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Automatic Web service classification becomes an essential topic in the services computing field.
The distribution of Web services over various categories usually follows the long-tail distribution,
suggesting that many categories (i.e., the tail categories) contain very limited services. An empirical
experiment shows that the classification performance of tail categories is much worse than that of head
categories due to the limited training samples. Existing works on Web service classification usually
ignore this problem. Towards this issue, we propose a few-shot Web service classification approach
called MIF-FWSC (multi-information fusion based few-shot Web service classification), which exploits
both the knowledge learned from head categories and the information contained by category names to
improve the classification of tail categories. Experiments show that our proposed approach for few-shot
Web service classification achieves state-of-the-art accuracy on two real-world Web service datasets.
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1. Introduction

A Web service is a software component that can be published,
located, and accessed by following standard Web protocols [1].
With the rapid development of services computing and cloud
computing, more and more enterprises are encapsulating their
computing capabilities and applications as Web services. Thus,
a vast number of Web services have been released on the In-
ternet. Currently, many Web service registries or marketplaces,
e.g., the PW! (ProgrammableWeb) and Amazon Web service mar-
ketplace,” have been created to publish and manage publicly
available Web services. Each service is typically described in a
service registry with its name, description, and one or more
categories like financial, mapping, transportation, and so on. The
category information is crucial for the discovery and reuse of Web
services [2]. Because manually assigning Web services categories
is time-consuming and error-prone, automatic Web service clas-
sification has become an essential topic in the services computing
field.

In recent years, lots of Web service classification approaches
[3-8] have been proposed, which leverage various machine learn-
ing and deep learning techniques in service classification. Classi-
cal machine learning-based service classification methods firstly
obtain vectorized representations of textual service descriptions
using BOW (Bag of Words), TF-IDF (Term Frequency-Inverse Doc-
ument Frequency), or topic models, and then train classification
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models like Naive Bayes [5], K-Nearest Neighbor (KNN), Logistics
Regression (LR) and Support Vector Machines (SVM) [6] based
on these vectors. Many deep learning models, like CNN (Con-
volutional Neural Networks) and LSTM (Long Short Term Mem-
ory), are also leveraged to perform feature extraction and service
classification using end-to-end mechanisms. These approaches
usually require large-scale labeled datasets in model training to
achieve ideal performances and can hardly learn from limited
samples [8,9]. However, the category distribution of Web services
usually follows the long-tail effect, which suggests that most Web
services are accounted for by a small number of categories (also
known as head categories), and most categories (also known as
tail categories) contain very limited Web services. As a typical
example, in a dataset with over 20,000 Web services and over 400
categories crawled from PW on Jan 10, 2020, over 200 categories
have less than 50 Web services, and 66 categories include less
than ten services, which account for 44.31% and 13.66%, respec-
tively. As shown in Fig. 1, the number of services belonging to
a category has decreased rapidly from head categories to tail
categories.

We conducted an empirical experiment to analyze the limita-
tion of existing classification models in classifying tail categories
mentioned above. Here we only illustrate observations on repre-
sentative approaches: KNN, SVM, LR, and TextCNN, covering both
traditional machine learning and deep learning. More descrip-
tions of the experimental dataset and settings are introduced in
Section 5. In PW, each Web service may belong to multiple cate-
gories. We adopt Mean Average Precision (MAP), a widely-used
metric in multi-label classification, to evaluate the classifica-
tion performance. In each category, 80% of all Web services are
randomly selected for training and the remainder are used for
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Fig. 1. The category distribution of Web services in PW. As the color changes
from dark to light, the category contains fewer and fewer services, which means
that the categories change from head categories to tail categories.

Table 1
Mean Average Precision (MAP) among different category ID range (category IDs
are sorted by the number of contained services in descending order).

Model Set of Category IDs

1-100 101-200 201-300 301-400 >400
KNN 0.4596 0.3512 0.3153 0.2975 0.2245
SVM 0.5443 0.4398 0.3646 0.3446 0.2881
LR 0.5718 0.4651 0.4028 0.3950 0.3199
CNN 0.6026 0.4898 0.3835 0.3512 0.2813

testing. In Table 1, since category IDs are sorted by the number of
contained services in descending order, the categories in the ID
set “1-100" have more training samples than those in “101-200"
on average. We can observe that with the decrease of the number
of training samples, the classification performance will decrease
accordingly. The four classification models show the same trend.
Therefore, the classification performance is positively correlated
with the number of training services in categories no matter
which classification method is adopted. In other words, exist-
ing classification models can hardly achieve ideal classification
performance with only a few training samples.

Towards this issue, we focus our attention on the classification
task of categories containing only a few Web services, which will
significantly affect the overall classification performance. How-
ever, it was ignored in previous research work. We view this
task as a few-shot text classification problem. Few-shot learning
(FSL) [10,11] has recently become a hot topic in many machine
learning tasks like image classification and sentiment classifica-
tion. Similar to existing progress in FSL, we also attempt to utilize
the knowledge learned from the head categories to improve the
classification performance of the tail categories. Moreover, con-
sidering that Web service descriptions are usually characterized
by short-length and low-information density [12], our goal is to
extract the key and domain-relevant information from service
descriptions. The contributions of this paper are summarized as
follows:

e We find that the distribution of Web services over differ-
ent categories usually follows the long-tail distribution. We
conduct experiments to show that the classification perfor-
mance of tail categories is much worse than head categories.
This phenomenon was neglected in previous research work.

e A few-shot Web service classification method called MIF-
FWSC (multi-information fusion based few-shot Web ser-
vice classification) based on meta-learning framework is
proposed to classify the categories with only a few Web
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services. MIF-FWSC can find key words in the service de-
scription and exploit the knowledge in head categories to
make the model more robust across different categories. It
also incorporates the information contained in the category
names to enhance the classification ability.

e A series of experiments are conducted on two real-world
datasets to demonstrate the effectiveness of our proposed
model. The results show that MIF-FWSC achieves state-of-
the-art performance for few-shot Web service classification.

The remainder of the paper is organized as follows: Section 2
introduces related work on Web service classification and the
few-shot text classification. Some preliminaries about the few-
shot classification and meta-learning framework are described in
Section 3. Section 4 provides the details of MIF-FWSC, and Sec-
tion 5 reports the experiment results. Finally, concluding remarks
are described in Section 6.

2. Related work

Web service classification has been widely investigated in
services computing, and a lot of works have been proposed in
this area using various machine learning and deep learning tech-
niques. Existing Web service classification approaches have not
considered the classification scenarios of categories with only a
few Web service samples. Few-shot text classification recently
becomes a problem worth exploring in machine learning, and we
will introduce the related work in this area.

2.1. Web service classification

Quite a few Web service classification works based on conven-
tional machine learning methods have been proposed in recent
years. These works typically extract features from Web service
descriptions, and then construct classifiers based on the extracted
features. For example, Liu et al. [5] presented a semantic Web
service classification method based on Naive Bayes. The work [6,
7] compared several machine learning methods such as SVM,
KNN, and decision tree for Web service classification on seven
categories. According to their reports, SVM performs the best
on their datasets. Qamar et al. [3] employed the ensemble of
Naive Bayes, Decision Tree (J48), and SVM for the classification
of Web services, which outperforms every single classifier over
the average accuracy on a publicly available dataset.

With the rapid development of deep learning in text classifica-
tion, many works attempted to leverage deep learning in service
classification. Yang et al. [4] introduced a stacked deep neural
network named ServeNet by integrating CNN and LSTM, which
can automatically extract low-level representations from service
descriptions without any feature engineering. The work [8] re-
fined ServeNet by adding service names as input and changing
the embedding method from fixed embeddings to context-aware
embeddings.

A significant limitation of service classification approaches
based on conventional machine learning and deep learning is
that they need sufficient training samples to achieve ideal clas-
sification performance, as discussed in Section 1. However, many
service categories in real-world registries contain only a few sam-
ples, making it challenging to train an accurate model. Therefore,
many existing service classification approaches (e.g., [8]) removed
the one-shot, few-shot, small size categories and kept only large
size categories for service classification experiments, which sug-
gests that these approaches can only be applied in datasets whose
categories all have sufficient samples.
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2.2. Few-shot text classification

Few-shot text classification aims to construct a text classi-
fier for the categories with only a few samples. The classical
classification methods like SVM, Multi-Layer Perceptron (MLP),
and the transformer cannot directly achieve ideal classification
performance on this problem since there are too few labeled
samples in each category, while these methods all require a large
number of labeled samples for model convergence. Recently,
meta-learning [ 13,14] has become the mainstream framework for
few-shot classification. It extracts certain transferable knowledge
from a set of auxiliary tasks to help solve the target few-shot
classification problem. The work [15] proposed prototypical net-
works, which learn a non-linear mapping of the input into an
embedding space and represent each class by using the mean of
the samples’ embedding vectors belonging to it. An embedded
query point can be classified by finding the nearest class pro-
totype. The work [16] argued that in prototypical networks, the
key information may be lost by simply averaging representations
of samples belonging to a class. They built an induction module
using the capsule network [17] to get representations for each
class and a relation module to compare representations between
samples and classes. Victor et al. [18] fed the embeddings of
samples into a graph neural network and then got the prediction
labels through trainable adjacency. Bao et al. [19] used distribu-
tional information like TF-IDF to get weights for words to build
transferable lexical representations for texts. They then adopted
the ridge regression to fit these representations with their labels.
They also conducted experiments based on BERT [20] to build
contextualized representations for texts and found that BERT per-
forms not well on the keyword-based few-shot text classification
problem.

To the best of our knowledge, the few-shot Web service clas-
sification problem has not been investigated in the existing lit-
erature. This paper aims to leverage few-shot text classification
techniques in Web service classification. Since the description
texts of Web services are usually characterized by short-length
and low-information density [12], it is particularly important to
capture the key information carried by one or several keywords in
the description text. The work [19] has shown that distributional
signatures like TF-IDF are effective in finding keywords of text for
few-shot text classification. We further improve the way of cal-
culating word weights to better fit for Web service classification.
Moreover, to tackle the inaccurate class representation caused by
insufficient labeled Web services, we use an attention mechanism
to incorporate the information contained in the category names,
which can enhance the classification ability.

3. Preliminaries
3.1. Few-shot classification

Classical machine learning approaches have made a huge suc-
cess in data-intensive tasks, but their performance declined sig-
nificantly when there are only a limited number of training
samples. Few-shot learning (FSL) [10,11] is proposed to address
this problem. Few-shot classification is a specific application of
FSL, which learns classifiers given only a few labeled examples in
each class. The few-shot classification has been applied in many
areas, such as image classification, sentiment classification, and
object recognition. Generally speaking, the few-shot classification
problem needs two parameters N and K, where N denotes the
number of categories, and K denotes the number of labeled
samples contained in each category. Note that K is usually a small
value, typically between one and five. This is also called an N-way
K-shot problem.
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3.2. Meta-learning framework

Meta-learning [13,14] is a mainstream framework to deal with
few-shot learning problems. It aims to learn prior knowledge on
a large-scale of samples with the same distribution as the few
labeled samples. Formally, suppose that we have a training set
Strain and a test set Stest, Strain aNd Stesr Share the same data distri-
bution. Let Cyqin and Cesr denote the categories of Syqin and Sees,
respectively. Cqin N Ceese = ¥. Each category in Ces contains only
a few labeled samples. The ultimate objective of meta-learning
is to train a representation model that can transfer samples from
raw inputs to informative vectors, as well as a classification model
that can classify samples based on these vectors. Typically, the
representation model is only trained on the training set, while
the classification model can be trained on the test set besides the
training set.

4. Proposed model

As discussed above, since the category distribution of Web
services usually follows the long-tail effect, most categories have
only a few services. The problem to be addressed in this paper is
how to classify categories with a few labeled Web services, also
known as the few-shot Web service classification problem.

We adopt the meta-learning framework to address this prob-
lem, aiming to transfer the knowledge learned from categories
with large-scale samples to categories with a few samples. This
paper proposes a few-shot Web service classification approach
called MIF-FWSC (multi-information fusion based few-shot Web
service classification), which exploits both the knowledge learned
from head categories and the information contained by category
names to improve the classification of tail categories.

Since MIF-FWSC adopts an episode-based mechanism for
model training, validation and test, which is different from tradi-
tional supervised learning, we first introduce the episode-based
mechanism of MIF-FWSC. Then we describe the proposed classi-
fication model in detail.

4.1. Episode-based mechanism of MIF-FWSC

MIF-FWSC follows the meta-learning framework by using the
episode-based mechanism for training, validation and test proce-
dures. It is important to describe the episode-based mechanism
and these procedures in detail for the differences between them
and traditional supervised learning. Since the validation proce-
dure is very similar to the test procedure, we only introduce the
test procedure below. The only difference between the validation
procedure and the test procedure is that the former is carried out
after every training procedure among the validation set, while the
latter is carried out after the whole training procedure among the
test dataset. Note that the symbols defined in Section 3.2 will be
applied here.

The model training process consists of multiple episodes, as
introduced in [21]. The procedure of each episode is defined as
follows. Given parameters N and K (in the N-way K-shot prob-
lem), we first select a subset containing N categories from Cgin,
as shown in Fig. 2. Then we randomly choose K Web services
from each selected category and these N x K samples make up
a support set, as indicated in Fig. 3. A subset of the remaining
training samples is then chosen as a query set to evaluate the
model’s performance after training on the support set. The sample
number of each category in the query set is Q, which is also a
predefined parameter. In this way, the training strategy is called
an episode-based mechanism. Since the procedure of selecting
categories, a support set and a query set for an episode is inde-
pendent of other episodes, the model can learn transferable and
generalized knowledge across different episodes.
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After training the model, we apply the same episode-based
mechanism in the test procedure. Specifically, we also first sam-
ple N categories from Ces in each test episode. Afterward, both
the support set and the query set are sampled from these N
categories like the training procedure. The final test performance
of the model is defined as the average performance on the query
set across all testing episodes. Figs. 2 and 3 show the episode-
based training, validation, and test procedure, as well as the
process of selecting a support set and a query set in an episode,
respectively.

4.2. Details of MIF-FWSC

As mentioned before, a typical meta-learning framework for
few-shot classification usually consists of two parts: a representa-
tion model and a classification model. Our model is no exception.
Traditional feature extractors like CNN and RNN always perform
poorly when used as the representation part for textual few-shot
classification. Bao et al. [ 19] have shown that word distributional
signatures calculated on both the whole dataset and the dataset
of each episode are essential in offering transferable classification
knowledge across different categories. In addition to this, we
also found that the category names of the Web services in each
episode can help improve classification performance. Inspired by
these ideas, we build our few-shot service classification model
named MIF-FWSC. As shown in Fig. 4, MIF-FWSC consists of three
components:
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o Word attention generator, which generates a correspond-
ing attention score for each word in the service description
by combining the attention scores calculated among the
whole training set and the specific episode using BiLSTM,;
Description vector generator, which produces a lexical rep-
resentation vector for the description based on the gener-
ated word attentions and word vectors. For descriptions in
the support set, MIF-FWSC also uses the word vector of the
category name to augment the description vector;
Classification component, which trains a classifier on the
support set. The classifier we adopt is a modified ridge
regression due to its efficient and effective, according to [19,
22].

Note that the first two components that form the represen-
tation part are shared by all episodes, while the last that forms
the classification part is independent among different episodes.
We introduce these three components in detail in the subsequent
subsections.

4.2.1. Word attention generator

The word attention generator aims to assess the attention
score of each word in a sentence of a service description. Under
the episode-based mechanism, the only labeled samples are the
Web services in the support set of each episode. The distributional
signatures among the episode samples and the whole dataset can
both contribute to the attention score of a word [19]. Thus, we
calculate the local attention among the episode Web services and
the global attention among the remaining Web services which
constitute the sample pool. The scope of the sample pool has a
slight difference in the training stage and the test stage. To ensure
that only unlabeled Web services are included in a sample pool,
all Web services in the training set except those in the support
set of the current episode are contained in the sample pool in the
training stage; while the sample pool refers to all Web services
in the training set. Finally, the overall attention of a word can
be calculated by combining these two attention scores. Next, we
describe in detail how to calculate them.

The local attention scores of a specific episode need to be
discriminative for the classification task of this episode. Intu-
itively, the more similar a word is to the category names of the
episode, the more important it is in the episode classification task.
We, therefore, calculate the cosine similarities between word w
and each category name in the episode. Then, we choose the
maximum similarity as la,,:

la,, = max }febd(cat) - fepa(w), (1)

cate{caty,...,caty
where N is the category number of the support set, {caty,
..., caty} is the category names in this episode, fepq(-) is a word
embedding function that maps a word to a dense word vector.
Since words appearing frequently are unlikely to be informa-
tive, an intuitive strategy is to reduce the weights of frequent
words and improve the weights of rare words. We choose the
Inverse Word Frequencies [23] to calculate the global attention
ga,, of word w in a service description.
Dk Mk
; )

ga, = log (2)
where n,, is the occurrence frequency of w in the sample pool,
m is the vocabulary size of the sample pool and n, \ is the
occurrence frequency of the kth word in the vocabulary.

To leverage the complementary information of global atten-
tion scores and local attention scores, we first concatenate them
together and then employ a bi-directional LSTM to transfer the
two scores of each word to a hidden state h.

(h], . hj, P h[) = BlLSTM([gal, Ia1], ey

3
[ga;, lai], ..., [gay, laj]), 3)
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Fig. 4. The framework of MIF-FWSC.

where ga;, la; and h; are the global attention score, the local
attention score and the hidden state of the ith word of the
description respectively. | denotes the length of the description
and [-] means the combination operation of vectors.

Afterward, we apply the dot product between h and a learn-
able vector v to calculate a score for each word. Finally, we use the
Softmax function to normalize these scores and output the final
attention score att,, for each word w in a service description.

ehi R

1 v’
D €Y
where att; is the final attention score for the ith word of the
description.

att; = (4)

4.2.2. Description vector generator

After obtaining the attention scores of all words in a descrip-
tion, we can construct a lexical representation for the description.
First, the embedding vector of each word is multiplied by its at-
tention score. Then the feature convergence function will convert
these weighted word vectors to a description vector. The vector
of a service description is defined as:

VveCies = F(feng (wordy) - attq, ...,
feba (word;) - att;, . . ., fepa (word)) - atty),

where des denotes the description, | denotes the length of des,
word; is the ith word of des, fepq(-) is @ word embedding function
that maps a word to a dense word vector, and att; is the final
attention score of the ith word of des, and .# is the feature con-
vergence function which aggregates all weighted word vectors in
des into a description vector.

For the description in the support set whose real category
is known, we also use its category name to augment the de-
scription vector. The vector of the category name is the average
of the vectors of all the words in the description. For example,
the vector of category “word processing” is the average of the
vectors corresponding to “word” and “processing”. Then we use
a self-attention mechanism to combine the vector of a service
description vecgs and the vector of label category vec;:

(3)

(6)

where « is the weight term obtained by self-attention mecha-
nism, and vec,,, is the augmented vector for the description in
the support set. This augmentation will provide a more accurate
representation of Web service for the following classification
component. Note that this augmentation is only designed for the
support set since the real categories are only known for the Web
services in the support set.

VeCqg = O - VeCqes + (1 — o) - Ve,

4.2.3. Classification component

For an N-way K-shot problem, the support set can be vector-
ized as a matrix: X, € RNK)xE where E denotes the dimension
of the sentence vector. Each row of X; is a lexical representation
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of a service description of the support set. Yy € RIN<OxN jg 3 set
of one-hot categories of the support set. The classification com-
ponent needs to fit X; with the target Y;. According to [22], the
ridge regression minimizing squared loss for one-hot categories
works well with this classification problem:

L(W) = argminy [IX;W — Y;]I* + A[W|]?, (7)

where W € REXN is the weight matrix for ridge regression and A
is a positive parameter controlling the complexity of W. We can
obtain W by:

w = X7 (XX] + 1) Y, (8)

where I is an identity matrix. Note that A is a hyper-parameter
for the ridge regressor but can be learned in the whole training
procedure.

Following the definitions of the support set, we define X; €
RQOXE and Y, e RQ*K)I*N a5 the representation of the query
set and the one-hot categories of the query set, respectively. Then
the predicted probabilities Y € R(€*¥)*N can be calculated by:

Y (9)

Y = XW.

f(U, an element in row i and column j of Y, represents the prob-
ability before normalization for the ith Web service in the query
set belonging to category j. To normalize these probabilities, we
apply the Softmax function over Y to get P;, which indicates the
predicted probability that the ith Web service in the query set
belongs to category j:

eYi
=
Zk elik

Then we can predict the category of the ith Web service
according to Eq. (11):

P = (10)

Ji = argmax;cio v Pyj. (11)

We can compute the cross-entropy between P and Y, during
the training procedure:
QxK N

Z ZYU IOngj.

i=1 j=1

1
Q xK

CE (Yq,P) = (12)

Since both X, and X, depend on the word attention generator
and the description vector generator, CE(Yy, P) can provide su-
pervision for them. For the test procedure, we use Eq. (11) to get
the predicted categories for Web services in the query set.

5. Experiments

We performed a series of experiments using two real-world
Web service datasets to evaluate the proposed MIF-FWSC. All
experiments were carried out on a workstation with Intel Core 8
at 3.50 GHz, GeForce GTX 2080, and 32 GB memory, running the
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Table 2
An example Web service in ProgrammableWeb.
Attribute Value
Name BitStamp HTTP
Categories Financial, Bitcoin, Currency, Marketplace
Description BitStamp is an online exchange for bitcoins.
Online consumers and traders can use it as a
global marketplace to buy and sell BitCoins...”
Table 3

An example Web service in Amazon Web service marketplace.
Attribute Value

Name GluonCV YOLOv3 Object Detector
Categories Computer Vision, Image
Description “Given an input image, this will return

object coordinates and category predictions...”

Ubuntu operating system. We make our code and data publicly
available for further study.> The experiments were designed to
answer the following research questions:

e RQ1: Does MIF-FWSC outperform the baselines on the few-
shot Web service classification task?

e RQ2: Does the meta-learning framework adopted in our
model perform better than traditional supervised learning
on the few-shot Web service classification task?

e RQ3: Is each part of MIF-FWSC necessary to achieve ideal
classification performance?

e RQ4: How does the feature convergence function of MIF-
FWSC affect the classification performance?

5.1. Dataset and evaluation metrics

ProgrammableWeb (PW) and Amazon Web service market-
place (AWS) are by far the two largest online Web service reg-
istries, where new Web services and new service categories are
continuously registered. Each Web service in PW and AWS be-
longs to one or more service categories, and lots of categories
contain only a few Web services. In the dataset crawled from
PW on Jan 10, 2020, over 200 categories have less than 50 Web
services, and 66 categories include less than ten services, which
account for 44.31% and 13.66%, respectively, of the total 483 cate-
gories. And in the dataset crawled from AWS on Aug 7, 2021, over
31 categories have less than 50 Web services, and 10 categories
include less than ten services, which account for 25.41% and 8.2%,
respectively, of the total 122 categories. Table 2 and Table 3 show
example Web services in PW and AWS, respectively.

To ensure that there are enough services to construct the
support set and query set, we discard categories with less than
six Web services since we attempt to experiment with 1-shot
and 5-shot problems. The training set and the test set are split
according to the service categories. We need to guarantee suffi-
cient tail categories (those containing a relatively small number
of services) can be leveraged in the validation and test sets, which
is necessary to make a comprehensive experimental evaluation.
The categories with more than 30 Web services are selected as
the training set for PW and the threshold is 150 for AWS. The rest
categories are equally divided into the validation set and the test
set. Since many Web services belong to more than one category,
they may occur in both the training set and the validation set (or
the test set). To avoid overlapping, we remove Web services in
the training set that also belong to the validation set or the test
set. Table 4 and Table 5 show the statistics of the constructed PW
and AWS datasets, respectively.

3 https://github.com/ssea-lab/FSC4WebService.
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Table 4

Statistics of the constructed PW dataset for few-shot Web service

classification.
Statistics Value
Number of categories in the training set 145
Number of Web services in the training set 7,698
Number of categories in the validation set 60
Number of Web services in the validation set 1,034
Number of categories in the test set 59
Number of Web services in the test set 1,016

Table 5

Statistics of the constructed AWS dataset for few-shot Web service

classification.
Statistics Value
Number of categories in the training set 51
Number of Web services in the training set 21,013
Number of categories in the validation set 23
Number of Web services in the validation set 1,191
Number of categories in the test set 22
Number of Web services in the test set 1,127

Many Web services belong to more than one category. Since
we adopt the episode-based mechanism, which only samples a
few categories in an episode, and we have removed the Web
services belonging to both the training set and the test set, it
is very rare for a Web service with more than one category
occurring in an episode. Even if there are exceptions in a few
episodes, we will remove the Web services belonging to more
than one category in these episodes.

To evaluate the performance of the proposed model, we report
the average accuracy on the test set across all test episodes:

1 .
Accuracy = i ZI vi.31)

1

(13)

where M is the number of Web services used in the test pro-
cedure, y; is the real label of the ith service in the whole query
service list used in all test episodes and y; is the corresponding
predicted label. I(-) is the indicator function that returns 1 when
y; equals to y;, and 0 otherwise. Since the average accuracy will
fluctuate due to the episode mechanism, the standard deviation
among all test episodes is also reported.

5.2. Competing approaches

Since a typical meta-learning framework usually consists of
a representation part and a classification part, we compare our
model with different combinations of representation and classi-
fication models.

Representation model. We evaluate three representation
models. META denotes the representation part in our model
introduced in Sections 4.2.1 and 4.2.2. CNN denotes the TextCNN,
which applies one-dimension convolution kernels on the embed-
ding matrix of input words and then gets the representation of
the words by max-pooling. AttnBiLSTM denotes a bidirectional
LSTM encoder with an attention mechanism. We also experiment
with pre-trained BERT embeddings (Devlin et al. [20]) as the
representation model.

Classification model. Ridge regressor (RR) [22] is introduced
in Section 4.2.3. ROUTING [17] computes a prototype for each
class through dynamic routing over the support set. It uses a
neural tensor layer [24] to predict the relation between each
query example and the class prototypes. Similar to ROUTING, the
prototypical networks (PROTO) [15] also compute a prototype
representing each class. However, it just uses the centroid of
the samples belonging to the class in the support set as the
prototype. It then optimizes the embedding space by minimizing
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the Euclidean distance between the prototype and the samples
of this class in the query set. GNN [18] constructs a graph on the
combination of both the support set and the query set, and then
gets the prediction labels through trainable adjacency.

Due to the limitation of GPU, we only experiment with the
combination with PROTO and RR for BERT. For the classification
model using GNN, we only conduct experiments on the PW
dataset. It should be noted that these missing experiments will
not affect our final observation and analysis of the experimental
results. MIF-FWSC denotes our approach, and the combination
of META and RR is a variant of our approach without category
name augmentation. Since some part of our method is adapted
from [19] (referred to as BAO), we also report the performance of
their model in experiments.

5.3. Parameter settings

We choose pre-trained fastText embeddings [25] as word vec-
tors for all approaches except BERT. The embedding dimension is
300 for pre-trained fastText embeddings and 768 for pre-trained
BERT embeddings. We set the hidden unit of the bi-directional
LSTM and the learnable vector of the attention generation com-
ponent in both MIF-FWSC and BAO to 50. We use the summation
function as the feature convergence function in the description
vector generator of MIF-FWSC. When using CNN as the represen-
tation model, we use one-dimensional convolution kernels with
sizes of 3, 4, and 5, and the number of kernels is set to 50 for each
size. When using AttnBiLSTM as the representation model, the
hidden unit is set to 128. We choose Adam [26] as the optimizer
and set the learning rate to 0.001.

During the training stage, we sample 100 training episodes per
epoch. We also sample 100 validation episodes after each training
epoch. An early stop mechanism is applied by stopping the train-
ing procedure when the validation accuracy does not improve for
20 epochs. After training, we sample 1000 episodes on the test set
and calculate the average accuracy and corresponding standard
deviation among all episodes.

5.4. Accuracy comparison (RQ1)

Table 6 shows the results of different approaches in settings
of 5-way 1-shot, 10-way 1-shot, 5-way 5-shot, and 10-way 5-
shot on PW. Table 7 shows the same results on AWS. As can be
seen, our approach, with or without category name augmenta-
tion, exhibits improvements over all competing methods across
all settings. The representation model (META) adopted in our
approach achieves better results than other representation mod-
els when using the same classification model. The classification
model (RR) adopted in our approach performs better than other
classification models when using the same representation model.
Compared with BAO, our approach performs much better, even
without category name augmentation (META+RR). Specifically,
it exceeds BAO on PW by 11.11%, 12.48%, 2.92%, and 3.01% in
settings of 5-way 1-shot, 10-way 1-shot, 5-way 5-shot, and 10-
way 5-shot, respectively. On AWS, the improvement is 4.54%,
4.54%, 1.18%, and 1.96%, respectively. These improvements are
mainly caused by the different word attention calculation ways
between their model and ours. To calculate local attention scores
of words, BAO first represents each service with the average
word embedding. Then they use the ridge regression to generate
a weight matrix W e RE*N with vectors of Web services and
their corresponding labels in the support set. The local attention
of a word is obtained by multiplying its embedding vector by
W and picking the maximum of all dimensions of the result.
We modify the calculation process by choosing the maximum
cosine similarities between the word and each category name
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in the episode, as shown in Eq. (1). After adding category name
augmentation, it brings an additional 6.14%, 7.92%, 0.53% and
1.27% improvement on PW and 11.96%, 11.73%, 0.83% and 1.51%
improvement on AWS, respectively.

In general, MIF-FWSC exceeds BAO on PW by 17.25%, 20.40%,
3.54%, and 4.28% in settings of 5-way 1-shot, 10-way 1-shot, 5-
way 5-shot, and 10-way 5-shot, respectively. And on AWS, the
improvement is 16.50%, 18.27%, 2.01%, and 3.47%, respectively.
These results show the considerable advantage of MIF-FWSC over
all other baselines for the few-shot Web services classification.

We can also observe from the results that when the shot num-
ber increases from 1 to 5, the improvement ratios of our approach
become smaller whether or not using category name augmenta-
tion. The reason for the decline of the improvements is analyzed
as follows. Since the improvement of our approach mainly comes
from the use of category names of each episode and each cate-
gory contains very few labeled Web services in an episode, it is
inaccurate to only use their description to represent the category.
The use of category names will correct the representation of Web
services. When the number of labeled Web services increases, the
improvement effect of this correction will be reduced.

5.5. Meta-learning vs. Supervised learning (RQ2)

The meta-learning framework adopted in this paper aims to
learn transferable knowledge from training data and make pre-
dictions for unseen classes. We show this advantage by com-
paring the performances of meta-learning and traditional super-
vised learning. For supervised learning approaches, we follow the
episode-based mechanism but remove the training procedure of
the meta-learning framework. In other words, we train models
using the support set of the test procedure and test them using
the query set of the test procedure. For example, for 5-way 5-shot,
we train a five-classification model that only uses 25 labeled Web
services (that is, five labeled Web services for one class) and then
test this model on the query set of this episode. We select some
traditional machine learning methods, including KNN, SVM, and
LR, for comparison. Note that we use TF-IDF for feature represen-
tation to reduce overfitting since there are too few samples to
learn high-quality embedding vectors. The number of classes is
set to 5 and the number of training samples is increased from 1
to 50 for supervised learning to observe the relationship between
the accuracy and the number of training samples. The episode
numbers of both meta-learning and supervised learning are 1000.

As shown in Fig. 5, SVM achieves the best performance in the
three supervised learning algorithms. The performance of LR is
similar to SVM. However, the accuracy of KNN, SVM, and LR is
much lower than that of 5-shot under the meta-learning frame-
work even when the number of training samples is increased to
50. For the PW dataset, the accuracy of these supervised learning
approaches is even much lower than that of 1-shot under the
meta-learning framework. These results show that the meta-
learning framework can learn transferable knowledge from other
categories to improve classification performance.

5.6. Ablation study (RQ3)

As mentioned above, our representation model consists of
several components like the local attention generator and the
global attention generator. We perform ablation studies to show
the necessity of each component. Since the representation model
has a more complex structure, we mainly consider different vari-
ants of the representation model. To verify whether the global
attention and the local attention contribute to the classification
performances, we conduct experiments by constructing the word
attention generator using only the global attention or only the
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Accuracy comparison of different approaches on PW. Rep denotes representation model and Cls denotes classification model. The
best values are marked by bold font. A% denotes the improvement of MIF-FWSC over BAO.

10-way 1-shot

5-way 5-shot

10-way 5-shot

0.2807 £ 0.0714
0.4438 £ 0.0862
0.4708 £ 0.0961
0.3866 + 0.0785
0.2843 £ 0.0814
0.3273 £ 0.0871
0.4916 + 0.0970
0.3292 £ 0.0679
0.4038 £ 0.0864
0.5752 + 0.0984
0.3779 £ 0.0747
0.3505 £ 0.0856
0.4140 £ 0.1052

0.5182 £ 0.1071
0.7301 £ 0.1002
0.7643 £ 0.1069
0.7216 £ 0.1036
0.5645 £ 0.1080
0.6489 £ 0.1136
0.8063 £ 0.0789
0.5403 £ 0.1224
0.7424 £ 0.0971
0.8247 £ 0.0931
0.7424 £ 0.0967
0.6541 £ 0.0970
0.7943 £ 0.0871

0.3578 £ 0.0672
0.5890 £ 0.0678
0.6841 £ 0.0691
0.6129 + 0.0810
0.4223 £ 0.0878
0.4384 £ 0.0834
0.6336 + 0.0739
0.4822 £ 0.0875
0.5663 £ 0.1017
0.7499 + 0.0805
0.6561 £ 0.0782
0.4622 £ 0.0901
0.6496 + 0.0887

0.7306 + 0.0877
0.6058 £ 0.0972
0.8098 + 0.0586
20.40%

0.9040 £ 0.0543
0.8748 £ 0.0698
0.9093 + 0.0505
3.45%

0.8433 £ 0.0501
0.8132 £ 0.0591
0.8560 + 0.0408
4.28%

Method 5-way 1-shot
Rep Cls
CNN ROUTING 0.4348 + 0.1124
AttnBiLSTM ROUTING 0.5459 + 0.1325
META ROUTING 0.5528 + 0.1592
BERT PROTO 0.5133 £+ 0.1232
CNN PROTO 0.3881 + 0.1082
AttnBiLSTM PROTO 0.4932 + 0.1206
META PROTO 0.6069 + 0.1316
CNN GNN 0.4820 £ 0.1075
AttnBiLSTM GNN 0.5492 + 0.1224
META GNN 0.6772 + 0.1400
BERT RR 0.4829 + 0.1075
CNN RR 0.5089 + 0.0143
AttnBiLSTM RR 0.5900 + 0.1313
META RR 0.8061 £+ 0.1117
BAO 0.6950 + 0.1304
MIF-FWSC 0.8675 + 0.0696
A% 17.25%
Table 7

Accuracy comparison of different approaches on AWS. Rep denotes representation model and Cls denotes classification model. The
best values are marked by bold font. A% denotes the improvement of MIF-FWSC over BAO.

10-way 1-shot

5-way 5-shot

10-way 5-shot

0.3061 £ 0.0683
0.3120 + 0.0742
0.4039 =+ 0.0842
0.3404 £ 0.0681
0.2938 + 0.0707
0.3197 £ 0.0767
0.3984 £ 0.0936
0.3427 £ 0.0703
0.3412 £ 0.0670
0.3745 £ 0.0827

0.5233 £+ 0.1121
0.5832 £ 0.1166
0.7215 £+ 0.1163
0.6425 £ 0.1013
0.5819 =+ 0.0958
0.5734 £ 0.1199
0.7737 £ 0.1032
0.7378 £ 0.1028
0.7214 £+ 0.1018
0.6895 £ 0.1143

0.3329 £ 0.0803
0.4049 + 0.0742
0.6071 £ 0.0801
0.5203 £ 0.0702
0.4526 + 0.0677
0.4476 £ 0.0767
0.6715 £ 0.0832
0.6381 £ 0.0741
0.6071 £ 0.0722
0.6031 £ 0.0769

Method 5-way 1-shot
Rep Cls
CNN ROUTING 0.4330 + 0.1234
AttnBiLSTM ROUTING 0.4790 £+ 0.1189
META ROUTING 0.5762 + 0.1369
BERT PROTO 0.4643 + 0.1125
CNN PROTO 0.4843 £+ 0.1401
AttnBiLSTM PROTO 0.4636 + 0.1457
META PROTO 0.5617 + 0.1455
BERT RR 0.4637 + 0.1080
CNN RR 0.4836 + 0.1281
AttnBiLSTM RR 0.5162 + 0.1286
META RR 0.5881 £ 0.1369
BAO 0.5427 + 0.1290
MIF-FWSC 0.7077 + 0.1073

A%

16.50%

0.4903 + 0.0804
0.4449 =+ 0.0827
0.6276 + 0.0681
18.27%

0.8219 £ 0.0994
0.8101 & 0.1000
0.8306 + 0.0919
2.01%

0.7384 + 0.0778
0.7188 £ 0.0740
0.7535 £ 0.0745
3.47%

* Since GNN needs to construct a graph on the combination of support set and query set, and the size of query set of the AWS
dataset is too large to run on GPU, we did not conduct experiments on the AWS dataset using GNN.

Table 8

Accuracy comparison in the ablation study on PW. G and L denote the global attention and the local attention, respectively.

10-way 1-shot

5-way 5-shot

10-way 5-shot

Method 5-way 1-shot

G 0.7959 =+ 0.0904
L 0.7434 + 0.1088
G+MLP 0.8039 + 0.0845
L+MLP 0.7651 £ 0.0991
G+L+MLP 0.8105 =+ 0.0884
G+BiLSTM 0.8148 + 0.0837
L+BiLSTM 0.7939 + 0.0901
G+L+BiLSTM 0.8675 + 0.0696

0.7460 =+ 0.0641
0.6869 & 0.0645
0.7482 £ 0.0607
0.7163 =+ 0.0636
0.7527 £ 0.0620
0.7654 £ 0.0602
0.7335 + 0.0638
0.8098 + 0.0586

0.8667 & 0.0669
0.7827 4 0.0806
0.8779 £ 0.0601
0.8504 & 0.0722
0.8842 £ 0.0605
0.8775 4 0.0605
0.8582 4 0.0740
0.9093 + 0.0505

0.8139 £ 0.0486
0.7007 £ 0.0659
0.8183 £ 0.0479
0.7906 £ 0.0537
0.8317 £ 0.0470
0.8194 £ 0.0505
0.7971 £ 0.0542
0.8560 + 0.0408

local attention. To analyze the impact of BiLSTM, we carry out
experiments by replacing BiLSTM with a fully connected network
with one hidden layer (represented in MLP). Since both BiLSTM
and MLP make a certain transformation to the original attention
scores of words (including the global attention, the local atten-
tion, and the combination of them), we also attempt to use the
original attention scores directly by removing the deep learning
model.
As shown in Tables 8 and 9, we observe that:

e Both the global attention and the local attention of a word
contribute to the classification performance, although the
global attention has a considerable impact.

e BiLSTM is essential to classification performance since it
captures some sequential information between the word
attentions of service descriptions.

e In most cases, a transformation to the original attentions of
words using deep learning models will improve the classifi-
cation performance.

5.7. Feature convergence function (RQ4)

In MIF-FWSC, the feature convergence function converts the
weighted word matrix to a description vector. To study the effect
of different feature convergence functions, we carry out experi-
ments and count the accuracy using different feature convergence
functions under settings of different ways and different shots.
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Table 9
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Accuracy comparison in the ablation study on AWS. G and L denote the global attention and the local attention, respectively.

Method 5-way 1-shot 10-way 1-shot 5-way 5-shot 10-way 5-shot
G 0.6874 £ 0.1231 0.6051 + 0.0623 0.8245 + 0.0959 0.7443 + 0.0639
L 0.6763 £ 0.1201 0.5832 + 0.0649 0.7786 £ 0.1003 0.6839 + 0.0724
G+MLP 0.6913 £ 0.1168 0.6158 + 0.0648 0.8272 £ 0.0986 0.7445 + 0.0680
L+MLP 0.6857 £+ 0.1216 0.6064 + 0.0657 0.8125 £ 0.1035 0.7335 £+ 0.0709
G+L+MLP 0.7038 £ 0.1087 0.6191 + 0.0638 0.8282 + 0.0962 0.7477 £+ 0.0700
G+BiLSTM 0.6963 £ 0.1199 0.6243 + 0.0663 0.8302 £ 0.0989 0.7442 £+ 0.0718
L+BiLSTM 0.6931 £ 0.1212 0.6049 + 0.0639 0.8242 4+ 0.0994 0.7436 + 0.0695
G+L+BiLSTM 0.7077 £ 0.1073 0.6276 + 0.0681 0.8306 + 0.0919 0.7535 + 0.0745
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Fig. 5. Accuracy of KNN, SVM, LR, and our model. The blue line indicates the
supervised models’ accuracy, with standard deviation shaded. The red line is the
accuracy of our model in the setting of 5-way 1-shot and the green line is the
accuracy of our model in the setting of 5-way 5-shot.

Specifically, we choose summation function (SUM), maximum
function (MAX), average function (MEAN), and one-dimension
convolution function (CNN) as feature convergence functions.
Specifically, SUM calculates the sum of all weighted word vectors
in the matrix, MAX keeps the maximum value of each dimension
in all vectors, MEAN calculates the average value of all vec-
tors, and CNN applies one-dimension convolution kernels on the
weighted word matrix and then gets the representation of the
description by max-pooling. For the SUM, MAX and MEAN, there
are no weight parameters. For the CNN, the weight parameters
are the parameters of all one-dimension convolution kernels. The
size of one-dimensional convolution kernels of CNN is set to 1, 2
and 3, and the number of kernels is set to 100 for each size.

As shown in Fig. 6, SUM performs the best, the performance
of MEAN is similar to SUM, followed by MAX, and CNN performs
the worst under different ways and shots setting. In the few-shot
service classification scenario, only limited samples are involved
in each episode of the training procedure. Since CNN contains
more parameters when compared to the other three functions,
it is hard to learn ideal settings of parameters from the limited
samples. SUM and MEAN can retain more information contained
by the weighted word matrix than MAX and CNN, and they do not
have complex parameters, so they perform better than others.
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Fig. 6. Accuracy under different ways, shots and feature convergence functions.

The red arrow points to the highest accuracy.

6. Conclusion and future work

Web service classification is crucial for service reuse. It is a
time-consuming task to manually assign categories for a Web
service description, especially when many new Web services are
released. Existing work on service classification neglect the long-
tail distribution of Web services categories, which leads to a poor
classification performance on the tail categories containing only
a few services. This paper treats the task as a few-shot text
classification problem and designs a deep learning model named
MIF-FWSC to tackle it. A series of competing experiments are con-
ducted on two real-world datasets crawled from PW and AWS,
which shows that our model achieves state-of-the-art accuracy
on the few-shot Web service classification. Comparisons with
traditional supervised learning also show the advantages of our
model in learning transferable knowledge from training data and
making predictions for unseen classes. An ablation study shows
that each component of our model is necessary. Besides these, we
also conducted experiments to test the effectiveness of different
feature convergence functions.

In the future, we plan to improve our proposed approach by
integrating more information about Web services, e.g., developers
and development status, for classification. Moreover, we also plan
to conduct experiments on more datasets of Web services.
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