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Social recommender systems (SRS) aim to study how social relations influence users’ choices and how to
use them for better learning users embeddings. However, the diversity of social relationships, which is
instructive to the propagation of social influence, has been rarely explored. In this paper, we propose a
graph convolutional network based representation learning method, namely multi-perspective social
recommendation (MPSR), to construct hierarchical user preferences and assign friends’ influences with
different levels of trust from varying perspectives. We further utilize the attributes of items to partition
and excavate users’ explicit preferences and employ complementary perspective modeling to learn impli-
cit preferences of users. To measure the trust degree of friends from different perspectives, the statistical
information of users’ historical behavior is utilized to construct multi-perspective social networks.
Experimental results on two public datasets of Yelp and Ciao demonstrate that the MPSR significantly
outperforms the state-of-the-art methods. Further detailed analysis verifies the importance of mining
explicit characteristics of users and the necessity for diverse social relationships, which show the
rationality and effectiveness of the proposed model. The source Python code will be available upon
request.

� 2021 Elsevier B.V. All rights reserved.
1. Introduction

Recommender systems have been receiving increasing atten-
tion with the surge of overload information. It is widely applied
in various fields, such as online e-commerce [1], transportation
[2], entertainment [3] and social media platforms [4]. As the infor-
mation filtering tool, recommender systems learn and predict
users’ preferences through their historical behavior data. Collabo-
rative filtering (CF) [5–8], which focuses on finding out similar
users’ (items’) groups and collaboratively considers user feedback,
is one of the most popular recommendation algorithms for modern
recommender systems. Matrix factorization (MF) [6–8] can be con-
sidered a model-based CF methodology, which attempts to learn
the precise feature embeddings of users and items. Despite its sim-
plicity and efficiency, traditional CF based methods confront a
major challenge: cold start [5,9]. The available rating data in com-
mercial recommender systems is extremely sparse and its density
is often less than 1%[5], which leads to the problem suffered by
recommender systems–how to sift through the excessive products
to find the most suitable for consumers. To this end, numerous lit-
eratures leverage extra information to tackle the above issue, such
as side information [10], reviews [11,12], images [13,14] and social
networks [15–17].

With the emergence of online social communities, many online
platforms (e.g., Tiktok, Yelp) allow users to share preferences in
their social circles, accelerating the spread of social influences.
One widely accepted assumption is that friends tend to have sim-
ilar preferences owing to their frequent communications. Social
recommender systems (SRS) are proposed to incorporate useful
information extracted from social relations [18–20], which
explores the social influences on users’ choices and takes advan-
tage of friends’ preferences for higher recommendation accuracy.
The commonest method is to add additional prior constraints to
the user representations by leveraging social relation data. For
example, [15,17] proposed using L2 regularization constraint on
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user representations to enforce users in social networks to be
approximate in embedding space. This scheme, which incorporates
the prior knowledge from social space, can place more reasonable
priors on user feature vectors and further constrain the solution
space of models. Besides, several other works [18,20] considered
the priority between products and assumed that the products pur-
chased by their friends should be more preferable to themselves
than purchased by people outside their community circle. They
defined a pairwise loss term and applied it to restrain the loss
function.

Although above efforts had explored utilizing social informa-
tion, most of them combined social relationships as constraints
into the target function of the model. With the rapid development
of representation learning technology, several works [16,19]
directly encoded trust relations and item ratings, which are incor-
porated into user embeddings. Moreover, as a method of network
representation learning, the graph convolutional network (GCN),
which has shown its superiority in Non-Euclidean Space, is broadly
applied in SRS. There are several GCN based works [21,22,23] that
have been proposed to aggregate neighbors’ (social neighbors and
interacted items) embeddings in a unified way to acquire richer
user embeddings and achieved great performance in social recom-
mendation tasks, especially for sparse users with few purchase
records.

Nevertheless, social relations should be considered from multi-
ple perspectives, and the relationship between friends should be
different from each perspective. As shown in Fig. 1(a), Bob will
share ‘‘Flipped” with Lina because they have a common preference
for romantic films. And ‘‘Avatar” will be shared between Bob and
Tom because they are all fans of James Cameron. Therefore, Bob
and Lina could be called close friends from the ’Genre’ perspective,
while they communicate less from the other ’Director’ perspective.
Actually, when buying a movie ticket, users will ask for opinions of
different friends from different perspectives, and the trust degree
from different friends should be considered discrepant from differ-
ent perspectives (e.g., genre and director). Furthermore, from Fig. 1
(b), we can discover that Bob has a high preference for ‘‘Titanic”
because it meets his needs in genre and director, though these
actors were not his favorites. Based on the above analysis, we con-
sider that Bob’s preference on film could consist of the preferences
from genre, actor, director and other perspectives, which is also in
line with the reality that users will consider multiple dimensions
(e.g., price and logistics service) based on their preferences when
shopping online.
Fig. 1. An illustrative example of diverse social relations and hierarchical user
preference: (a) Bob will share different films with different friends. (b) Bob’s
preference towards ‘‘Titanic” consists of multiple perspectives.
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Thus, the diverse social relations and multi-perspective user
preferences should not be ignored and motivates us to explore a
hierarchical social preference model to improve SRS. Although this
multi-perspective strategy is used in many areas [24,25], and some
recent methods [26,27] adopt attention mechanisms to learn prop-
agation vectors for achieving different weight aggregation. How-
ever, these approaches further increase the complexity of the
model and is difficult to be applied to multi-perspective scenes.
To address the above issues, we propose a multi-perspective social
recommendation (MPSR) framework in this article. The major con-
tributions of our study are summarized as follows:

� A hierarchical social recommendation framework MPSR is pro-
posed to integrate users’ multi-perspective preferences. Fur-
thermore, MPSR efficiently captures the explicit preference
from item attributes, which provides additional information
for a more accurate prediction and improves model
interpretability.

� To investigate the complex social relations, the trust degree
between friends is reconsidered with variant values from differ-
ent perspectives. The similarity of behavior between users is
calculated as the trust degree by a statistical method to recon-
struct the social graph network with different weights.

� Experiments are conducted on two real-world datasets to eval-
uate the proposed method. The results show that MPSR
achieves state-of-the-art performance for social recommenda-
tion tasks, indicating its effectiveness and rationality.

The remainder of this article is organized as follows. In the next
section, we introduce the related works. The detailed method and
model optimization are presented in Section 3. In Section 4 exper-
imental results and performance analysis are provided. Section 5
concludes this article.
2. Related work

2.1. Matrix factorization

As the most popular and effective method of CF algorithm,
matrix factorization (MF) makes great use of ‘‘collective intelli-
gence” through mapping the representations of users and items
to a unified latent factor space. Mnih et al. [6] firstly modeled the
user preference matrix as a product of two lower-rank user and
item matrices from a probabilistic perspective. In [28], Koren
et al. additionally accounted for the biases of individual user or
item to explain the phenomenon of ‘‘nice guy” and popular prod-
ucts. Until today, in this booming era of artificial intelligence, MF
can still be considered the basis of many effective recommender
models [29].

Part of MF methods is designed for rating prediction, which
aims to predict the definite scores that users give to products,
and users need to show feedback on their preferences explicitly.
However, in most recommended scenarios, only implicit feedback
(e.g., clicks and browsers) is accessible, which leads to another rec-
ommendation task–top-N recommendation. Rendle et al. [8] pre-
sented a pair-wise personalized ranking method (Bayesian
personalized ranking [BPR]) for the implicit feedback scenario,
which is the first time to focus on the relative relations between
the observed and unobserved items of a user. Since then, research-
ers [30–32] have made efforts on the top-N recommendation based
on BPR strategy, which indicates the dominant role of BPR in the
implicit feedback task. We also adopt the pair-wise learning
method in our model because of its efficiency and effectiveness
in exploring users’ unobserved relative preferences.
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2.2. Social recommendation

Considering the rapid spread of popular products in social cir-
cles, a large number of studies have attempted to leverage the rela-
tionships between friends for better recommendation accuracy.
Depending on how social relations are used, the social recommen-
dation methods can be grouped into three categories: prior
constraint-based (PCB) approach, ranking-based (RAB) approach,
and representation learning-based (RLB) approach. For PCB
approaches, all consider the social network as an additional con-
straint. Following the traditional MF method, several authors
[15,33] connected the social network structure and the user-item
rating matrix and constrained a shared user latent factor vector.
In [34,35], researchers incorporated heterogeneity of social rela-
tions and proposed characterized social regularization to model
the characteristics of different social relations.

The RAB methods aim at comparing the ranking between items
with different relations. SocialBPR [18] utilized the social influence
to divide all the items into three parts: positive, social, and nega-
tive feedback, and defined the ranking between these three sets.
Yu et al. [20] proposed a novel approach to identify adaptively
implicit friends, and further categorized the item sets into five
types: positive items, joint social items, positive social items, neg-
ative social items and non-consumed items.

For RLB approaches, user representation and social relations are
encoded by embeddings vectors in the view of representation
learning. Ma et al. [16] proposed a novel probabilistic factor anal-
ysis framework to fuse naturally the user tastes and the favors of
his trusted friends together. In [19], Guo et al. proposed the
TrustSVD method, which extended the model SVD++ [7] with
social trust information and incorporated the explicit and implicit
influence of item ratings as well as the user trust.

The above works could be summarized as follows. Some PCB
approaches [34,36] are conscious of the heterogeneity of social
relations, but cannot straightforwardly utilize the representation
of one-order or higher-order social neighbors. RAB approaches
intend to divide diverse explicit or implicit relations into different
groups, and RLB approaches mainly focus on the construction of
user or item embeddings, but neither of them considers inconsis-
tency in the social relations. Despite these social recommendation
methods make a great success, to the best of our knowledge, few
studies have considered the diverse social relations as well as the
different social influences, which are crucial to determining user
preference.

2.3. Graph convolutional network

Convolutional neural network (CNN) has shown remarkable
success in many domains, such as image process [37] and natural
language processing (NLP) [38]. Given that the graph structure is
naturally irregular, GCN is presented to generalize convolutions
to graphs, which has shown its theoretical superiority and rela-
tively higher performance in many graph-based tasks recently.
As one of the most powerful tools in representation learning,
GCN mainly leverages the information of neighbors in graphs to
construct the representation of nodes. Given that nodes in a single
layer of GCN can only obtain information from its first-order neigh-
bors, information from higher-order and reachable nodes in the
graph could be obtained by stacking multiple GCN layers. In Graph
Convolutional Matrix Completion [39], Berg et al. presented an
auto-encoder framework in graph structure from the view of link
prediction to solve the problem of rating prediction. In [40], Hamil-
ton et al. paid attention to learning a node embedding by sampling
and aggregating representations of its neighborhoods. Previous
studies [41,42] have attempted to consider high-order neighbor
information to complement latent embedding representations of
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users and items, and achieved competitive performance in recom-
mendation tasks.

Owing to the great performance of GCN, many studies
[21,27,43–45] have applied GCN into social recommendations. Pre-
vious works [21,43] attempted to capture how user preferences are
influenced by the social diffusion process in social networks. As the
attention mechanism is adopted for graph structure data in graph
attention networks [26], many attention models have been pro-
posed to learn the social influence strength [27,44,45]. SocialGCN
[21] learned the attentive weights for social neighbors and rated
items for user modeling. In [27], Wu et al. applied the attention
model to fuse the social network and interest network for the
social recommendation. Tang et al. [45] modeled the high-order
social relations and leveraged the attention mechanism to acquire
information from different order neighborhoods. Although these
methods had learned the weight of edges in the graph through
the attention mechanism, the training cost is expensive. Our work
is also inspired by the applications of attention modeling and
applies its statistical characteristic to form the attentive weights
and distinguish the disparate influences of friends.

3. Proposed MPSR model

For convenience, we first introduce the uniform definitions and
notations used in this article. We let U ¼ u1;u2; . . . ;uTf g and
V ¼ v1;v2; . . . ;vMf g represent the sets of users and items, respec-
tively. Here, T is the number of users andM is the number of items.
Moreover, the matrix R 2 RT�M is utilized to denote user history
behavior where each element ri;j ¼ 1 if an interaction (e.g., clicks
and browses) is observed between user i and item j and zero other-
wise. The social relationships between users are described as
matrix S 2 RT�T , where si;i0 ¼ 1 indicates that user i is connected

with user i0 and si;i0 ¼ 0 if no social connection exists. By default,
all the diagonal elements in S can be set to one, which is considered
as the user’s own social connections. Moreover, the information of
item attributes is also used to analyze the features of users and
items. The recommendation task can be defined as follows:

Input: a user set U, an item set V, the user-item interaction
matrix R, the social relation matrix S and item attribute
information.

Output: an item list Rei for each user i where each item is
ranked by a real value pi;j : V ! R.

3.1. Overview of the framework

In Fig. 2, we illustrate the overall framework of the proposed
MPSR method. First, the features of users and items from each per-
spective will be analyzed, which are crucial inputs for the single-
perspective preferences module. Meanwhile, the social network
will be also constructed based on user features from different per-
spectives. In each single-perspective module, the embeddings of
users and items could be obtained through several submodules,
which are iteratively updated in social and item space, respectively.
The detailed description is presented in the next subsections.

In this article, user preferences are divided into different per-
spectives, aligned with the item attribute categories. As Fig. 2
shows, users will show their explicit preferences, such as genre
preference, actor preference. Moreover, these explicit preferences
sometimes dominate in terms of user preferences. For example, it
sounds unrealistic for most people to recommend a restaurant in
the city where the person has never been to, no matter how deli-
cious the food tastes at the restaurant. Thus, the location property
of the restaurant plays a crucial role in choosing one restaurant.
Furthermore, an extra complementary perspective is introduced
to represent some implicit preferences of users. As far as we know,



Fig. 2. Holistic framework of the proposed MPSR. User preferences comprise
multiple single-perspective preference modules.

Fig. 3. Pipline of the item feature matrix and the user feature matrix, as well as
social network reconfiguration in each single-perspective.
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user preference can’t be made up of a finite number of perspec-
tives. Therefore, it is necessary to introduce the complementary
perspective to represent some unknown perspectives. To construct
a unified representation of users and items, both of them own a
unique embedding under each perspective. In this study, the dot
product of two embeddings is adopted to represent user prefer-
ences, accounting for its high efficiency and performance. Finally,
a user preference towards an item could be obtained through a
weighted unit by leveraging a group of single-perspective
preferences.

3.2. Statistical analysis

For each single-perspective preference, we first acquire statisti-
cal features of users and items, and the generation process of the
statistical features is shown in Fig. 3. The item feature matrix

Ik 2 RM�Lk is on behalf of the attribute characteristic on the k-th

perspective. The j-th row of Ik is depicted as,

Ikj ¼ Ikj;1; I
k
j;2; . . . ; I

k
j;c; . . . ; I

k
j;Lk

h i
; ð1Þ

where Lk is the number of attribute categories in the k-th perspec-

tive and Ikj;c denotes an indicator, indicating whether item j belongs
to category c. From the basic item feature matrix, the user feature

matrix Fk 2 RT�Lk , which represents statistics of user history behav-
ior on each attribute category, is obtained through user-item inter-
actions. The statistical feature of user i on the k-th perspective is
depicted as,

Fk
i ¼ Fk

i;1; F
k
i;2; . . . ; F

k
i;c; . . . ; F

k
i;Lk

h i
; ð2Þ

where Fk
i;c represents the frequency of user i selection on this c

category.
Then, for each user-pair ui;ui0ð Þ in a social network (see in

Fig. 3), their statistical characteristics are represented as Fk
i and
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Fk
i0 in the k-th perspective. Furthermore, the calculation of similar-

ity between the above two connected users is formulated as,

eski;i0 ¼ Fk
i � Fk

i0

Fk
i

��� ��� � Fk
i0

��� ��� ; ð3Þ

where � stands for the inner product between vectors, and �k k cal-
culates the length of the vector. After calculating each eski;i0 , every link

in the social relations will be reassigned to form a social network eSk

for the k-th perspective. This preprocessing does not increase the
overhead of algorithm training, because all these steps can be pre-
pared in advance.

As for the complementary perspective, we set the edge weights
in its social network to one, which puts the social influence of this
unknown perspective on an equal footing.

3.3. Single-perspective preference

In this subsection, we focus on modeling the single-perspective
preference. Intuitively, user preference is generally believed to be
influenced by their friends (the neighbors in a social network).
However, most of the previous studies simply assume that users
are equally influenced by their neighbors, and do not consider the
differences between friends. Simply speaking, users are always
affected to varying degrees by different friends for different points
of interest (corresponding to the different perspectives mentioned
above). The generation of single-perspective preference (see
Fig. 4), which leverages distinct relationships from different per-
spectives, could be implemented in three steps: 1) single-
perspective embedding 2) social space aggregation and 3) item
space aggregation. From varying perspectives, single-perspective
embedding aims to initialize representations of users and items in
unified embedding space, and social space aggregation mainly
aggregates the embeddings from neighbors of users from a specific



Fig. 4. Single-perspective preference module. The generation of user preference from each perspective comprises three submodules: single-perspective embedding, social
space aggregation and item space aggregation.
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perspective. In item space, user embedding representations further
combine the information of connected items, which also relieve the
sparsity problem in social network connections. Eventually, the dot
product of two embeddings represents the user preference from the
k-th perspective.

3.3.1. Single-perspective embedding
To construct a unified embedding representation, the item and

user embeddings come from the same feature embedding pool.
Suppose m explicit attributes exist, the feature embedding pool
from the k k ¼ 1;2; � � � ;mð Þ-th perspective is represented as,

Ek ¼ � � �

j j j
ek
c�1 ek

c ekcþ1

j j j � � �

2
66664

3
77775; ð4Þ

where Ek 2 Rd�Lk , is a learnable and randomly initializedmatrix. Lk is
the number of attribute categories in the k-th perspective, and d
denotes the size of the embedding dimension for each category
embedding vector ek

c(here d remains the same for all k values). The
category embedding vector ek

c stands for the representation of a
specific category (e.g., comedy, romance). In this way, the embed-
dings of users and items can correspond in the embedding space,
and each dimension has the same hidden meaning. Moreover,
because the number of attributes is limited, the number of user
interactions doesn’t need to be large to reflect the user’s character-
istics from this perspective. In general, this multi-perspective user
model is more interpretable and the model coupling is significantly
reduced. This preference division allows users to be close enough in
embedding space once their behavior is similar from one perspec-
tive, regardless of how the user behaves from the other perspectives.

The initial representation of user i and item j from the k-th per-
spective becomes,

xk
i ¼

P
c¼1;2;::;Lk

Fk
i;c � ek

cP
c¼1;2;::;Lk

Fk
i;c

; ð5Þ

vk
j ¼

P
c¼1;2;::;Lk

Ikj;c � ek
cP

c¼1;2;::;Lk
Ikj;c

: ð6Þ

Here, Fk
i;c and Iki;c are considered as weighted average operations

to normalize the data.
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Although user explicit characteristics from their historical
behavior often dominate user preferences, the implicit preference
analysis coming from fully autonomous learning is essential, espe-
cially when the component of explicit preference in the system is
one-sided or the user owns scarce behavioral data. Consequently,
the complementary perspective is utilized to well represent users
and items from other unknown perspectives, and directly con-
struct pairwise learnable embeddings xmþ1

i 2 Rd and vmþ1
j 2 Rd,

which is also a common manner called free embeddings.

3.3.2. Social space aggregation
In social space, the social graph is connected with different

weights, and the aggregation of user social embeddings is con-
ducted from diverse perspectives. In this way, the connection
strength between users from different perspectives is not consis-
tent, and this strength is associated with the similarity between
users. For each perspective (both explicit and complementary per-
spectives), we stack multiple GCN layers to obtain information
from higher-order neighbors. After t-layer propagation, user
embedding, which acquires knowledge from his t-order neighbors,
could be formulated recursively as,

yk
i

tð Þ ¼ relu
X

i02Ni[ if g
hk
i;i0 tð Þ

0
@

1
A; ð7Þ

where Ni is the social neighbor set of user i, and relu is the activa-

tion function. Here hk
i;i0

tð Þ
is the propagation embedding from user i0

to user i from k-th perspective, defined as,

hk
i;i0

tð Þ ¼
eski;i0eski�� ��
1 � eski0�� ��

1

yk
i
t�1ð Þ

Wk tð Þ
; ð8Þ

where Wk tð Þ 2 Rd�d is a trainable feature transformation matrix of t-

th GCN layer, and yk
i
t�1ð Þ

denotes the user embedding after t � 1ð Þ-th
GCN layer processing. The initial yk

i
0ð Þ

is set to xk
i (in (5)). Given the

nonnegativity of eski;i0; eski�� ��
1 ¼ PT

j¼1
eski;j
��� ���is adopted as a normalization

factor. Elements on the diagonal of eSk are equal to one, which also
represents self-connection. Meanwhile, the user embedding matrix
of the t-th layer in social space can be calculated by the following
matrix form effectively,

Yk tð Þ ¼ relu LkYk t�1ð Þ
Wk tð Þ� �

; ð9Þ
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and

Lk ¼ Dk�1
2eSkDk�1

2; ð10Þ
where Lk 2 RT�T can be regarded as a normalized social aggregation

operation. From each perspective, Dk represents the diagonal degree
matrix where q-th diagonal element equals the sum of q-th row in
eSk. Assuming the layer number of GCN layer is t, from the k-th per-

spective, the embedding output of user i in the social space is yk
i
tð Þ
.

3.3.3. Item space aggregation
Accounting for the situation that the user seldom communi-

cates with others on the Internet, we fuse the embeddings of con-
nected items to the user representation. Different from social
space, only a one-order neighbor is aggregated in item space
because of its heterogeneity. The even-order neighborhood seems
to be a user node, which may overlap with neighbors in the social
space. Therefore, the information aggregation in the item space is
formulated as,

uk
i ¼ yk

i
tð Þ þ

P
j2 jjri;j¼1f gvk

j

XM
j¼1

ri;j

: ð11Þ

Similarly, the calculation of matrix form is illustrated as,

Uk ¼ Yk tð Þ þ ARVk
; ð12Þ

where A 2 RT�T is a diagonal matrix, of which each q-th diagonal
element represents the number of q-th user’s connected items.

And the j-th row of Vk is composed of vk
j .
Algorithm1:Multi-perspective Social Recommender
(MPSR) Model with Graph Representation Learning
Input: U: User set, V: Item set, R: User-item interaction
matrix, S: Social relation matrix, Item attribute, Top-N
size;
Set: dimensionality d, initial learning rate b,
regularization parameter k, dropout ratio u, GCN
layer number t;
1: Calculate each item feature matrix Ik k ¼ 1;2; � � � ;mð Þ,
each user feature matrix Fk k ¼ 1;2; � � � ;mð Þ, each
reconstructed social weight matrix eSk k ¼ 1;2; � � � ;mð Þ
as well as user degree matrix A;
2: Initialize H;a, and other learnable parameters in our
model randomly;
3: whilenot converge do

4: Sample negative examples D� from training set Dþ;

5: for k ¼ 1;2; � � � ;m;mþ 1 do

6: Initial embeddings xki ;v

k
j as (5) and (6),
7: Model user representation Uk as (9) and (12)

8: end for

9: Predict user overall preference as (13);

10: Calculate the model loss and update H as (15);

11: end while

12: for i ¼ 1;2; � � � ; T do �n o

13: Get all unobserved preference pi;j0

��ri;j0 ¼ 0

after ranking;

14: end for

Output: Top-N recommendation list

Rei i ¼ 1;2; � � � ; Tð Þ ¼ j0 pi;j0
���n o

; jReij ¼ N;
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3.4. Model prediction and optimization

3.4.1. Model prediction
The illustration of Fig. 2 shows that user preference towards the

specific item consists of two aspects: multiple explicit perspectives
and a complementary perspective. However, simply summing up
user preferences from all perspectives seems illogical. Thus, we
assign different weights to different perspectives of user prefer-
ences. Through the weighted unit, the preferences of users can
be depicted as,

pi;j ¼
Xmþ1

k¼1
atti;kuk

i
T
vk

j ; ð13Þ
atti;k ¼ eai;kPmþ1
p¼1 e

ai;p
; ð14Þ

where each ai ¼ ai;1;ai;2; :::;ai;m;ai;mþ1
� �T is an m + 1 dimensional

trainable vector, representing normalized influence of varying per-
spectives on user i after softmax operation.
3.4.2. Model optimization
Given that we merely consider user implicit feedback and focus

on top-N item recommendation, we resort to BPR [8] strategy,
which assumes that users’ preferences towards observed interac-
tion are higher than the unobserved ones. The loss function of
the proposed model at the training stage is formulated as,

Loss ¼
XT
i¼1

X
i;j;j0ð Þ2D

� lnr pi;j � pi;j0
� 	þ k Hk k22; ð15Þ

where r �ð Þ is the sigmoid function. And the symbolH represents the
learnable embeddings of our model, containing each

Ek k ¼ 1;2; � � � ;mð Þ and implicit embeddings xmþ1
i ;vmþ1

i , which are
controlled by the regularization parameter k.
D ¼ i; j; j0

� 	
i; jð Þ 2 Dþ;

�� i; j0ð Þ 2 D�
 �
denotes the training set where

Dþ ¼ i; jð Þjri;j ¼ 1

 �

is the interacted user-item pair set and D� is
the unobserved record in the training step. We implement Adam
[46] algorithm with a large initial learning rate 0.01 to optimize
the model.

Furthermore, to prevent the overfitting problem because of the
strong representation power of the GCN layer, we introduce the
dropout technique [47] after a feature transformer in every GCN
layer. Lastly, the detailed implementation is presented in Algo-
rithm 1, which provides the top-N item list to each user.
4. Experiments

In this section, we implement experiments on two datasets in
the real world to evaluate the performance of our proposed model.
we emphasize these research questions:

RQ1: How does the MPSR outperform the baselines for social
recommendations?.

RQ2: Why does the MPSR perform well with the multi-
perspective framework and distinct social relations?.

RQ3: How does the hyperparameter of MPSR affect its
performance?.
4.1. General settings

4.1.1. Datasets
The statistics of two real-world datasets are exhibited in Table 1.

These two datasets provide both social relations and item attribute
information.



Table 1
Statistics about the Yelp and Ciao Datasets. Relations(A-B) indicates the specific
meaning of A and B, and # is a count symbol.

Datasets Relations(A-B) #A #B #(A-B)

Yelp User-Business 16,239 14,284 198,397
User-User 10,580 10,580 158,590

Business-City 14,267 47 14,267
Business-Category 14,180 511 40,009

Ciao User-Product 6,792 103,408 273,747
User-User 6,792 6,792 110,426

Product-Category 103,408 28 103,408
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� Yelp. Founded in 2004, Yelp is the largest review site in the US.
This website allows users to rate restaurants, dentists and bars.
More importantly, users’ experiences can be shared with friends
through photos and reviews, and the city and category attri-
butes of the business are accessible.

� Ciao. As a popular product review site in the UK, Ciao allows
people to rate products and make friends on the Internet. The
category of products is also provided, and each product belongs
to only one category.

The Yelp dataset [49] has dense rating relations but sparse
social relations, whereas the Ciao dataset [24] has fewer users
but a greater number of products. Given that the user preferences
of these datasets are presented in the form of ratings, all historical
records of users are transformed into positive samples considering
that these interacted items satisfy at least a part of the user prefer-
ences. Furthermore, the items have only one or two attributes,
which limits the ability of our model to evaluate with more
perspectives.

4.1.2. Baselines and evaluation metrics
We compare the proposed MPSR methods with several repre-

sentative algorithms, including the traditional and state-of-the-
art social recommendation methods.

� Most Popular (MP): This algorithm is non-learnable, and ranks
item lists based on popularity.

� BPR [8]: This method is the most simple but effective learnable
algorithm, which belongs to the classical MF algorithm.

� NGCF [41]: It is a famous GCN-based recommendation frame-
work, which only utilizes the rating between users and items.

� DHCF [42]: Adopting the divide-and-conquer strategy, this
method is presented recently to model different users and items
flexibly with varying interactions and consider the high order
relations.

� SERec [48]: This approach integrates social exposure into CF,
which utilizes social information to capture user exposures
rather than user preferences.

� DiffNet [43]: This method is a state-of-the-art social recom-
mendation, which accounts for the influence of social circles,
and models how user latent embeddings evolve as the social
diffusion process continues.

While focusing on the top-N recommendation, to evaluate our
algorithm thoroughly, three widely used ranking based metrics
are chosen: Recall, Precision, and normalized discounted cumula-
tive gain (NDCG). The Recall@N, Precision@N and NDCG@N are
defined as follows:

Recall@N ¼
XT
i¼1

j 2 ReijRi;j ¼ 1

 ��� ��

T � Reij j ; ð16Þ
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Precision@N ¼
XT
i¼1

j 2 ReijRi;j ¼ 1

 ��� ��

T � N ; ð17Þ

NDCG@N ¼ 1
T

XT
i¼1

XN
n¼1

Ri;Rei;n � 1
log2 nþ1ð Þ

Xmin Reij j;Nð Þ

n¼1

1
log2 nþ1ð Þ

: ð18Þ

where Reij j represent the length of the recommendation list of user
i, and Rei;n is the n-th item ID in Rei. Recall and Precision are the hit
ratio of recommendation but the former measures how many pos-
itive items appear in the top-N list of test sets, whereas the latter
reflects the proportion of the true positive sample in the recom-
mendation list. NDCG evaluates the ranking accuracy of the recom-
mendation list, and the more forward the position, the more
important it is. For these three metrics, the larger value indicates
better performance of the model.

4.1.3. Data preparation and parameter setting
In the process of data preparation, we filter out the users with-

out social connections and ensure the users are present in both the
social relation matrix and the interaction matrix. Besides, the items
without attribute information are removed. The datasets are ran-
domly partitioned, 80% are for training sets, and the rest are
divided into test sets. Meanwhile, all users are chosen with at least
one record in the training set to guarantee that no absolutely cold-
start users appear in the test set.

Besides MP, all the baselines are based on the latent factor mod-
els. All these learnable latent vectors are initialized with small ran-
dom values. Furthermore, the number of latent factors is fixed at
64, and we use Adam [46] as the optimizer to train all the models
with an initial learning rate of 0.01. The learning rate can change
dynamically along with the loss. In the proposed MPSR model,
the grid search strategy is adopted to turn the regularization
parameter k in [0.001, 0.01, 0.1, 1, 10] and the GCN layer number
t in [1, 2, 3]. Dropout ratio is searched in [0.1, 0.2, . . ., 0.8, 0.9, 1]
to obtain a more generalized model. We experimentally set the
layer number of GCN as 3 in NGCF, and as 2 in DiffNet. The layer
number of GCN in DHCF is set as 2 in these two datasets. For SERec,
kx; kt and kb are all set to one, and s equals 5 as recommended. To
control the magnitude of learnable parameters, the regularization
parameter is set as 0.001 in NGCF, DHCF and DiffNet on the two
datasets.

4.2. Performance comparison (RQ1)

4.2.1. Overall comparison
The ranking metrics of our model and these baselines on two

datasets are listed in Table 2. Given that dimension size d signifi-
cantly affects the generalization ability of models, we evaluated
different models in the same dimension size of 64 with varying
top-N values. First, we observe that Recall and NDCG keep growing
but Precision decreases as the N value increases. Given the data
sparsity in these two datasets, the average number of items inter-
acted by each user is approximately 12 in Yelp, and 40 in Ciao.
Many preferred items of users are less than five, thus the length
of the actual preference list in the test sets may remain while the
recommendation list keeps growing as the N value becomes bigger.
It may indicate the reason for the first discovery above. Second,
Recall and NDCG on Yelp are always better than the metrics on
Ciao which is because of the more intensive user implicit feedback
on Yelp. However, for Precision, all the methods perform better on
Ciao than Yelp, which may also be caused by the few connected
items on the test set of Yelp.



Table 2
Comparisons on Recall@N, Precision@N and NDCG@Nwith Different Top-N Values. Bolded fonts are the best performance of each row, ‘_’ denotes the best baseline compared with
our method, and all numbers in this table are percentage numbers without ’%’.

Datasets Metrics MP BPR[8] NGCF[41] DHCF[42] SERec[48] DiffNet[43] MPSR Improv.

Yelp Recall@5 2.0438 3.1444 3.03489 3.1259 2.9975 3.1329 3.8428 +22.21%

Precision@5 1.4799 3.0837 3.1055 3.0764 3.3242 3.3789 4.0678 +20.39%

NDCG@5 3.7169 4.9445 4.7122 5.1021 4.9825 5.0250 5.2780 +5.03%

Recall@10 2.9469 5.0423 5.0618 4.9391 5.1861 5.4887 6.2843 +14.50%

Precision@10 1.3031 2.6025 2.7100 2.5879 2.8759 2.8741 3.5156 +22.24%

NDCG@10 4.1722 5.4872 5.2714 5.5460 5.5109 5.6226 5.7830 +2.85%

Recall@50 9.7181 14.8036 15.8362 15.5648 15.1489 16.1003 17.6520 +9.64%

Precision@50 1.0290 1.6599 1.7966 1.7204 1.7693 1.8086 2.1072 +16.51%

NDCG@50 6.4456 8.6135 8.7086 8.8866 8.5616 8.9575 8.9884 +0.34%

Ciao Recall@5 2.4856 2.6991 2.7389 2.5169 3.0260 2.9601 3.3688 +11.33%

Precision@5 3.9180 4.6621 4.6080 4.2105 4.9897 4.9038 5.4349 +8.92%

NDCG@5 4.6900 5.5707 5.3689 4.9694 5.8705 5.8224 6.3760 +8.61%

Recall@10 4.0670 4.2175 4.4497 4.1387 4.8707 4.6627 5.3784 +10.42%

Precision@10 3.2644 3.6190 3.7939 3.5395 4.1803 3.9291 4.3552 +4.18%

NDCG@10 4.8079 5.3888 5.4110 5.0456 5.9427 5.7320 6.3248 +6.43%

Recall@50 8.9784 10.3179 11.3006 10.4571 12.0186 10.9202 12.4313 +3.43%

Precision@50 1.4613 1.7885 1.9587 1.8518 2.0770 1.8575 2.1014 +1.17%

NDCG@50 6.0702 6.9206 7.2583 6.7220 7.8057 7.3045 8.0247 +2.81%
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Among these baselines, the former four methods only consider
the user-item interaction information whereas the latter two are
further combined with social relations. Based on these experimen-
tal results, we have the following observations between the
baselines.

� MP achieves the worst performances in all cases, which indi-
cates only considering the popularity of the item can not pro-
vide users with personalized recommendations. BPR aims to
model the representation of users and items, which can capture
the relationships between users and items by utilizing existing
interactive records. Despite its simplicity, BPR is an efficient and
relatively powerful algorithm, which has more than 50% perfor-
mance improvement compared with MP and even performs
best at Recall@5 among all the baselines.

� As the representative recommendation framework based on
graph representation learning, NGCF and DHCF achieve certain
performance improvements especially when N is large. The dif-
ferent improvements show the necessity of explicitly taking
connected items as a part of user characteristics when modeling
users representations. DHCF performs better than NGCF on
Yelp, but worse than BPR on Ciao, indicating that its divide-
and-conquer strategy may not be suitable for the sparse
datasets.

� Taking advantage of social relations, SERec and DiffNet perform
better than the former four algorithms. It further reveals the
value of social networks, especially for the recommended sys-
tem, in which cold start is the main challenge. Meanwhile, we
observe that the contribution of social relations and the social
influence diffusion process is more obvious in Ciao than in Yelp.
Among all the baselines, DiffNet performs best in most cases on
Yelp, whereas SERec shows its superiority on Ciao. The reason
may be that user exposures towards items need much more
social information and sparse social relations hurt the recom-
mendation accuracy. Furthermore, it also proves the important
role of accounting for the user similarity in social networks.

� MPSR yields the best performance consistently on both data-
sets. In particular, our proposed method outperforms the most
powerful baseline by over 10% improvements on the Yelp data-
set in terms of Recall@N and Precision@N. Meanwhile the smal-
ler the N value, the greater the performance improvement. It
indicates that our model has a high accuracy rate at the head
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of the recommendation list, and recommendations with small
N values are more practical in actual scenarios. In contrast,
the improvement on Ciao is smaller than Yelp, though dense
social relations are observed on Ciao. We attribute the greater
improvement mainly to more aspects of explicit preference
modeling on Yelp. Compared with SERec and DiffNet, despite
both have considered the social influence, MPSR still outper-
forms. Thus, a more reasonable and distinguished spread of
social trust in MPSR is beneficial to model user preferences.

4.2.2. Performance comparison w.r.t data sparsity
To explore the performance of our model on sparse data, the

users of the test set are divided into five groups according to their
historical interaction records in training sets. Figs. 5(a) and 5(e)
show the proportion of users in each group. The range (0, 5] repre-
sents that the number of items connected in the training set for
this group is between 0 and 5. Both datasets show the problem
of data sparsity, that is, almost half of users have no more than five
connected items and over 85% users have less than 50 connections
with items while the number of items is 14,284 in Yelp (103,408 in
Ciao). This observation highlights the sparsity challenge faced by
the recommendation system.

Subsequently, we show the performance of each sparsity group
with various models. In Fig. 5, N ¼ 10 is chosen for a uniform com-
parison and the horizontal axis shows the user group information.
As observed in Fig. 5, for both datasets, our model outperforms
other methods in most cases, especially in the group (5, 20] and
(20, 50]. It denotes the advantages of our multi-perspective frame-
work in improving the accuracy of predicting preference on sparse
users. With the increasing number of user rating records, the per-
formance of Precision and NDCG increases quickly for all models,
whereas Recall first rises and then falls when user interaction is
larger than 50. Furthermore, our method surpasses other methods
on Recall in all groups, and the improvement compared with the
base MP reduced gradually as the interaction increases. When
the connected record of each user is less than 5, MP performs bet-
ter than BPR, NGCF and DHCF for Recall and NDCG on Yelp, and
even obtains the best performance for NDCG@10 on Yelp. Under
this sparsity group, SERec, DiffNet and MPSR leverage social rela-
tions to alleviate the influence of sparsity, and achieve comparable
improvement. The improvement of Ciao is much more significant
than that of Yelp, because Ciao has much denser social relations
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compared with Yelp. Comparing with social recommendations, our
proposed model performs much better than SERec and DifferNet in
most cases but obtain close and even worse performance on (100,
1500). In the densest group (100, 1500), differences between mod-
els are not obvious. NGCF, which lacks social information, sur-
passes SERec in Yelp. This indicates that the role of social
relationships seems to be unimportant because the interactions
are already enough.

4.3. Detailed discussion (RQ2)

4.3.1. Case study
To explore the existence of multiple perspectives in social rela-

tions, we choose the user (user_id = 1) and some of his friends in
the Yelp dataset to conduct a case study. Fig. 6 show the users
behaviors and the similarity between them from different
perspectives.

In Fig. 6(a), each user is represented by a histogram, where the
horizontal axis represents the different attribute categories in the
city (e.g., Ahwatukee, Florence.) and the vertical axis represents
the user’s selection frequency in these cities. After analyzing the
features of these users, we could find the similarities between
the user (user_id = 1) and his different friends are significantly dif-
ferent, which also shows that the trust between friends of users
should be considered different. Fig. 6(b) shows the users’ behaviors
and the similarity between them in category perspective. In this
perspective, users can choose 512 different categories of activities.
Different from Fig. 6(a), the similarities between users are very
low, which shows these friends do not have much trust for the user
(user_id = 1) in this perspective. In general, the user (user_id = 1)
has different similarities with his friends in city and category per-
spective, which shows the social relations of the user (user_id = 1)
are diverse in multiple perspectives.

4.3.2. Component analysis
To investigate the effectiveness of explicit characters in MPSR,

we consider the variant of MPSR without the explicit character,
named implicit aware social recommendation (IASR). IASR aban-
doned this weight distribution scheme in (13), and only comple-
mentary perspective preferences are preserved, compared with
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the base MPSR. It is equivalent to the basic GCN model with social
information. For convenience, one GCN layer is adopted in MPSR
and its variant. In IASR, we also adopt the grid search strategy for
L2 regularization term and dropout ratio. Experimental results
show that 0.1 is the best L2 regularization term coefficient, whereas
0.7 and 0.3 lead on Yelp and Ciao for dropout ratio, respectively.

Table 3 shows that MPSR outperforms IASR on both datasets,
which further demonstrates the necessity and usefulness of intro-
ducing explicit features and multi-perspective modeling for users.
This table shows that the longer the recommendation list, the
greater the improvement after adding explicit features. One possi-
ble explanation might be that the multi-perspective modeling is
better at exploring the associations between users and items,
which leads to better accuracy in a wider range of recommenda-
tions. Furthermore, the increase in Precision is greater compared
with the other two metrics, and the improvement on NDCG is min-
imal. It indicates our model is more concerned about the accuracy
of the recommendation list and pays less attention to the priority
relationship between items.

4.3.3. Effect of different social trust setting
To prove the effectiveness of statistics based social trust setting,

we compare it with the other two settings in our MPSR framework.
With other steps remaining the same, the Original Social MPSR
(OSMPSR) abolishes the weighted social network configuration in
explicit perspectives and replaces it with the original social rela-
tion network. The other Graph Attention MPSR (GATMPSR) adopts
the attention mechanism in [26] to acquire learnable attentive
weights and replaces the eski;i0 in (3) with it. These two variants of
MPSR are experimented and show that the L2 coefficient and drop-
out ratio remain consistent with MPSR to obtain the best results.
The comparisons with MPSR are shown in Fig. 7.

The experimental results show that MPSR outperforms OSMPSR
and GATMPSR in all cases, indicating the effectiveness of statistics
based social trust settings. Meanwhile, GATMPSR performs even
worse than OSMPSR, although the difference gets smaller as N goes
up. The reason might be that attentive weights are not suitable for
the multi-perspective framework, and the increase of parameters
makes it difficult to train the model effectively in limited data.
Besides, the improvement of MPSR over OSMPSR on Ciao is much
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Fig. 6. Diverse user similarity from different perspectives. The decimal next to the
connection line represents the similarity between the users. (a) City perspective. (b)
Category perspective.
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greater than Yelp, while the difference between GATMPSR and
OSMPSR on Ciao is much smaller than Yelp. We attribute this dif-
ference to the social relationships with different sparsity, because
modeling distinct trust might be easier to lose information espe-
cially with sparse social neighbors in Yelp.
4.4. Hyperparameter sensitivity analysis (RQ3)

In our work, L2 regularization and embedding dropout are
employed to prevent overfitting in our model. Fig. 8 displays the
effect of the coefficient of L2 regularization term k and dropout
ratio u respectively.

As visualized in Fig. 8(a) and 8(b), applying L2 regularization
enhances the model performance. Without the L2 regularization
term, given that � ln kð Þ moves to infinity, the performance of
our model degrades dramatically based on the trajectory of the
curve. Furthermore, 0.1 leads to the best performance on both
datasets. Simultaneously, Fig. 8(c) and 8(d) show that embedding
dropout does enhance the model performance compared with no
dropout (u ¼ 1). Setting u as 0.7 leads to the best performance
on Yelp, whereas 0.2 is a better dropout ratio on Ciao. One reason
might be that the ability of embedding representations towards
different datasets should be different because of the different data
characteristics. Therefore, the dropout ratio, which improves the
Table 3
Experimental Comparison between MPSR and IASR under Varing Top-N Values.

Datasets Metrics Models Top5

Yelp Recall IASR 3.7997
MPSR 3.8428
Improv. +1.13%

Precision IASR 3.8491
MPSR 4.0496
Improv. +5.21%

NDCG IASR 5.0796
MPSR 5.2322
Improv. +3.00%

Ciao Recall IASR 3.2912
MPSR 3.2956
Improv. +0.13%

Precision IASR 5.0405
MPSR 5.2536
Improv. +4.23%

NDCG IASR 6.1127
MPSR 6.1630
Improv. +0.82%
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generalization capability of the model, changes with different
datasets.

To explore how the number of GCN layers affects performance,
we vary the model depth in the range of [1, 2, 3]. Experimental
results are shown in Fig. 9. We observe that there is little change
in performance on both datasets as the layer number changes, indi-
cating that our model is not sensitive to the number of layers. One
reason might be that part of social relations with low trust will
reduce noise in social networks, but also filters out some useful
information when stacking more layers. Relying solely on the
behavioral similarity between social relations does not seem to
capture the trust relationship between users fully, which leads to
a lower value of higher-order information.
5. Conclusion and future work

In this paper, we propose a novel multi-perspective social rec-
ommendation framework MPSR, which aims to implement the
hierarchical model for user preferences. Considering the inconsis-
tency of trust from different perspectives, the social network is
re-established by the similarity of users’ behaviors. Leveraging
the information of item attributes, we can explicitly model user
preference frommultiple aspects. We uniformly model the embed-
dings of users and items under a representation framework. The
graph convolutional layer is adopted to aggregate neighbouring
embedding of users for a better user representation. Experimental
Top10 Top50 Top100

6.1975 17.1412 25.1167
6.2843 17.6520 25.9484
+1.40% +2.98% +3.31%
3.3151 1.9690 1.4937
3.5028 2.1068 1.5901
+5.66% +7.00% +6.45%
5.5930 8.6702 10.7288
5.7830 8.9884 11.1415
+3.40% +3.67% +3.85%

5.1931 11.7176 15.7146
5.2940 12.2114 16.3811
+1.94% +4.21% +4.24%
3.9529 1.8998 1.2611
4.3155 2.0808 1.4020
+9.17% +9.53% +11.17%
6.0300 7.6177 8.6037
6.2040 7.8698 9.0154
+2.89% +3.31% +4.79%



Fig. 8. Hyperparameter analysis of Top-10 recommendation on two datasets. (a) Effect of L2 regularization term k on Yelp. (b) Effect of L2 regularization term k on Ciao. (c)
Effect of dropout ratio u on Yelp. (d) Effect of dropout ratio u on Ciao.
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results show that MPSR achieves state-of-the-art results on two
real-world datasets, demonstrating the effectiveness of our model
and each module.

This work presents an initial attempt to exploit user preference
with additional explicit attributes and proposes a new research
aspect for enhancing the interpretability of user representation.
The next research is to explore a more robust social relations mea-
surement mechanism to represent the information of different
social neighbors with inadequate data. Furthermore, some
advanced technology, such as knowledge graph, NLP and reinforce-
ment learning, will be introduced to extract a more reasonable
prior knowledge for higher recommendation accuracy.
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