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a b s t r a c t

With the increasing popularity of edge computing, service providers are more likely to deploy services
at the edge of the network to reduce the latency of service requests. However, the resources offered
by edge servers are extremely limited compared to those in the cloud. Therefore, a challenging issue in
edge computing is how to sufficiently utilize service resources at the edge to satisfy as many service
requests as possible. Existing service request scheduling methods mainly use a single optimization
objective, e.g., resource utilization or running time. In this paper, the issue of service request scheduling
with multiple requests is modeled as a sequential problem, where multiple optimization objectives,
including resource utilization, running time, and waiting time, are involved. A reinforcement learning
model with pointer networks is proposed to construct scheduling policies. Experiments conducted
on three representative real-world datasets show that our proposed approach outperforms several
state-of-the-art methods on the three metrics.

© 2022 Elsevier B.V. All rights reserved.
1. Introduction

With the development of edge computing technologies, more
nd more services are being deployed on edge servers, which can
ignificantly reduce the latency of service requests [1]. However,
hen a resource-constrained edge server receives multiple user
equests simultaneously, these requests will be queued in the
erver due to the limited resources offered by edge servers [2,3].
ask scheduling with multiple service requests thus becomes an
ssential topic in edge computing. The service requests schedul-
ng problem refers to arranging the execution order of requests
nd aims to improve the overall quality of services (QoS) of
ervice requests.
Existing literature on service request scheduling can be roug-

ly divided into meta-heuristic-based and deep learning-based
ethods. Most meta-heuristic-based methods [4–9] consider
ingle-objective optimization problems, in which only resource
tilization or running time are considered, and only a few of
hem focus on multi-objective optimization objectives. Moreover,
eta-heuristic algorithms often require a long-running time for

teration to achieve a better solution, which cannot meet the low
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latency requirements of service requests in edge environments.
Deep learning techniques improve the generalization of models.
Some researchers [10,11] utilize deep learning techniques to
model task scheduling and predict future loading conditions,
which have shown significant improvements to meta-heuristic
algorithms. However, these approaches can hardly achieve ideal
scheduling performance due to the lack of high-quality tags for
model training. On the other hand, many classical operating
system scheduling methods [12,13] can be improved to be ap-
plied to the edge computing environment. For example, some
deep reinforcement approaches [14,15] address the problem by
slicing service request sequences into multiple time slices and
considering the status of edge servers as the model states in
training steps. However, the serialization characteristics of service
requests, which are conducive to preventing the server from
scheduling across time slices when processing requests, have
been rarely explored.

Considering this limitation, this paper models service request
scheduling in edge environments as a sequence-to-sequence
(Seq2Seq) task. However, traditional Seq2Seq models are less
scalable in solving the problem where the output sequence length
depends on the input sequence length since its output relies
heavily on the dictionary length, which is fixed and cannot
handle variable-length sequences. We adopt the pointer networks
proposed by Vinyals et al. [16], which can output a probability
distribution concerning the input sequence, to handle the inputs
with variable lengths. Pointer networks get prediction results
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y outputting a probability distribution named the pointer. In
ther words, the traditional Seq2Seq model outputs a probability
istribution for each output task sequence, while the pointer
etworks can output a probability distribution for each input task
equence.
In this paper, we propose a deep reinforcement learning model

ased on pointer networks to solve the multi-objective optimiza-
ion problem of service request scheduling.

• Considering that a single objective cannot address the need
for service request scheduling in edge computing, this paper
proposes a novel multi-objective optimization strategy by
integrating resource utilization, running time, and waiting
time.
• Since the input sequence of the service request scheduling

task is variable, and the number of user service requests
allocated to each server is uncertain, a deep reinforcement
learning model based on pointer networks (RLPNet) is pro-
posed to schedule service requests.
• We performed extensive experiments on three representa-

tive real-world datasets to demonstrate the effectiveness
of the proposed method. Experimental results show that
our proposed approach outperforms several state-of-the-art
methods on all three metrics.

The remainder of this paper is organized as follows. Section 2
iscusses the related work. Section 3 presents the scenario and
roblem description. Section 4 elaborates on the proposed RLPNet
odel in detail. Section 5 discusses the experimental results on

hree real datasets. Section 6 concludes this study.

. Related work

In this section, we briefly review recent works that are directly
elated to this paper and highlight the differences.

.1. Task scheduling methods

Service request scheduling or task scheduling in edge comput-
ng environments mainly adopts meta-heuristic and deep learn-
ng algorithms.

.1.1. Meta-heuristic scheduling algorithms
Meta-heuristic algorithms, [17–19], can provide an optimal

olution for task scheduling in the edge computing environment.
ong et al. [5] designed a multi-service task computing offload-
ng algorithm (MTCOA) to achieve an optimal solution for the
omputational offloading of multi-service tasks. But the algorithm
nly focuses on the computational cost and resource utilization.
o address the problems of low resource utilization, long task
rocessing delay, and unbalanced system load in edge computing,
ang et al. [6] proposed a simulated annealing fusion algorithm
ased on task processing delay. In [7], the researchers modeled
he dependency relationships between application tasks as di-
ected acyclic graphs for mobile edge computing environments.
n online approach is used to solve the priority-based application
ssignments and scheduling problems for the timeout rate of
asks. Sun et al. [8] proposed a series of task assignment poli-
ies for the workflow scheduling problem in edge environments.
hese policies were combined with a greedy policy to construct
n improved greedy search algorithm. However, this approach
nly focuses on optimizing the completion time of workflows.
hao et al. [9] applied the parallel-batch processing machines (P-
PM) task processing model to edge computing scenarios and
roposed an offline task scheduling algorithm based on the ant
olony algorithm. These approaches have further accelerated the
evelopment of task scheduling research. However, they only
2

consider the optimization problem with a single objective and ne-
glect multiple optimization objectives. Moreover, meta-heuristic
algorithms often require a longer running time for iteration to
arrive at a better solution, which cannot meet the low latency
requirements of service requests in edge environments.

2.1.2. Deep learning-based scheduling algorithm
The development of deep learning provides a new perspec-

tive on resource scheduling. In [10], the authors proposed a
residual recurrent neural network based on the Asynchronous-
Advantage-Actor-Critic(A3C) approach for efficient resource allo-
cation in IoT. Cai et al. [11] proposed a distributed convolutional
neural network model to achieve efficient interactions between
edge network devices. Based on [11], Zou et al. [14] applied the
Markov decision process and used the A3C deep reinforcement
learning to further optimize the model. Zheng et al. [15] uti-
lized the Deep-Q-Network (DQN) algorithm to address the com-
plexity and high-dimensional problem of workload scheduling.
Deep learning-based scheduling algorithms have shown signifi-
cant performance improvements over meta-heuristic algorithms.
The service request scheduling problem in edge environments
can be modeled as a sequential problem, which was ignored by
existing methods.

2.2. Multi-objective optimization

Multi-objective optimization problems have been widely stud-
ied in Web services and reinforcement learning research. For
example, the issue of QoS-aware Web service composition and
selection is sometimes modeled as a multi-objective optimiza-
tion problem. Also, many previous works [20,21] have studied
multi-objective reinforcement learning, roughly divided into two
categories: single-policy and multiple-policy methods.

2.2.1. Single-policy methods
A multi-objective Q-network is proposed in [22] to describe

the dynamic change of the objective weight under the multi-
objective optimization problem by combining multiple objectives
into a single objective through linear weighting. One optimization
objective is defined as the main objective, and others are defined
as constraints, which are transformed into single-objective op-
timization problems. For example, an improved multi-objective
reinforcement learning (MORL) algorithm is proposed in [23],
which uses the championship algorithm to select an essential
objective among multiple optimization objectives as a preference
to solve the task offloading problem under edge computing.

2.2.2. Multiple-policy methods
The Pareto optimal solution set is obtained by designing an

algorithm to solve the multi-objective optimization problem. For
example, McMahan et al. [24] proposed the first federated learn-
ing (FL) algorithm known as ‘‘Federated Averaging’’ (FedAvg),
which is a synchronous update scheme that proceeds in several
rounds. At each round, the central server sends the current global
model to a subset of users, using its respective local data to
update the received model. Upon receiving the updated local
models from users, the server performs aggregation, such as
simple averaging, to update the global model. However, FedAvg
relies on a coordinate-wise averaging of local models to update
the global model. According to Wang et al. [25], in neural network
(NN) based models, such coordinate-wise averaging might lead
to sub-optimal results due to the permutation invariance of NN
parameters. Based on [24], a new algorithm FedMGDA is pro-
posed in [26] to improve the fairness and robustness of federated
learning. This algorithm aims at multi-objective optimization,
guaranteed to converge to Pareto stationary solutions.



Y. Zhao, B. Li, J. Wang et al. Knowledge-Based Systems 258 (2022) 109983

s
w
o
o
r
T
s
i
s
c
o
m
t
T
m

3

i

3

p
s
v
a
s
t
n
o
m
t
s
a
t
s
r

Fig. 1. Typical edge computing scenario.
To summarize, existing work on the problem of scheduling
ervice requests in edge computing environments remains some-
hat limited. These approaches tend to consider only a single
ptimization objective and ignore the impact of other metrics
n task scheduling. This paper combines resource utilization,
unning time, and waiting time in service request scheduling.
he multi-objective optimization strategy is used to model the
ervice request scheduling problem. A deep reinforcement learn-
ng model based on pointer networks is adopted to model the
cheduling sequence, which improves the service quality in edge
omputing. In particular, for selecting the solution for the multi-
bjective optimization problem, we consider that the training
ethod of deep reinforcement learning requires a reward func-

ion, and a Pareto solution set cannot describe the function.
herefore, this paper uses a linear weighting approach to combine
ultiple objectives into a single objective.

. Scenario and problem description

In this section, we present a typical scenario of edge comput-
ng request scheduling and formalize the problem formulation.

.1. Scenario description

We employ the Internet of Vehicles (IoV), a typical kind of ap-
lication in edge computing [22], to illustrate the service request
cheduling problem. Besides realizing communications among
ehicles and surrounding things, IoV can provide various value-
dded services for vehicles, such as finding free parking spaces,
haring road conditions, and diverse entertainment services. With
he popularization of automobiles, the number of vehicles con-
ected to the network continues to increase, and a large amount
f communication data is generated. Traditional cloud computing
ethods cannot meet the low-latency requirements of IoV. In

his paper, edge computing is integrated with IoV, using onboard
ensors to sense the surrounding environment, processing and
nalyzing the collected data through edge servers deployed on
he roadside unit close to the vehicle, and broadcasting it to other
urrounding vehicles. Fig. 1 shows a typical scenario of service
equest scheduling in edge computing.
3

However, complex computing tasks are placed in the cloud
by task offloading during driving operation, and the data trans-
fer latency between remote cloud servers and terminals can
significantly increase the response latency of the end terminal.
Therefore, it is a very effective and common solution to deploy
these high resource-consuming services in the edge environment
closer to the end-users and to resort to the ability of edge com-
puting to solve the above problems [27]. Furthermore, effective
service request scheduling becomes an urgent issue in this area
when a large number of requests are coming simultaneously.

3.2. Problem definition

3.2.1. Edge server
We define the edge server set S:

S = {s1, s2, . . . , sm} , (1)

where a single server sj is represented by a four-dimensional
vector as:

sj =
(
cj, oj, bj,mj

)
. (2)

Each dimension of the vector represents the CPU, I/O, bandwidth,
and memory capacity of edge server sj, respectively.

3.2.2. Service request
Assume that at a certain moment, N service requests are

waiting to be executed in a certain edge server. We define the
service request set Q as:

Q = {q1, q2, . . . , qN} . (3)

Each request qi is represented by a seven-dimensional vector as:

qi = (ci, oi, bi,mi, Ti, ti, πi) , (4)

where the first four-dimensional vectors (i.e., ci, oi, bi,mi) rep-
resent the CPU, I/O, bandwidth, and memory required to execute
request qi, respectively. Ti represents the timestamp that request
qi arrives at the edge server. ti represents the time required for
the execution of qi. πi represents the set of all edge servers that
can receive the service request, which is calculated according
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o the coverage relationship between edge servers and service
equests. πi is expressed as:

i =
{
sj | rj ≥

pi − gj

2 , sj ∈ S

}
, (5)

where pi represents the coordinates of service request qi, gj rep-
esents the coordinates of edge server sj, and rj represents the
overage radius of edge server sj.

.3. Optimization objective

The optimization objectives of this paper are resource utiliza-
ion, runtime and average waiting time. And the three objec-
ives are combined into one objective using a linear weighting
pproach.

.3.1. Resource utilization
Resource utilization exhibits the average utilization efficiency

f an edge server in processing service requests. (cj, oj, bj,mj)
denote the CPU, I/O, bandwidth and memory utilization of the jth
edge server in processing the entire input sequence, respectively.
The optimization objective of resource utilization is represented
by reward1.

reward1 =
1
m

m∑
j=1

max(cj, oj, bj,mj). (6)

A higher reward1 value indicates a higher resource utilization of
the edge server j.

3.3.2. Running time
The average running time refers to the average time required

for all edge servers to execute service requests. Without consid-
ering the request timeout, the set of edge servers S is known.
According to an input and output pair (Q, CQ), the pseudo-code of
the algorithm to calculate the running time is shown in Algorithm
1.

The returned result Tmap is the edge server’s running time set
corresponding to (Q, CQ). The optimization objective of running
time is expressed as:

reward2 =
1
m

m∑
j=1

Tmapj , (7)

where Tmapj represents the running time of the jth edge server.
The optimization goal is to minimize the value of reward2.

3.3.3. Waiting time
The waiting time Wi of service request i represents the time

between the arrival of a service request at an edge server and
the completion of the request. The optimization objective of the
waiting time is defined by reward3.

reward3 =
1
m

m∑
j=1

(
1
Ni

Ni∑
i=1

Wi), (8)

where Ni represents the total number of service requests in edge
server j.

3.3.4. Normalization
Classical methods for multi-objective optimization problems

include weighted sum method (also called weighted linear com-
bination) [28], interactive methods [29], ϵ-constraint method
[29], and Pareto-dominated methods [30]. Among them, the in-
teractive approaches are less applicable, and it is generally used
in specific scenarios and is not suitable for resource scheduling
problems in edge environments. ϵ-constraint method converts
4

Algorithm 1: Running time calculation
Input: m (the number of servers), n (the number of

service requests), Q (model input)
Output: C: model output

1 map← []·m /* Record the service requests running in
the server */

2 Tmap ← [0]·m /* Record the time spent by each server */
3 for i=0, i ≤ n− 1 do
4 idx← Ci
5 q← Q[idx]
6 /* Randomly select server sj according to feature πi of

qi */
7 if sj[cpu] < q[cpu] then
8 while MIN(t)>0 do
9 /* t[j] is the collection of time required for the

execution of all service requests in map[j] */
10 Tmap[j] ← Tmap[j] + 1
11 t[j] ← t[j] − 1
12 end
13 while MIN(t)≤0 do
14 k← ARGMIN(t)
15 sj ← sj+map[k]
16 map[j].REMOVE(k)
17 end
18 else
19 sj ← sj-[q[cpu]]
20 map[j].ADD(q) /* Add q into map */
21 end
22 end
23 Tmap[j] ← Tmap[j] +MAX(t[j])
24 return Tmap

the original multi-objective optimization problem into a single-
objective optimization problem by converting the objectives into
a form of constraints, after which the problem can be solved by
the single-objective optimization method. However, considering
the specificity of our scenario, the existence of interconnections
among the objectives makes it difficult to convert into a single
constraint. In addition, Pareto is the classical model in multi-
objective optimization, and it is based entirely on the original
data, without transforming the problem into a single-objective
problem. However, the optimal solution of the Pareto model is
a set, which contains more than one optimal solution, so it is
difficult to exhaust and find all the Pareto optimal solutions.

The weighted linear combination, which has the advantage
of being simple to implement, uses only the scaled values to
represent the original objective and is relatively easy to solve.
The weighted linear combination is applicable to the case where
multiple evaluation indicators are independent of each other.
Therefore, we use here a weighted linear combination (WLC)
method to solve the resource scheduling problem in the edge
environment. The key to achieving better results is selecting ap-
propriate weights for each optimization objective. In response to
the problems raised in this paper, we believe that the above three
optimization objectives have the same importance. Based on this,
we choose to normalize these three optimization objectives so
that the change of each optimization objective will identically
affect the model. Enumeration experiments in Section 5.2 will
discuss the settings of weights. The final optimization objective
is defined as a reward:

reward = α ∗ reward + β ∗ reward + γ ∗ reward . (9)
1 2 3
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Fig. 2. Overview of the RLPNet framework.
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. Method

.1. Overview of RLPNet

The overall process of the RLPNet model consists of three main
arts, as shown in Fig. 2. The first part is data preprocessing,
hich transforms the input data from different datasets into the
anonical format defined in the paper.
Followed by the Actions and Rewards Generation by Pointer

etworks module of the model, the formatted data is inputted to
n Actor-network and a Critic-network, respectively. The Actor-
etwork is essentially a pointer network. In the Actor-network,
he input data is encoded into an intermediate vector by an
ncoder composed of long short-term memory (LSTM) as the
nput of the decoder. After performing the attention mechanism
f the pointer network, the output becomes a probability dis-
ribution, and the final output sequence is decided according to
he probability distribution. Moreover, the model calculates the
eward value from this output sequence. For the Critic-network,
t will make an encode operation similar to the one in the Actor-
etwork on the input data and then output a reward prediction
alue after DNN.
Finally, we discuss the reinforcement learning training process

f the model. For Actor-network, it takes the predicted reward of
he Critic-network as the baseline and uses the policy gradient
escent for model training. For the Critic-network, it takes the
ifference between its predicted reward and the reward output of
he Actor-network as the optimization objective. It uses stochastic
radient descent for model training.

.2. Data preprocessing

.2.1. Input
Based on the πi characteristics of service request qi, the edge

server closest to qi in the set of πi is selected in priority, and
the service request is sent to this edge server for processing by
combining the coordinate information of service requests and
edge servers.
5

4.2.2. Output
The result obtained through the model scheduling strategy is

displayed with the subscript sequence of the service request as
the output. The output result represents the execution sequence
of the edge server set S for the service request set Q. It should be
noted that when the remaining resources of the edge server are
sufficient, multiple service requests can be run simultaneously;
that is, the service requests are executed in parallel in the server.
The output CQ is defined as:

CQ
= {C1, C2, . . . , Cn} . (10)

The model scheduling strategy is executed independently in the
edge server without interference in a multi-server environment.
Each server has its output CQ. CQ represents the sequence of
solutions associated with the input request set Q, and its length is
he same as the length of Q. Each element in CQ represents the
ubscript of a service request, which is similar to the traveling
alesman problem (TSP), where the city subscript sequence is the
utput result.

.3. Actions and rewards generation by pointer networks

Since both input and output can be serialized in this scenario,
he Seq2Seq model can be used to solve this type of problem
ffectively. Similar to the work [31], two long short-term memory
etworks (LSTM) are used as the encoding and decoding stages
f the sequence to solve the language-translation problem. There
re many options for the Seq2Seq model. The disadvantage of the
raditional Seq2Seq model is that its output sequence length de-
ends on the dictionary length defined in advance. For example,
n solving the TSP problem, the city ids city1, city2, . . . , cityn are
sed as the dictionary, and the method will fail when the number
f input cities is greater than n. Therefore, the traditional Seq2Seq
odel is less scalable in solving the problem where the output
equence length depends on the input sequence length.
In this paper, we employ the pointer network model, which

mproves the attention mechanism of the traditional Seq2Seq
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Fig. 3. Overview of the pointer network.
model so that the output of the pointer network can effectively
point to a specific position of the input sequence. In addition, it
differs from other Seq2Seq models in that the standard Seq2Seq
output is a probability distribution for the dictionary. In contrast,
the pointer network output is a probability distribution for the
input sequence. Thus, the output sequence no longer depends on
the dictionary but is related to the input sequence.

4.3.1. The structure of Pointer network
The Pointer network shown in Fig. 3 consists of two recurrent

neural networks (RNN), that is an encoder and a decoder. Each
recurrent neural network comprises multiple LSTM units.

As shown in Fig. 3, the input is serialized and read by the en-
coder, and one service request is read at each step. qi indicates the
i−th service request, and the encoder acts as an RNN to transform
the input sequence into an intermediate vector expression. The
decoder uses the attention mechanism in each step to select the
service request with the largest weight in the input sequence, and
when a service request is selected, it is used as the input to the
decoder in the next step.

4.3.2. Attention mechanism of pointer network
For the attention mechanism used in the traditional Seq2Seq

model, the principle is to add the hidden layer output of the
encoder according to a certain weight and then splice it into
the hidden layer output of the decoder. In this way, it plays
the so-called ‘‘soft alignment’’ role, thereby improving the entire
model’s prediction accuracy. The traditional attention mechanism
is calculated as follows:

ui
j = vT tanh

(
W1ej +W2di

)
j ∈ (1, . . . , n), (11)

i
j = softmax

(
ui) j ∈ (1, . . . , n), (12)

′

i =

n∑
j=1

aijej. (13)

Parameters vT , W1 and W2 in Eq. (11) can be trained. aij repre-
sents the weight assigned to the input sequence by the decoder

in the ith step. Eq. (13) calculates the weighted summation using

6

the weight aij and output ej of the hidden layer in the encoder
at the jth step, and the obtained d′i is added to output di of the
hidden layer in the decoder at the ith step. Finally, we can obtain
the output of the model.

It can be seen from Eq. (12) that aij itself is the weight for
the input sequence. Therefore, the pointer network simplifies the
traditional attention mechanism and regards aij as a pointer to the
input sequence, and the output of the decoder at each step selects
the element according to the weight sequence. The attention
mechanism of the pointer network is defined as follows.

ui
j = vT tanh

(
W1ej +W2di

)
j ∈ (1, . . . , n), (14)

p (Ci | C1, . . . , Ci−1,Q) = softmax
(
ui) . (15)

4.4. Reinforcement learning module

We define the service request scheduling problem in the edge
computing environment as a multi-objective optimization prob-
lem. Two ways, including deep learning and reinforcement learn-
ing, can be used to train the model. The training effect of deep
learning depends on the label quality of the dataset, but the cur-
rent research in this field lacks labeled datasets. At the same time,
pure reinforcement learning usually requires a very large state–
action space. Therefore, this paper proposes a deep reinforcement
learning model based on pointer networks to solve the multi-
objective optimization problem of service request scheduling.

4.4.1. Strategy gradient
This paper uses the policy gradient-based deep reinforcement

learning method proposed in [32] to optimize the parameters of
the pointer network. We define the parameters in the pointer
network as θ and use reward(CQ

|Q) to denote the value of the
reward function when the policy CQ is adopted for a known set
Q of service requests.

The expectations of reward(CQ
|Q) are defined as follows:

J(θ | Q) = EC∼pθ (.|Q) reward
(
CQ
| Q

)
, (16)

where J (θ |Q) represents the optimization objective of the pointer
network, i.e., minimizing the expectation of rewards. The exe-
cution process of the strategy gradient uses the reinforcement
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learning algorithm proposed in [33] to optimize θ :

∇θ J(θ | Q)
= EC∼pθ (.|Q)

[
( reward (C | Q)− b(Q))∇θ logpθ (C | Q )

]
,

(17)

here b(Q) is a baseline function irrelevant to the adopted strat-
gy CQ. Its function is to reduce the variance of the gradient by
electing the exponential moving average (EMA) of the rewards
btained during the training of the pointer network.
Considering that the actual training of the pointer network

s to combine multiple input sequences into a batch for parallel
raining, the batch size of the training data is defined as B,
nd Eq. (17) can be approximately equal to:

θ J(θ )

≈
1
B

B∑
i=1

(
reward

(
CQ
i | Qi

)
− b (Qi)

)
∇θ logpθ

(
CQ
i | Qi

)
.

(18)

.4.2. Actor-Critic model
We choose the Actor–Critic model to train the pointer net-

ork. The model is divided into two main parts: an Actor-
etwork and a Critic-network.

Algorithm 2: Training process
Input: Q (the training sample of each round), N (the

number of training rounds), B (the batch size of
each round input)

Output: RLPNet model parameters
1 Initialize Actor-network parameters θ and Critic-network

parameters θv

2 for round=1, round≤ N do
3 idx← Ci
4 Qi ← SAMPLE(Q) for i ∈ {1, . . . , B}
5 CQ

i ← SAMPLE(pθ (. | Q)) for i ∈ {1, . . . , B}
6 bi ← bθv (Qi) for i ∈ {1, . . . , B}
7 jθ ←

1
B

∑B
i=1

(
reward

(
CQ
i | Qi

)
− bi

)
∇θ logpθ

(
CQ
i | Qi

)
8 lθv ←

1
B

∑B
i=1 ∥bθv (Qi)− reward

(
CQ
i | Qi

)
∥
2
2

9 θ ← ADAM (θ, jθ )
10 θv ← ADAM

(
θv,∇θv , lθv

)
11 end
7

In the scenario of this paper, the Actor-network is a basic
pointer network (see Fig. 4). The Critic-network shown in Fig. 5
judges the behavior scores based on the behaviors generated
by the Actor-network and guides the Actor-network to update
network parameters. This paper designs the Critic-network as
an RNN and deep neural network (DNN). RNN is similar to the
encoder of the pointer network structure. The parameter of the
Critic-network is represented as θv . The network predicts the
reward value of the adopted strategy CQ according to the final
tate of the Actor-network when the set of input service requests
is known. The Critic-network takes the mean square error

etween the predicted reward and the reward decided by the
ctor-network of strategy CQ as the optimization objective and
ses stochastic gradient descent for model training.

(θv) =
1
B

B∑
i=1

bθv (Qi)− reward
(
CQ
i | Qi

)2
2 , (19)

where bθv (Qi) is the reward value predicted by the Critic-
network, and reward

(
CQ
i |Qi

)
is the reward decided by the Actor-

network. The pseudo-code of the training process is shown in
Algorithm 2.

5. Experimental evaluation

In this section, we conducted a series of experiments from
the perspective of service providers using a real-world trajectory
dataset. Three groups of experiments were designed to answer
the three research questions:

• RQ1: How do different reward weights affect multi-
objective optimization results?
• RQ2: Can the proposed RLPNet outperform existing state-of-

the-art approaches under different data scales?
• RQ3: Can RLPNet perform better than metaheuristic algo-

rithms?

5.1. Datasets

We experimented with three publicly accessible datasets.
EUA-dataset [27]: The EUA-dataset contains geographic lo-

cations of 125 base stations in the Melbourne CBD and 816
mobile users around these base stations. In this scenario, we
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Fig. 5. Outline of the Critic-network, which can generate predicted reward.
egard base stations and mobile users as edge servers and service
equests. Since the EUA-dataset contains only edge server and
ser information, the experimental data is constructed using the
ctual edge server and user information together with simulated
ervice request data. For each feature (ci, oi, bi,mi, Ti, ti, πi) of the
service requests defined in Eq. (4), we randomly generate the
remaining features except for πi, which is counted according to
the coverage relationship between the selected edge server and
the service request (Eq. (5)). For the first four dimensions of the
service request regarding resource occupation (ci, oi, bi,mi), we
assign them to random numbers between 1 and 10; for the total
running time Ti, we assign it to random numbers between 0 and
4; and for the running time ti, we set it to random numbers
between 1 and 20.

Google Cluster Trace [34]: This dataset comes from a real
edge-cloud collaboration system. It is originally designed for
cloud environments, but has now been extended to cover data
in edge environments. The dataset records the lifecycle of tasks
in servers, including creation, waiting, interruption, and end, as
well as the characteristics of tasks, such as resource occupancy
(including CPU, RAM, and Disk), and the timestamp when the task
arrives at the server.

Alibaba Cluster Trace [35]: This dataset records the informa-
tion of multiple edge servers, such as the number of CPU cores,
memory size, and disk size. The dynamic information of servers,
e.g., the resource utilization rate at a certain time, is recorded in
the form of timestamps.

For the Google cluster trace and the Alibaba cluster trace
datasets, request data are derived from real recorded values. In
each experiment, we randomly select 400,000 records from each
dataset.

5.2. Parameter determination

In the RLPNet model, three parameters need to be deter-
mined. It can be seen that the values of hyperparameters α, β

and γ will directly affect the performance of the model, so it
is necessary to explore the influence of different values on the
model. Given that the resource utilization takes values between
0 and 1, and the running time and waiting time are positively
related to the number of tasks n. We use different penalties to
regularize the constraints on resource utilization, running time
and waiting time, respectively. To offset the impact of different
task numbers on the objective function, we take values of 1,1/n,
1/n2 for β and γ . In addition, considering that resource utiliza-
tion is not necessarily related to the number of tasks n, a grid
search-like approach is used to select the most suitable parameter
for parameter α. We insert different values of parameter α ∈

[0.1, 0.2, 0.4, 0.8, 1.0, 2.0, 4.0, 8.0, 10.0] to observe the impact
8

Table 1
Regularization parameter discussion in the proposed RLPNet method.
α β γ Resource

utilization
Running
time (ms)

Waiting
time (ms)

0.1 1/n2 1/n2 0.861 351 345
0.1 1/n2 1/n 0.833 362 314
0.1 1/n2 1 0.820 367 320
0.1 1/n 1/n2 0.917 330 422
0.1 1/n 1/n 0.848 355 327
0.1 1/n 1 0.825 365 313
0.1 1 1/n2 0.913 331 420
0.1 1 1/n 0.888 340 358
0.1 1 1 0.845 356 327

1 1/n2 1/n2 0.918 329 412
1 1/n2 1/n 0.841 358 331
1 1/n2 1 0.826 365 308
1 1/n 1/n2 0.918 330 413
1 1/n 1/n 0.851 354 331
1 1/n 1 0.824 365 313
1 1 1/n2 0.915 331 412
1 1 1/n 0.916 330 415
1 1 1 0.847 353 365

10 1/n2 1/n2 0.919 329 423
10 1/n2 1/n 0.883 334 353
10 1/n2 1 0.823 366 308
10 1/n 1/n2 0.918 329 413
10 1/n 1/n 0.850 342 348
10 1/n 1 0.835 361 310
10 1 1/n2 0.919 329 413
10 1 1/n 0.918 329 419
10 1 1 0.845 356 325

of different values of parameter α on resource utilization, run-
ning time, and waiting time.For other parameters in the training
process, we set the batch size to 128, and each batch selects 100
tasks as input sequences, with a total of 100 epochs.

To select the best values for the parameters, several algo-
rithms, such as the L-curve method [36], generalized cross-
validation (GCV) [37], and discrepancy principle [38], have been
proposed. In this paper, the GCV algorithm is leveraged to val-
idate the parameter values in a large range and determine the
best ones automatically. In other words, the three regularization
parameters are determined heuristically. More parameter details
will be discussed in the next section.

5.3. Reward weights analysis (RQ1)

In this experiment, we transformed the multi-objective opti-
mization problem into a single-objective optimization one
through the WLC model. We carried out 27 groups of experiments
by using the enumeration method, where each group of experi-
ments was run ten times and averaged. Thus the possible values
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Fig. 6. Influence of parameter α on resource utilization, running time, and waiting time.
of α, β and γ were fully considered. α is the weight of resource
utilization, which is a value between [0, 1]. Therefore, we choose
one option from the range of 0.1, 1 and 10. The running time is
within milliseconds, so the value of its weight β is in the range
of [1/n2, 1/n, 1]. The unit of the average waiting time is also the
millisecond, so the value of its weight γ is also in the same range.

To reveal the effects of different weight values on multi-
objective optimization results, we conducted some comparative
experiments and used the enumeration method to test them
separately. Experimental results are demonstrated in Table 1,
which shows the impact of parameters α, β and γ on the resource
utilization, running time, and waiting time.

Firstly, a Pareto-optimal set is extracted from Table 1 accord-
ing to the principle of mutual non-dominance involved in [19].
In determining the final solution, a high priority will be given
to the elements that perform better under the more important
optimization objectives, corresponding to the elements in Pareto-
optimal front. The elements at the edge of the Pareto-optimal
front will be selected in preference. Moreover, because the three
metrics,including resource utilization, running time, and waiting
time are equally important in the edge computing environment,
we select the relatively centered element in the Pareto-optimal
front, i.e., the combination of (1, 1/n, 1/n) as the final weight
combination. Experimental results in Table 1 also show that the
model trained with this combination can effectively optimize
the three metrics, and the results are better than those of other
baseline methods.

To analyze the effect of different values of parameter α on
resource utilization, running time, and waiting time, we further
set different values of α, α ∈ [0.1, 0.2, 0.4, 0.8, 1.0, 2.0, 4.0, 8.0,
10.0]. The experimental results are presented in Fig. 6, which
demonstrate that different values of α have little effect on re-
source utilization. Furthermore, we found that when α is set as
1.0, the model performance achieves good results on resource
utilization, running time, and waiting time. Considering that re-
source utilization, running time, and waiting time are equally
important, we set α as 1.0.

5.4. Performance comparison (RQ2)

The following four approaches are selected for comparison
with our proposed RLPNet. The multi-level feedback queue
scheduling algorithm is a typical CPU processor scheduling algo-
rithm adopted by the UNIX operating system. It has the advantage
of expediting the response to high-priority jobs and the com-
pletion of short jobs (processes). Since the problem discussed
9

in this paper is also essentially a task scheduling problem, we
used two multi-level feedback queueing scheduling algorithms,
FCFS and HRRN, for comparison. Two latest machine learning-
based approaches, OnPQ and OnDisc, were also leveraged for
comparison.

• FCFS [39] (First-Come, First-Served): Service requests are
executed according to the order they arrive at the edge
server. That is, service requests that come first are executed
first, and those that arrive later are executed later.
• HRRN [40] (High Response Ratio Next): Considering the

tasks with longer waiting time and tasks with shorter run-
ning time, the higher the response ratio, the first it will be
executed.
• OnPQ [34]: The task scheduling process is modeled as a

Markov decision process. The Q-Learning algorithm is used
to reduce energy consumption and average waiting time of
service requests.
• OnDisc [41]: A weighted response time represents its la-

tency sensitivity. The weighted response time is divided by
the time required to run, which is defined as the residual
density of the service request. During the scheduling pro-
cess, the principle of highest residual density first (HRDF) is
followed.

The numbers of service requests (n) and edge servers (m) are
two variables in experimental design. According to the experi-
mental results, it can be seen that whether n or m is changed,
RLPNet performs better than other comparison algorithms in
terms of resource utilization, running time, and waiting time.
Because OnDisc aims to minimize weighted response time, the
performance on the latency is often better than other algorithms
except for RLPNet. However, the performance of OnDisc on other
objectives is relatively not outstanding. Since OnPQ needs to
combine multiple service requests into one batch and then hand
it over to the edge server for execution, the next batch is al-
lowed to be executed only after one batch is wholly executed.
Since the execution time required by different service requests
is different, an execution strategy will result in more idle time
inside an edge server, leading to the unsatisfactory performance
of OnPQ on each optimization objective. For HRRN and FCFS, two
traditional job scheduling algorithms within operating systems,
their performance is quite satisfactory and within the expected
range. HRRN is slightly better than FCFS in terms of waiting time
due to the consideration of the response ratio.
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Fig. 7. Impact analysis of the service request number on (a) EUA-Dataset, (b) Google Cluster Trace Dataset and (c) Alibaba Cluster Trace Dataset.
s

5.4.1. Impact analysis of the service request number
The first group of experiments fixed the number of edge

ervers (m) as five and set four intervals according to the ser-
ice request quantity: (300∼350), (350∼400), (400∼450), and
450∼500). In each interval, an experiment was conducted for ev-
ry five additional service requests, and the experimental obser-
ations were averaged as the result of this interval. We tested the
erformance of different algorithms under various optimization
bjectives over three datasets. Experimental results are shown in
ig. 7. With the increase in service request quantity, the proposed
LPNet achieves almost the best results in all three evaluation
etrics over three datasets.
Resource utilization analysis: We can see that the server

esource utilization of these methods is getting higher and higher
s the number of service requests increases. Our proposed RLPNet
chieves the highest resource utilization with 88.5% on EUA-
ataset, 85.6% on Google Cluster Trace, and 91% on Alibaba Clus-
er Trace. Among them, it is the best performer on the Alibaba
luster Trace with more than 90%, which is 12.5% higher than
nDisc, the best comparison method.
Running time analysis: The running time of several methods

hows an increasing trend as the number of service requests
ncreases, indicating that the more the service requests, the more
ime it takes for the server to process. Our proposed RLPNet
akes the shortest time on average over all three datasets. Par-
icularly, RLPNet performs the best on the Alibaba Cluster Trace
nd improves nearly 10% over the comparison methods.
Waiting time analysis: The average waiting time for service

requests is getting longer as the number of service requests
increases. The reason is that the resources of the edge server
10
are limited, and the probability of thread blocking increases as
the number of service requests increases. The proposed RLPNet
spends the least average waiting time on three datasets. Notably,
RLPNet performs the best on EUA-Dataset and Alibaba Cluster
Trace. However, the advantage is not apparent on the Google
Cluster Trace, probably because the server configuration used for
the Google Cluster Trace is higher than the environment in which
the other two datasets are running.

By continuously and dynamically reordering the service re-
quests, RLPNet can reorder the tasks executed at each moment,
improving the server’s efficiency and reducing the cost. This
result supports the conjecture that RLPNet can solve the schedul-
ing problem through pointer networks and reinforcement learn-
ing. Furthermore, as the number of service requests increases,
the performance of RLPNet performs better than other methods,
making the average waiting time for service requests shorter.

5.4.2. Impact analysis of the number of edge servers
The second group of experiments controls the number of

service requests (n) as 500 and changes the number of edge
ervers m= 5, 7, 9, 11, 13, 15. We tested the performance of
different algorithms under various optimization objectives. The
experimental results are shown in Fig. 8. As the number of edge
servers increases, the proposed RLPNet can consistently achieve
optimal results in all three evaluation metrics over three different
datasets.

Resource utilization analysis: When the number of service
requests is fixed, the resource utilization of the edge servers
gradually decreases as the number of edge servers increases. Even
so, our proposed RLPNet method still has the highest resource
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Fig. 8. The impact of different number of edge servers on (a) EUA-Dataset, (b) Google Cluster Trace Dataset and (c) Alibaba Cluster Trace Dataset.
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tilization on all three different datasets. For example, when the
umber of edge servers is only five, the resource utilization of
LPNet is around 90%, while the best of the other methods is
7.5%. When the number of edge servers increases to 15, the
esource utilization of RLPNet remains at about 80%.

Running time analysis: When the number of service requests
s fixed, the running time of service requests keeps decreasing
s the number of edge servers increases, as shown in Fig. 8.
s the number of servers increases, RLPNet outperforms other
ethods on all three datasets. For example, when the number of
dge servers is five, the average waiting time of RLPNet is about
00 ms. RLPNet takes more than 400 ms on the EUA-Dataset
ataset, which is slightly inferior to the other two datasets. The
ossible reason is that the data volume of the EUA-Dataset is
maller, and RLPNet is more suitable to handle the large-scale
ervice request scheduling problem.
Waiting time analysis: When the number of service requests

is fixed, the average waiting time for service requests decreases
as the number of edge servers increases. As the number of servers
increases, RLPNet performs the best on both EUA-Dataset and
Alibaba Cluster Trace. When the number of edge servers is five,
the average waiting time of RLPNet is 400 ms. When the number
of servers is expanded to 15, the average waiting time of RLPNet
decreases significantly.

To summarize, when the number of servers increases, ser-
vice requests can be more efficiently assigned to edge servers
that are more suitable for execution, which allows the aver-
age waiting time to be significantly reduced. The performance
improvement of RLPNet is more apparent when the number
of servers increases, indicating that the RLPNet approach can
adapt to large-scale service request scenarios. Also, when the
 a

11
resources of edge servers are limited, RLPNet can execute tasks
more efficiently.

5.5. Comparison with Meta-heuristic algorithms (RQ3)

As mentioned above, the service request scheduling problem
in edge computing environments is a combinatorial optimization
problem with multiple constraints and variables. Meta-heuristic
algorithms are widely used to solve this type of combinatorial
optimization problem. To verify the effectiveness of our method,
we select two classical meta-heuristic algorithms for comparison.

Comparison algorithms:

• PSO [18] (Particle Swarm Optimization) aims to find an op-
timal solution through cooperation and information sharing
among individuals in the group. Since PSO can only per-
form single-objective optimization, we use the same weight
combination as our approach selected in Table 1.
• NSGA-II [19]: An improved genetic algorithm for multi-

objective optimization. NSGA-II uses fast non-dominated
sorting with an elite strategy to reduce time complexity.

Meta-heuristic algorithm settings: For PSO, we used 50 par-
ticles and 100 iterations. For NSGA-II, we set the population size
and the iteration number as 50 and 300, respectively.

Experimental results and analysis: As shown in Table 2, with
he same experimental settings, RLPNet is only a little ahead
f the meta-heuristic algorithms regarding the effectiveness of
he three optimization objectives. However, the advantage of the
unning time in RLPNet is huge. In the face of complex and vari-
ble user requests and resource-constrained edge environments,
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Table 2
Comparison between RLPNet and meta-heuristic algorithms.
Dataset Algorithm Resource utilization Running time (ms) Waiting time (ms) Algorithm running time (ms)

EUA Dataset
RLPNet 0.900 357 373 110
PSO [18] 0.889 360 377 140,000
NSGA-II [19] 0.867 371 389 101,000

Google cluster trace
RLPNet 0.882 326 368 100
PSO [18] 0.859 335 370 124,000
NSGA-II [19] 0.833 345 386 98,000

Alibaba cluster trace
RLPNet 0.901 334 359 80
PSO [18] 0.889 339 361 118,000
NSGA-II [19] 0.868 346 373 76,000
meta-heuristic algorithms are significantly worse than RLPNet in
terms of comprehensive execution efficiency, demonstrating our
proposed method’s effectiveness.

RLPNet deployed in the edge environment is pre-trained of-
line. In this way, the decision time of RLPNet can often be
ontrolled within 1 s or even 0.1 s each time. Compared with the
ong iteration time needed by meta-heuristic algorithms, RLPNet
an better meet the requirements of high latency sensitivity
nder edge computing.

. Conclusion and future work

Service request scheduling, aiming to sufficiently utilize ser-
ice resources at the edge to satisfy as many service requests as
ossible, has become a challenging topic in edge computing in
ecent years. Toward sthe issue, this paper comprehensively con-
iders the indicators that need to be optimized for a reasonable
cheduling strategy from the perspective of servers and users.
e focus on scheduling the execution order of queued service

equests by optimizing three objectives: resource utilization, run-
ing time, and waiting time. We model the scheduling problem
s a sequential problem and use a reinforcement learning model
ith pointer networks to address the issue. We conduct experi-
ents with three representative real-world datasets, which show

hat our proposed approach outperforms several state-of-the-art
ethods over three metrics.
In the future, we plan to improve the paper in three aspects.

irst, the limitations of the weighted sum as a multi-objective
ptimization problem will be considered, and the reward calcu-
ation strategy will be improved to further improve the training
ffect. Secondly, the scheduling strategy proposed in this paper
s designed only for the internal scheduling of edge servers, and
oes not consider the coordination and loading balance among
ervers. When the edge servers cross, service requests sent by
sers located at the range of multiple edge servers are ran-
omly selected. We plan to consider the user’s selection strategy
or edge servers by balancing server load. Thirdly, the current
cheduling strategy is static scheduling, since an edge server takes
he queued service requests for the next scheduling after the
urrent one. We will investigate the dynamic scheduling while
etaining static scheduling.
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