximize
the distance between embeddings with different pose pairs and
minimize the distance between embeddings with the same pose
pairs, which can obtain more robust embeddings related only to
head pose. To ensure that the network extracts enough variation
between embeddings with different poses, the class margin v is
used to control this similarity variation. Thus, the triplet loss is
defined as

Liriptet(z™, %, 2P)=maxz (0, D(z*,2")—D(z*2")+7). (2)

D. Modeling the Pose Uncertainty With Matrix
Fisher Distribution

In the section, we firstly proposed rotation matrix as repre-
sentation for head pose. Then matrix Fisher distribution based
on rotation matrix will be introduced to model the head pose ro-
tation uncertainty, while computation methods are discussed for
its normalizing constants. Finally, the negative log-likelihood
loss is proposed to measure the validity of the distribution.

1) Head Pose Representations: The assumptions that take
rotation matrix as the representation for the angles of head pose
is introduced. In the 3D world coordinate, the point located at
(u, v, w) firstly rotates angle ¢ around x-axis, then rotates angle
0 around y-axis and finally rotates angle ¢ around z-axis. Such
a sequence of rotations can be expressed by

R.(¢) Ry (0) Ry (¥) - (u,v,w)" = R+ (u,v,w)”,  (3)
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where R is the rotation matrix, which can represent the linear
transformation from the body-fixed frame to the inertial frame.
The angles of head pose can be represented by rotation matrix
R. Tt can be obtained as (4) shown at the bottom of this page.
where the angles ¢, 6 and v are the Euler angles and indicate
yaw, pitch and roll angles, respectively. In addition, for the exist-
ing head pose estimation datasets, the labels are represented by
Euler angles. These labels should be transformed into rotation
matrix. The Euler angles can be determined by the element of
the rotation matrix. The transformation can be expressed by

’t/) = atan2 (Rgg7 R35) R

f = atan2 (—R31, \/M) 5 o)

¢ = atan2 (Ra1, R11) .

The 3D rotation group, often denoted SO(3), is the group of
all rotations around the origin of three-dimensional Euclidean
space. Rotation matrix is the three-dimensional special orthog-
onal matrix on Lie group SO(3) and satises the following prop-
erties

SO(3) = {R € R¥*? | R"R = I33,det[R] = +1}, (6)

where det[] is the determinant of a square matrix.

Head pose estimation can be designed on the three dimen-
sional special orthogonal group to escape the singularity and
ambiguity problem. Hence, the rotation matrix is difficult to con-
strain, so it is easy to lose its orthogonality. Therefore, in view of
constructing deterministic head pose on SO(3), we construct a
compact form of an exponential density model on the special or-
thogonal group, namely matrix Fisher distribution, to constrain
rotation matrix and represent head pose rotation uncertainty.

2) Matrix Fisher Distribution: The matrix Fisher distribu-
tion introduced in [15], [16] deals with statistics for rota-
tions. When applied to the three-dimensional special orthogonal
group, it can be determined by 9 parameters and modeling the
head pose uncertainty. For a rotation matrix R € SO(3), the ma-
trix Fisher distribution is defined by the following probability
density function

1
R|M)=——exp(tr[M"R 7
p( | ) a(M)eXp(T[ ])’ ()
where M € R3*3 is an unconstrained matrix, a(M) € R is the
normalizing constant of distribution and ¢r[] is the trace of the
matrix. The distribution can be denoted by R ~ M (M).
The normalizing constant a(M) is given by

a(M) = / exp (tr [MTR]) dR, (8)
ReSO(3)

which is rather non-trivial to compute accurately and efficiently.
To evaluate a(M), the singular values of M are considered.
Assuming the singular value decomposition of unconstrained
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matrix M is given by
M=USVT, ©

where S = diag(s1, s2, $3) is a diagonal matrix of singular val-
uesof M ands; > so > s3 > 0. The U and V are the orthogonal
matrices which have UTU = VTV = I3,3. While they are not
rotation matrices in SO(3) since the determinant of U and V/
could be —1. To address this issue, we apply this transformation
as follow

U = Udiag (1,1, det [U]),
S = diag (s1, s2, s5) =diag (s1, s2,det [UV] s3),
V =Vdiag (1,1,det[V]).

(10)

The definition of U/ and V ensure AU, Ve SQO(3). Moreover, the
result of a(M) is determined by S. The A is defined as

. ! / ! /
A=diag(s1—sa— S5, Sa— S1— S5, Sh—S1— S2, 1+ S2+83), (11)

the normalizing constant a(M ) can be expressed by

a(M) = 1F, <;,2,A>, (12)
where 1 Fy (-, -,-) is the generalized hypergeometric function,
which is rather non-trivial to compute accurately. By computing
this hypergeometric function, the constant a(M) and its gradi-
ents can be obtained.

When acquired the matrix Fisher distribution on SO(3), in
the inference phase, the proper rotation matrix can be extracted
from the distribution. Suppose R € SO(3) and R ~ M (M), the
maximum mean can be defined as

Ry = argmax{p(R|M)}.
RESO(3)

13)

After calculating, the optimal rotation Re SO(3) is expressed
by

A - 10 0
R=Ryw=UVT=U1{01 0 vT. (14
00 det [UV]

In order to directly visualize the matrix Fisher distribution, a
method for visualizing the probability density function on SO(3)
was proposed. We firstly compute the marginal probability den-
sity function for the i-th column vector of rotation matrix, and
visualize it on the surface of the unit sphere with color map.
The matrix Fisher distribution is shown in Fig. 4. The matrix M
determines the shape of M (M ). The larger the singular value of
M, the smaller the dispersion of the marginal probability den-
sity. Moreover, as shown in Fig. 4(d), the principal axes shown
by the red axes are rotated when M varies.

3) Negative Log-Likelihood Loss Function: Given a sample
(z, Ry ), x is the input image and the rotation matrix R, € SO(3)
is ground truth. The Fig. 2(b) shows the details of matrix Fisher

cosfcosp sinysinfcosp—cosysing  cosysinfcosptsinigsing
R=| cosflsing sinysinfsing+cosypcosp cosysinfsing—sincose |, 4

—sinf sinycost

cosycost
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(a) M = diag[10,10,10] (b) M =diag[20,20,20]
Z z
T Y €T Y
(¢) M =diag[20,10,1] (d) M = A-diag[20,10,1]
Fig. 4. Visualization of the matrix Fisher distributions with different uncon-

strained matrix M. For (a) and (b), the distributions on the three axes are similar
and circular, but the distribution in (a) is more dispersive than in (b) due to the
smaller singular values of M. (c) The difference in the singular values of M
results in a concentrated distribution on the x-axis and the elongated distribu-
tions on the other axes. In (d), A is the rotation matrix given by rotating around
the z-axis by 7 /6 degrees. By left-multiplying the matrix M with A, both the
x-axis and y-axis are rotated but the shape of distribution remains as in (c).

Algorithm 1: Training Procedure For The Matrix Fisher
Distribution Network.
Input: Training set 7" and the hyper parameters «, 3.
Output: <year> Network parameters 6.
1: Initialize the parameters 0;
2: while not convergence do
3:  Sampling triplet samples X= (2™, 2%, 2P) from T’
4: Generating rotation matrix label
Y=(Rzn, Rya, Ry»);
Computing Lyripie+ With X according to (2);
Calculating Lyzp with (X, Y) according to (15);
0 < 0—Vo(aLliripiet(X) + BLMFD(X,Y));
returnf.

distribution module. By feeding the sample to the convolutional
neural network and fully connected layers sequentially, we ob-
tain the 9D representations M, then generate matrix Fisher
distribution M (M, ). The matrix Fisher distribution loss (MFD
loss) between M, and R, can be computed by utilizing the neg-
ative log-likelihood function of distribution. The MFD loss can
be expressed by

Larp(z) = —log(p(R.|M.,))=logla (M,)—tr[MIR,]. (15)

This loss is a continuous convex function and has continuous
gradients which makes it suitable for optimization.

E. Optimization

The proposed MFDNet model is trained by minimizing the
total loss as shown in Fig. 2. Regarding to the losses at different
modules, the total loss £ consists of the above losses and can be

IEEE TRANSACTIONS ON MULTIMEDIA, VOL. 24, 2022

300W-LP

AFLW2000

R

Fig. 5. HPE images in three datasets. The first, second and third rows are
samples from 300W-LP, AFLW2000 and BIWI datasets, respectively.

formulated as
L(x" z% xP) = aliripier (2", 2%, 2P) + B[Lyvpp (™)
+Lyrp (%) + Larp (2F)]

(16)

where «, 3 are the hyperparameters that can balance the weights
of different losses. The MFDNet model can be supervised by L.
The training procedure of the proposed method is summarized
in Algorithm 1.

IV. EXPERIMENT
A. Experiment Settings

1) Datasets: In this experiment, three public head pose
datasets are used. Some samples of datasets can be shown in
Fig. 5.

300W-LP dataset [23] contains more than 120 K images
across large poses by meshing and flipping 300 W dataset [44]
which provides annotations for 3837 face images with 68 land-
marks.

BIWI dataset [45] records the different head pose rotations
by Kinect v2 device and contains over 24 videos of 20 subject,
a total of 15 K frames. For each frame, both RGB images and
depth images are provided.

AFLW?2000 dataset [23] contains the first 2000 images of the
AFLW [46] whose annotations include large head poses and 68
landmarks.

2) Evaluation Protocols: For training and evaluating the pro-
posed methods on these different datasets, our experiments are
executed according the following two widely used protocols
same as FSA-Net [8].

In protocol I, the 300W-LP dataset is used for training, and
the trained model is evaluated on two real-world datasets, the
AFLW2000 and BIWI datasets. When testing on AFLW2000,
we cropped around the head region based on the facial land-
mark labels. When testing on BIWI, we employ MTCNN face
detector [47] for face detection instead of using tracking.

In protocol 11, the 70% videos in the BIWI dataset are used
as training sets and the others for testing. The videos are also
cropped head region using MTCNN face detector. Notice that,
the videos include different modalities like RGB, depth and time.
The proposed method only works with RGB frames.
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For a fair comparison with other methods, we need to trans-
form the predicted rotation matrix into Euler angles for evalu-
ation. Given an image x;, we can predict its rotation matrix R;
using MFDNet. Then the Euler angle can be transformed ac-
cording to (5). The mean absolute error (MAE) is adopted as the
evaluation metric, it is defined as follows

1 m
MAE = — S i — vl 17
m;:lly Yil (17)

where m is the number of samples on the datasets, y; and y;
denote the predicted Euler angle and the ground truth of the i-th
sample respectively.

3) Implementation: The experiments were carried out based
on PyTorch and performed on a workstation with Intel Xeon
Gold 6126 CPU and Nvidia Tesla V100 GPU. All the input
images are firstly normalized using the ImageNet [48] mean
and standard deviation, then randomly cropped to size 224 x 224.
Regarding the hyperparameters on the model, the class margin
v is set to 0.2 in the triplet module same as [36]. The weights
of the different losses in the total loss are « = 2 and 3 = 3.
Adam optimizer is adopted to update the model parameters for
30 epochs and the batch size is 32. The learning rate is initialized
to le-4 and reduced by a factor of 0.1 every 10 epochs.

B. Experiment Results Analysis

1) Competing Methods: To demonstrated the effectiveness
of the proposed methods, we compare our methods with several
state-of-the-art methods.

Plenty of methods on RGB images are compared. Dlib [6] and
FAN [5] solved the 2D to 3D fitting problem via facial landmarks
for head pose estimation. KEPLER [21] utilized multi-tasking
strategy to predict both landmark and head pose simultaneously.
3DDFA [23] fitted a 3D face model to RGB image and generated
head pose. The following methods use landmark-free scheme to
predict. HopeNet [7] employed fine-grained strategy to build a
multi-loss for Euler angles. Moreover, for creating a fair compar-
ison, we constructed a new benchmark based on HopeNet, which
called HopeNet+. It adopts EfficientNet-b0 instead of ResNet-50
as backbone same as our proposed method. FSA-Net [8] pro-
posed a soft stage-wise regression method and combined with
feature aggregation to achieve good performance. QuatNet [9]
taken advantage of uint quaternion to represent head pose.
SCR-AT [25] combined with Gaussian distribution and spatial
attention structure to predict Euler angles. HPE-40 [24] proposed
anovel head pose estimation method using two-stage ensembles
with top-k regression. FDN [26] built a feature decoupling net-
work to learn exclusive features of different angles for head pose
estimation.

Additional methods on different modalities also is compared.
DeepHeadPose [28] adopted course-to-fine strategy to estimate
the head pose from RGB-D images. Gu et al [30] employed
VGG16 and VGG16 + RNN to predict to predict head pose for
RGB images and RGB + Time images by combing Bayesian
filters. Martin [49] constructed a 3D head model to estimate the
head pose from depth images.
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TABLE I
COMPARISON TO OTHER STATE-OF-THE-ART METHODS ON AFLW2000
DATASET. ALL METHODS ARE TRAINED ON 300W-LP DATASET

Methods Yaw Pitch Roll MAE
Dlib [6] 23.1 13.6 10.5 15.8
3DDFA [23] 5.40 8.53 8.25 7.39
FAN [5] 6.36 12.3 8.71 9.12
HopeNet [7] 6.47 6.56 5.44 6.16
HopeNet+ 5.57 6.24 5.02 5.61
FSA-Net [8] 4.50 6.08 4.64 5.07
QuatNet [9] 3.97 5.62 3.92 4.50
SCR-AT + DGDL [25] 3.77 5.35 4.06 4.39
HPE-40 [24] 4.87 6.18 4.80 5.28
FDN [26] 3.78 5.61 3.88 4.42
MFDNet(a = 2, 8 = 3) 4.30 5.16 3.69 4.38
TABLE II

COMPARISON TO OTHER STATE-OF-THE-ART METHODS ON BIWI DATASET.
ALL METHODS ARE TRAINED ON 300W-LP DATASET

Methods Yaw Pitch Roll MAE
Dlib [6] 16.8 13.8 6.19 12.2
3DDFA [23] 36.2 12.3 8.78 19.1
FAN [5] 8.53 7.48 7.63 7.89
KEPLER [21] 8.80 17.3 16.2 13.9
HopeNet [7] 5.17 6.98 3.39 5.18
HopeNet+ 4.85 5.96 3.06 4.62
FSA-Net [8] 4.27 4.96 2.76 4.00
QuatNet [9] 4.01 5.49 2.94 4.15
SCR-AT + DGDL [25] 3.63 4.46 3.08 3.72
HPE-40 [24] 4.57 5.18 3.12 4.29
FDN [26] 4.52 4.70 2.56 3.93
MFDNet(a = 2, 3 = 3) 3.40 4.68 2.77 3.62

2) Results With Protocol I: In this scenario, our model is
trained on 300W-LP dataset then tested on AFLW2000 and
BIWI datasets. Compared with the above methods, the perfor-
mance of our method is better than theirs. Table I demonstrates
the result evaluated on AFLW2000 dataset. The proposed MFD-
Net always reflects the lowest variance on the errors of pitch and
roll angles. When the weights of triplet loss and matrix Fisher
distribution loss are o = 2 and 3 = 3, the MFDNet achieves
the lowest MAE and has reduced the MAE to 4.38. In fact, our
method is designed specifically for the head pose estimation
task. It can mitigate the low pose tolerance and provide more
robust and accurate performance.

A similar situation that the proposed approach is outstand-
ing on BIWI dataset is reported in Table II. Since BIWI dataset
was collected in an experimental environment, its low distur-
bance leads to lower MAE than the results on other dataset.
The proposed MFDNet employs matrix Fisher distribution to
model the uncertainty of head rotation. It is able to further con-
strain the rotation matrix and more accurately predict the cor-
responding pose. Hence, the MFDNet where o« = 2 and 5 = 3
performs the lowest error on predicting yaw angle and achieves
the state-of-the-art with a smallest MAE.

3) Results With Protocol 11: The BIWI dataset is used for
training and testing respectively. As Table III shown, the ex-
perimental results for different modalities of images on BIWI
dataset are displayed. The RGB groups only use RGB images,
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Head pose estimation on the samples from AFLW2000 and BIWI datasets. These samples including the original images (a), the corresponding occluded

images (b) and the corresponding images in different illumination conditions (c). From top to bottom, they are ground truth, the predictions by HopeNet, the results
of FSA-Net and our results. The blue, green and red lines indicate the front, downward and side of the face respectively.

TABLE III
COMPARISON TO OTHER STATE-OF-THE-ART METHODS ON BIWI DATASET.
70% OF BIWI DATASET ARE APPLIED FOR TRAINING AND THE OTHERS FOR
TESTING. DIFFERENT TYPES OF METHODS LEVERAGE DIFFERENT MODALITIES
OF DATASET, INCLUDING RGB, RGB + DEPTH AND RGB + TIME

Methods Yaw Pitch Roll MAE
RGB

DeepHeadPose [28] 5.67 5.18 - -

VGG16 [30] 391 4.03 3.03 3.66

FSA-Net [8] 2.89 4.29 3.60 3.60

FDN [26] 3.00 3.98 2.88 3.29

MFDNet(a = 2, 8 = 3) 2.99 3.68 2.99 3.22
RGB+Depth

DeepHeadPose [28] 5.23 4.76 - -

Martin [49] 3.60 2.50 2.60 2.90
RGB+Time

VGG16 + RNN [30] 3.14 3.48 2.60 3.07

whereas RGB + Depth and RGB + Time groups make additional
use of depth and temporal information. Our proposed MFDNet
performs best among RGB-based methods, which reduces the
MAE to 3.22 on BIWTI test sets. Not only is it extremely close to
the multimodality approach in terms of MAE, but it also achieves
state-of-the-art on predicting yaw angle.

C. Visualization

In this section, the performance compared with other methods
and the training process are depicted. Firstly, the visualization of
the performance of our approach is shown in Fig. 6. Randomly
sampling samples from the AFLW2000 and BIWI datasets, we
compare the performance of our proposed MFDNet model with
HopeNet and FSA-Net. As Fig. 6(a) shown, the angles predicted
by the MFDNet model is closer to the ground truth. Further-
more, some distortions including occlusion and illumination are
applied to the samples as illustrated in Fig. 6(b) and Fig. 6(c).
Different methods estimate head pose on these disturbed images
for evaluating the robustness. It can be observed that our method

x
A
Different Pose Pairs E Same Pose Pairs E
! i
0.8
B HopeNet
07| ® FSA-Net

B MFDNet
0.6 _\’V\—\\A‘

Similarity

0.1

0 5 10 15 20 25 30

Fig. 7. Comparison of the variation in similarity between embeddings from
different images extracted by different methods during training. The solid line
shows the similarity between the embeddings from image pairs with different
poses, while the dashed line is the embeddings from image pairs with the same
pose. The red, blue, and green colors denote the change in similarity using
MFDNet (our proposed), HopeNet, and FSA-Net methods.

not only has higher accuracy on estimating normal images, but
also maintains a stronger robustness on estimating disturbed
images. However, other methods lose the effect since the low
pose tolerance.

To further illuminate the training process of our proposed
method, the different modules will be visualized. The triplet
module is specifically designed for extracting the embedding
related to head pose. During training, as illustrated in Fig. 7, the
similarity of embeddings from image pairs with different pose
descends (solid line), the similarity of embeddings from image
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TABLE IV
PERFORMANCE OF THE DIFFERENT BACKBONE STRUCTURES ON AFLW2000 AND BIWI DATASETS. ALL METHODS ARE TRAINED ON 300W-LP DATASET

Backbone MB ‘ AFLW2000 ‘ BIWI

Yaw Pitch Roll MAE Yaw Pitch Roll MAE
ResNet-50 98 4.39 5.76 4.62 4.92 3.50 4.68 2.97 3.71
ResNet-152 232 4.69 5.81 4.16 4.88 3.37 4.99 2.60 3.65
Inception-v4 184 4.64 5.46 3.86 4.65 3.72 4.59 2.96 3.76
DenseNet-201 80 4.85 5.79 4.21 4.95 3.62 5.72 2.63 3.99
EfficientNet-b0 29 4.30 5.16 3.69 4.38 3.40 4.68 2.77 3.62

HopeNet

FSA-Net MFDNet

Fig. 8. Comparison of the generated Grad-CAM for the different methods on
several samples with the same identity and different poses.

pairs with the same pose rises (dashed line) using our proposed
MFDNet (red). The MFDNet makes the similarity of embed-
dings from images with the same pose progressively greater than
the images with different poses. However, when using HopeNet
(blue) and FSA-Net (green), the similarity curves change mildly,
and the similarity of embeddings from images with different
poses is still greater than images with the same pose until the
end of training.

The Grad-CAM [50] can visualize the attended regions which
contribute to head pose estimation. As Fig. 8 shown, the at-
tended regions from different methods on the samples with same
identity and different poses can be observed. The HopeNet and
FSA-Net focus more on the facial regions, which may lead to
wrong estimation because the samples with different poses share
same facial regions. The proposed MFDNet mitigates the low
pose tolerance using triplet module and eliminates the ambigu-
ity problem caused by the same facial regions. It means that
the MFDNet is able to extract the more robust and discriminate
embeddings related to head pose.

Moreover, variations in the matrix Fisher distribution are vis-
ible during training. The Fig. 9(e) image is fed into MFDNet
model after 10 epochs of training. The predicted matrix Fisher
distribution for that image can be displayed as illustrated in
Fig. 9(a-d). The peak of the marginal distribution of the rotation
matrix is constantly evolving. The predicted distribution is con-
stantly rotating towards the matrix Fisher distribution of ground
truth, and its maximum likelihood estimation is constantly ap-
proaching the ground truth.

D. Ablation Study

In this section, the ablation studies are conducted to evaluate
the performance of different backbone structures, analyze the
parameters of the total losses and demonstrate the effectiveness
of different components including the triplet module and the
matrix Fisher distribution module. As Table IV shown, ResNet-
50, ResNet-152, Inception-v4, DenseNet-201 and EfficientNet-
b0 are selected as the backbone to extract the embeddings. All
are trained on 300W-LP dataset then tested on AFLW2000 and
BIWI datasets. The result exhibits the EfficientNet-b0 is not only
a lightweight architecture but also offers better performance.
Considering the tedious backbone selection, we can try to use
Neural architecture search [51], [52] in the future work, and
search the most suitable backbone for head pose estimation to
further improve the performance based on the proposed method.

In addition, the triplet loss and MFD loss with different
weights are summed to compose the total loss as in (16). The
different weights in the total loss has an extremely important im-
pact on the model. Therefore, we randomly divide the training
sets and validation sets for the selection of weights. The 80%
samples in the 300W-LP dataset are used for training and the
others for validating. Meanwhile, in order to measure the gen-
eralization, we still evaluate the model using different weights
on AFLW?2000 dataset and BIWI dataset. The comparison of
performance using different weights is presented as showed in
Fig. 10. It can be observed that the MFDNet model achieves
the best performance when the total loss is weighted o = 2 and
B =3.

Furthermore, in order to verify the performance of the dif-
ferent components, we divide the proposed MFDNet model into
three parts, w/o, Triplet Module and MFD Module. The first part
w/o only adopts the feature extractor and fully connected lay-
ers without any proposed modules, which directly uses a single
MSE to minimize the distance between the output unconstrained
matrix M and ground truth R. The second method Triplet Mod-
ule only adds triplet module based on the first method w/o ar-
chitecture. The third method MFD Module also adopts the w/o
architecture and only adds matrix Fisher distribution module,
which constructs matrix Fisher distribution according to M then
calculates the matrix Fisher distribution loss using the nega-
tive log-likelihood function. For all parts, the feature extractor
is EfcientNet-b0. They are trained on 300W-LP dataset then
tested on AFLW2000 and BIWI datasets. As Table V shown,
the MFD Module method has smaller errors on both datasets,
but it is less robust since the low pose tolerance. When fusing
all modules together, as with MFDNet, it has stronger robust-
ness and performs state-of-the-art results. Figure 11 illustrates
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Fig.9. Variation of the predicted matrix Fisher distribution during training. (a)-(d) indicate the matrix Fisher distribution of the head pose of image in (e) after the
epoch of training, respectively, where the black axis displays the ground truth is represented by the rotation matrix and the red axis denotes the predicted rotation
matrix obtained by computing the maximum likelihood estimation of the predicted distribution.
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Fig. 10. Comparison of the MAE of MFDNet using total losses with different o and 8. 80% of 300W-LP dataset are applied for training and the others for
validating. All models are trained on 300W-LP train sets, then evaluated on 300W-LP validation sets, AFLW2000 and BIWI datasets respectively.
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Fig. 11.  Comparison of the MAE of different components at different angles under protocol I. MFDNet are divided into w/o, triplet module and matrix Fisher

distribution module.

TABLE V

ABLATION STUDY OVER DIFFERENT COMPONENTS (W/0O, TRIPLET MODULE,

MFD MODULE AND MFDNET) ON AFLW2000 AND BIWI DATASETS. ALL

ARE TRAINED ON 300W-LP DATASET

Methods AFLW2000 BIWI
w/o 5.63 4.66
Triplet Module 5.17 4.36
MFD Module 4.69 3.83
MFDNet(a = 2, 8 = 3) 4.38 3.62

the details of the experimental results of the various modules at

different angles.

V. CONCLUSION

In this work, a robust three-branch model called MFDNet, is
proposed for estimating head poses from RGB images. MFDNet
consists of triplet module and matrix Fisher distribution module.
By designing the triplet module for three inputs, which are differ-
ent pose pairs and the same pose pairs, the disturbance (including
identity, illumination and occlusion) can be effectively limited,
and embeddings that specifically represent the head pose can be
obtained. As a result, robustness is considerably enhanced. In
order to avoid the ambiguity problem when Euler angles and
unit quaternion are used, the matrix Fisher distribution based on
the rotation matrix is utilized to represent the angles of the head
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pose, and model the uncertainty of head rotation for further con-
straining the rotation matrix and improving the performance of
head pose estimation. Furthermore, the experimental results on
two protocols indicate that the proposed MFDNet has stronger
robustness than previous works and demonstrates state-of-the-
art performance.
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