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With the advent of Web service technologies, the number of services published on the cloud is
increasing rapidly. The quality of service (QoS) becomes a crucial criterion for selecting services from
a massive pool of candidates. Collaborative filtering (CF) has become a major way for personalized
QoS prediction by leveraging historical interactions between users and services. Due to the increasing
number of users and services, CF-based QoS prediction often suffers from data sparsity and cold-

Keywords: start difficulties. Inspired by the advantages of graph contrastive learning in cold-start predictions, we
Graph contrastive learning propose BGCL, a bi-subgraph network based on graph contrastive learning to solve the above problems.
QoS prediction Firstly, we generate different perspectives of user-neighborhood and service-neighborhood sub-graphs
Web service

based on sparse user-service bipartite graphs. Next, our model learns user and service embeddings
using the graph contrastive learning and graph attention aggregation mechanisms on the generated
sub-graphs. Finally, user and service embeddings are fed into a multi-layer perception to predict QoS
values. Experimental results show that our model outperforms several existing models in terms of

Attention mechanism

prediction accuracy.

© 2023 Elsevier B.V. All rights reserved.

1. Introduction

With the proliferation of Web service technologies, more and
more services are being made available in the cloud, making
the lives of Internet users much more convenient [1]. How to
find and select the most appropriate services from those offering
similar functionalities has become a hot topic of research in
the services computing society in response to the exponential
growth of services. Non-functional properties, also known as
quality of services (QoS), have become primary considerations in
the decision-making of service selection.

QoS refers to the non-functional characteristics of Web ser-
vices [2,3], including response time, throughput, reliability, cost,
and so on. In general, QoS values can be monitored on both
the provider and user sides. Some QoS values, such as cost, can
be set by service providers, but the majority of QoS values are
determined by a variety of factors, e.g., the varying network
environment and geographic locations of service users. Various
users may observe different QoS values when invoking the same
service. Consequently, user-side QoS evaluations, which are more
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pertinent to individualized user experiences on Web services,
are receiving more consideration. In services computing, it is
crucial to precisely predict the unknown QoS values of Web
services for various users, which can considerably enhance the
user experiences on services [4-8].

Fig. 1 illustrates how users may utilize Web services, which
can be modeled as an interaction matrix between users and
services. QoS prediction seeks to forecast the QoS values of each
service invoked by a target user using a limited amount of data.
The first challenge for this task is the data sparsity [9], which
is caused by the fact that the number of services and users is
often enormous, yet each user may have only invoked a small
number of services. In the case of sparse data, it is hard to achieve
satisfactory recommendation results, especially when utilizing
conventional collaborative filtering approaches. The cold-start
problem is the second challenge. Due to the lack of historical
invocation records, it is difficult to extract their high-dimensional
features for prediction purposes when a new user or a new
service is introduced [10,11].

Earlier research in this field relied mostly on memory-based
collaborative filtering techniques, such as user-based and item-
based collaborative methods, for QoS prediction [12,13]. Memory-
based collaborative filtering predicts missing QoS values by
finding users with similar characteristics to the target users based
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Fig. 1. Illustration of how users invoke Web services.

on historical data. Later on, some researchers employ techniques
like matrix factorization to learn the representations of users
and services [14]. With the development of the neural network,
deep neural networks such as the multilayer perceptron (MLP)
and graph neural networks have also been introduced for QoS
prediction. Nevertheless, these existing methods are incapable
of mining well-behaved embedding representations, resulting in
poor performance in low-density and cold-start situations.

Considering that user-service interactions are typically graph-
structures data, we introduce graph networks into QoS prediction
to learn the representation of users and services [15-17]. Dif-
ferent from existing methods, we take into account historical
invocation data and geographic location information to construct
interaction graphs, and then mine well-preformed features based
on the graph attention network.

Faced with the sparse interaction data in real-world scenarios,
we introduce a data enhancement method named edge dropout
to construct sub-graphs from different perspectives based on the
existing data, so as to learn additional features from the limited
observed data using graph contrastive learning.

To sum up, the primary contributions of this paper are listed
as follows:

1. We propose BGCL, a bi-subgraph network based on graph
contrastive learning framework, which constructs an adja-
cency graph by fusing location similarity and invocation
similarity and then integrates geographical location and
graph attention network to mine more latent fine-grained
features, hence improving the accuracy of QoS prediction.

2. Because the observable interaction data is extremely
sparse, a data augmentation mechanism called edge
dropout is employed to enrich the dataset. Graph con-
trastive learning is also utilized to extract implicit data
from the graph structure.

3. Extensive experiments conducted on WS-DREAM, a large-
scale real-world dataset, indicate that our model is more
accurate in cold-start QoS prediction than several conven-
tional approaches.

The remainder of this paper is organized as follows. Section 2
reviews the work related to QoS prediction. The proposed model
is presented in Section 3. We exhibit the experimental results in
Section 4. Finally, we conclude the paper with future research
directions in Section 5.

2. Related work
2.1. QoS prediction

QoS prediction has been investigated in depth in the past
decade. The majority of advancements in this field are based on

collaborative filtering [18-23], which can be roughly classified
into two categories: memory-based QoS prediction approaches
and model-based QoS prediction approaches.

2.1.1. Memory-based QoS prediction approaches

Memory-based QoS prediction computes the similarity be-
tween users or services based on historical QoS data to determine
their nearest neighbors. It then forecasts QoS values based on
the target user’s nearest neighbors with the highest degree of
similarity. The memory-based collaborative filtering algorithm
is further subdivided based on the neighbors into user-based,
item-based, and hybrid collaborative filtering algorithms [24,25].
Nevertheless, these memory-based methods are ineffective when
the user-service matrix becomes larger and sparser as the num-
ber of users and services increases. The feature of users and
services cannot be completely utilized with the existing data.

2.1.2. Model-based QoS prediction approaches

The model-based algorithm represents the recommendation
task as a representation learning problem. Methods such as ma-
trix decomposition, clustering, hidden semantic model, Bayesian
and neural networks, etc., are utilized frequently. Non-negative
matrix factorization (NMF) utilizes non-negative matrix factor-
ization to predict QoS values [26]. After aggregating users and
services based on geographic location information, hierarchical
matrix factorization (HMF) utilizes local factorization and global
factorization to forecast QoS [27]. Network-aware matrix fac-
torization uses a network map to factorize in order to forecast
QoS [28]. Location-based matrix factorization technique via pref-
erence propagation (LMF-PP) employs invocation and neighbor-
hood information in the process of preference propagation to
predict the missing QoS values [29]. In conclusion, rather than
depending on the selection of similar neighbors, the prediction
accuracy of the model-based CF technique is often superior to
that of the memory-based CF method in the presence of sparse
data. However, in a cold-start scenario, it cannot learn the la-
tent characteristics of users and services, making it difficult to
generate correct predictions.

There have been a great number of works applying graph neu-
ral networks to recommender systems due to their capability in
learning from graph data [30]. Graph convolutional matrix com-
pletion provides a graph auto-encoder architecture that produces
latent features of users and items via a form of differentiable
message passing on the user-item graph in order to tackle the
rating prediction problem in recommender systems from the
perspective of link prediction [31]. Neural graph collaborative
filtering is proposed to explicitly encode user/item signals in
the form of high-order connectivities by graph propagation item
recommendations [32].



J. Zhu, B. Li, J. Wang et al.

A few further studies introduced GNN to mine well-behaved
representations for better QoS prediction. Li et al., for instance,
proposed a graph matrix factorization approach, which combines
GNN and collaborative filtering to estimate missing QoS values
in the data matrix [33]. Ding et al. proposed MGCCF-DFM, a
multi-component graph convolutional collaborative filtering and
deep factorization machine model. MGCCF-DFM uses GCN to ex-
tract user preference from the service environment [34]. Chang
et al. proposed a graph-based matrix factorization approach to
consolidate various multi-source information, and further dig
out potential relationships in the graph model to obtain QoS
values [35].

The aforementioned studies contribute significantly to the
advancement of QoS prediction techniques. For example, aver-
age values from the past are used for prediction because they
are a good representation of the characteristics of users and
services that tend to remain constant over time. Another ex-
ample is the consideration of geographical location similarity
is based on the close correlation between network conditions
and geographic locations. However, few of them comprehensively
consider historical invocations and geographic locations. More-
over, it is difficult for existing methods to mine well-performing
representations with good performance from sparse data due to
limitations imposed by the model design.

The model proposed in this paper has two key characteris-
tics. First, a data augmentation mechanism called edge dropout
is introduced to enrich the dataset for mining more implicit
representations from the limited data. Second, high-dimensional
representations are extracted from graph structures constructed
with comprehensive consideration of historical invocation and
geographic location similarity using a graph attention network.

2.2. Contrastive learning

Contrastive learning (CL) has recently gained popularity as
a technique for unsupervised graph representation learning. CL
has been implemented extensively in computer vision, natu-
ral language processing, graph data mining, and recommender
systems [36,37]. Self-Supervised learning for sequential recom-
mendation (S3-Rec) was proposed to utilize the intrinsic data
correlation to derive self-supervision signals and enhance the
data representations via pre-training methods for improving se-
quential recommendation [38]. Yao et al. proposed a framework
to tackle the label sparsity problem by learning better latent
relationships of item features based on multi-task self-supervised
learning [39]. Self-supervised graph learning for recommenda-
tion (SGL) explored self-supervised learning on the user-item
graph, so as to improve the accuracy and robustness of GCNs for
recommendation.

These methods are typically applied in computer vision or
tasks with specific graph structures. Existing methods are un-
able to model the QoS prediction task for feature learning due
to the characteristics of sparse data and lack of evident graph
structure information. Therefore, we propose a bi-subgraph graph
contrastive learning network for cold-start QoS prediction, which
exploits the implicit graph structure based on location data and
previous invocation records. The dataset is then enhanced using
the edge dropout approach for mining well-performed implicit
information.

3. Methodology

Suppose that there are n, users U = {uq, Uy, ..., U}, N
Web services S = {s1,S2,...,p} and n, QoS records & =
{e1,e2,...,en }. The element of £ edge e = (u,s,r) indicates
that there is an observed QoS value r from user u to service s.
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The user-service QoS matrix can be modeled as a user-service
bipartite graph G = {u, S, £}. In reality, n, and n, are very large,
and only limited interaction data can be observed, making it
difficult to obtain precise predictions.

In this paper, we propose a model named bi-subgraph network
based on graph contrastive learning (BGCL) to alleviate the above
problem. Fig. 2 depicts the architecture of our model, which
consists of three parts: Bi-subgraph generation, graph contrastive
learning, and QoS prediction.

e Bi-subgraph generation: The strategy of edge dropout is ap-
plied to the original dataset for data augmentation, yielding
user-neighborhood sub-graphs and service-neighborhood
sub-graphs.

e Graph contrastive learning is introduced to solve the prob-
lem of data sparseness, aiming to mine well-preformed em-
bedding representations for users and services from the
limited data.

e QoS prediction: The QoS prediction part integrates the user
embeddings and the service embeddings through an MLP to
achieve precise QoS prediction.

In the following, we present the principles and implementa-
tion steps for each part of the BGCL model.

3.1. Bi-subgraph generation

The observed interactions are extremely sparse compared to
the whole interaction space, making it inadequate to learn high-
quality representations. Because it is helpful for representation
learning to increase the amount of trained data using data aug-
mentation, we introduce a strategy named edge dropout to gener-
ate multiple representation views, which will in turn learn more
high-dimensional information. It removes edges from the graph
with a dropout ratio p. In this paper, we apply the edge drop
strategy to construct two sub-graphs as follows:

sl(g):(Z/{’Ss M]@S,p), 52(9):(1/’785 MZ@&I’)’ (1)

where G denotes the user-service interaction graph, i/ is the
user set, S is the service set and My, M, € {0, 1}/ are two
masking vectors on the edge set ¢, and p is the dropout ratio.
Only partial connections within the neighborhood contribute to
the node representations. The integration of these two sub-graphs
aims to capture the instructive patterns of the local structures
of a node and further endow the representations with more
robustness against noisy interactions.

Considering the fact that user nodes and service nodes belong
to different feature spaces, the latent features of the user may
include the network environment of the user, while the latent
features of the service contain the function of the service. Clearly,
it is unreasonable to directly aggregate node features based on
the user-service bipartite graph. As a result, we construct a user
adjacency sub-graph and a service-adjacency sub-graph based on
user-service interaction data for subsequent aggregation train-
ing, which facilitates the extraction of exact high-dimensional
features.

Inspired by conventional collaborative filtering, invocation
similarity and location information are regarded as two crucial
elements for creating adjacency sub-graphs. On the one hand, a
higher invocation similarity indicates that two users or services
may share comparable network conditions. Furthermore, two
nearby users or services should have similar high-dimensional
location embedding information.
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1. Graph Generation
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Fig. 2. The overview of BGCL framework.

3.1.1. Invocation similarity

Invocation similarity is constructive for mining implicit in-
formation from historical interaction data. Pearson correlation
coefficient (PCC) has been adopted for similarity calculation in
numerous recommendation tasks due to its high accuracy. In
this paper, we calculate the invocation similarity using PCC. The
degree of invocation similarity between two users is defined as:

Zse,lum,}u(%,s = qi)gjs — gj)
sy @is = 8 [ s Gis = 87

where s € I” N1V is a set of Web services that are commonly
called by both users i and j. g; s denotes the historical QoS value
of Web service s invoked by user i. g; is the average historical QoS
value of user i. The value of Si;,(u;, u;) is in (=1, 1).

Similarly, the degree of invocation similarity between two
services is defined as:

Sinu(ui, u) =

- (2)

Zuel,snml,s,(q”,m = Gn)(qun — Gn)
Sinv(sm7 Sn) = = =
\/Zua;mg (qum — Qm)z\/Zuel%mg (Qun — Gn)?

)

(3)

where u € I;, NI; is a set of users who invoked services m and n.
qu.m denotes the historical QoS value of Web service m invoked
by user u and g, is the average historical QoS value of service m.

3.1.2. Location similarity

Location similarity can be computed even in the absence of
interaction history, thereby alleviating the cold-start problem.
Considering that both the user and the service had latitude and
longitude coordinates, which could be utilized to determine the
distance between two locations. For the subsequent computation
of geographic similarity, we introduce the haversine formula to
compute the distance between two locations based on latitude
and longitude. Haversine is defined as follows.

D(i, j) = 2r arcsin -

(\/sin2 (@) + cos (¢;) cos (¢) sin® (g) , )

where D(i, j) is the distance between places i and j, ¢; is the
longitude of place i, ¢; is the latitude of i, ¢; is the longitude of
place j, and ¢; is the latitude of j.

Once the user-to-user distance matrix has been generated, the
associated user location similarity can be determined, as shown
below.
e*D(u,u,uj)

Vo
where D(u;, u;) indicates the distance between u; and u;, and §,, is
the variance of the user distance matrix.

Similarly, the location similarity of services can be calculated
as:

Stoc(Um, Up) =

(5)

e*D(Smysn)
Sioc(Sm» Sn) = s
Vs
where D(s;, Sp) indicates the distance between s, and s;,, and &
is the variance of the service distance matrix.

After obtaining the two similarity rankings, the two similari-
ties are combined to produce the final node similarity ranking.
Considering that the invocation similarity is affected by geo-
graphical location, a weight mechanism is implemented to bal-
ance the two similarities.

(6)

S = aSpy + (1 — a)Sic, (7)

where « is the weight setting of invocation similarity.

Once the final similarity ranking is determined, we take the
top-k nodes for each node to build the corresponding adjacency
graph, thereby obtaining the user adjacency, Aﬁ’,Aé’ , and the
service adjacency, Ai,Ag, from S1(G) and S,(G), respectively, as
shown in Fig. 2.

3.2. Graph contrastive learning

To extract the high-dimensional characteristics from the con-
structed user adjacency sub-graph and service adjacency sub-
graph, we employ the graph attention network (GAT) for neighbor
aggregation in each case.

3.2.1. Embedding layer

The features we selected for initial embedding include the user
ID, the geolocation information of the user, the service ID, and
the geolocation information of the service. Taking the user in
sub-graph m as an example, the user ID is embedded into high-

dimensional space U, = [u}ni,u;i, ....upt] € RX then the
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user’s geolocation information is embedded into another high-
dimensional space as well Uy, = [u}nl, ufm, ..., up] € R¥. These
two features are combined through concatenation operations to
represent the users’ whole high-dimensional information U,;, =
[Um, || Upl = [u), v, ..., uy'] € R Similarly, for services,
the service ID is embedded into high-dimensional space S, =
[s,‘nl_, 5%11_, ..., Sm] € R and the geolocation information of service
will be embedded to another space s, = [s,ln’, srzm, s Sml €
RX. They are combined to obtain the embedding representation
for service Sm = [Sw, | Sm] = I[sh.S%.....sm] € R
It is worth noting here that the identification information and
geolocation information of user and service are embedded in the
K-dimensional space. The embeddings of users and services are
randomly initialized with the Gaussian distribution and further

optimized with model training.

3.2.2. Graph attention layer

To learn higher-dimensional node features from the graph
structure for high-precision QoS prediction, graph attention net-
work is introduced to the user adjacency graph and the service
adjacency graph for representation learning.

Unlike GCN, which aggregates neighboring features with fixed
weights determined by the degrees of the corresponding nodes,
GAT uses learnable self-attention-based weights to discriminate
the relative relevance of surrounding features. The feature update
processes in the GAT layer are conducted in two steps: weight
calculation and feature aggregation.

Taking the user sub-graph m as an example. For each node in
the graph, the final features can be obtained from the neighbor

aggregation.
SR CALS))
yery, exp (o (ah - [uhy 1wk ]))

zZ, =0 Z(x:{;-u; , (9)

‘57’,’;1

of = att(ul W) =

(8)

where o}, indicates the importance weight of the user j's feature
to user i in sub-graph m, uin is the embedding representation of
user i in sub-graph m, || is the concatenation operation, a; is the
transform matrix for sub-graph m. o is the softmax function. z;,
is the final embedding representation of user in sub-graph m. P,
denotes the neighborhood of node i in sub-graph m.

3.2.3. Contrastive learning

After establishing the various sub-graphs, we treat the same
node in the sub-graphs as positive pairs and the different nodes as
negative pairs. We assume that some high-dimensional features
of the node are fixed, such as the location information of the
user and the network environment, the functions provided by
the service and the server configuration, and so on. Because the
high-level features are also fixed, they should be as close to the
different views as possible to indicate the high-level abstract
features of users and services. This means that the embedding
of the positive pairs should be as close as possible, while the
features of the negative pairs should be as far away as possible.
We follow SIMCLR to introduce a contrastive learning loss to
maximize the agreement of positive pairs and minimize that of
negative pairs [40]. The contrastive learning loss is defined as
follows.

exp(s(z*, z4)/t
L;_,;’er:Z_log p((1uz)u/ ) ’
>_exp(s(zy, z;)/7)
where s(-) measures the similarity between two vectors using the
cosine similarity function, t is the hyper-parameter, known as the

(10)

Knowledge-Based Systems 263 (2023) 110296

temperature in softmax. Analogously, we obtain the contrastive
loss of the service side by combining these two losses, we get
the objective function of the contrastive learning task as L =
user + Lservice“
ssl ssl
3.2.4. Combiner

It is well recognized that the QoS value is usually determined
by many factors, which can be learned from different views of the
node. Therefore, different views of the node should have different
contributions to learning the final embedding of users, motivat-
ing us to introduce the attention mechanism to automatically
discover the importance of different views.

(BY. B2) = atteom (2. 73) . (11)

2
z,=) Bz, (12)
m=1

where BY and pY are the importance weights of AY and AY,
respectively. z, is the final embedding of user.
Similarly, the final service embedding can be obtained as:

(vi.¥5) = atteom (2. 23) , (13)

2
2= v 7 (14)
m=1

where y; and y; are the importance weights of A5 and A3,
respectively. z; is the final embedding of service.

3.3. QoS prediction
Once the representations of user Z, and service Z; from the

user part and service part are obtained, we concatenate them
using an MLP to predict the QoS value r from user u to service s.

g1 =0 W;-Z,+by), (15)
g2=0Wy-Z +by), (16)
rys =0 (W;-[g1 [l 821+ b3). (17)

3.4. Complexity analysis

The pseudo code of BGCL is shown in Algorithm 1. Assume that
Ny, N, and N represent the number of users, services, and neigh-
bors, respectively. The proposed model can be roughly divided
into three parts: graph generation, graph contrastive learning,
and QoS prediction. First, in the graph generation phase, BGCL
calculates the similarity of users and services. The time complex-
ity of this part is O(N2 + N2). Next, BGCL aggregates the neighbor
information in the generated subgraphs based on the graph atten-
tion network. The time complexity is O(2 * N % N2 + 2 % N x N2).
Finally, the learned embedded representation is fed into the MLP
for QoS prediction. The time complexity is O(N, + N;). To sum up,
the time complexity of the whole algorithm is O(N2 + N2).

4. Experiments
4.1. Dataset

To evaluate the performance of our model, a series of experi-
ments are conducted on WS-DREAM [41], a large-scale real-world
QoS dataset. The dataset consists of 1,974,675 QoS records (in-
cluding response time and throughput) obtained from 339 users
with 5825 Web services distributed in 73 countries. In addition
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Algorithm 1 Framework of BGCL

Input:
the user-service interaction graph g ;
the information of users U = [uy, uy, ..., uy,];
the information of services S = [s1,S;, ..., Uy,] ;
the weight of similarity « ;
the rate of dropout P ;
the number of neighbors N.

1: // PART 1: Graph Generation

2: Drop the egdes base on P to generate sub-graphs G; and G,
3: fori=1to 2 do

4: // generate sub-graphs for g;

5. forj=1toN, do

6: // Calculate the invocation similarity for u;;
7 InvSimi(u')

8 // Calculate the location similarity for u;;

9 LocSimi(u’)
10:  end for
11: for k=1 to N; do

12: // Calculate the invocation similarity for s;
13: InvSimi(s’)
14: // Calculate the location similarity for sy;

15: LocSimi(s/)

16:  end for

17:  Take the top-N nodes for each node to build the correspond-
ing adjacency graph AY and A? for g;

18: end for

19: // PART 2: Graph Contrastive Learning

20: // Graph attention layer

21: GAT(AY, AY A3, AS)

22: // Contrastive learning

23: SSL(AY, AY A, AS)

24: // PART 3: QoS Prediction

25: MLP(Zu,Zs)

to interaction information between users and services, the dataset
also includes basic user and service attributes. The user attributes
consist of [ID, IP Address, Country, IP NO., AS (Autonomous Sys-
tem), Latitude, Longitude], whereas the service attributes include
[ID, WSDL Address, Service Provider, IP Address, Country, IP NO.,
AS, Latitude, Longitude]. Their real location attributes are em-
ployed in our proposed approach. We make our code available
for further study.’

4.2. Evaluation metrics

We use Mean Absolute Error (MAE) and Root Mean Square
Error (RMSE) to measure the performance of the proposed model
and other baselines. Lower scores for these two indicators suggest
a more accurate prediction.

e Mean Absolute Error: MAE is the average of the absolute
values of the deviations of all individual observations from
the arithmetic mean.

N A
MAE = Lt 1Qus = Qusl Q’”'. (18)
N

e Root Mean Square Error: RMSE indicates the deviation be-

tween the observed value and the truth.

SN (Qus — Qu )
N

RMSE = , (19)

1 https://github.com/zjy5755202/BGCL.
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where Q, ¢ is the actual QoS value of service s observed by user
u, Q, s is the predictive QoS value of service s observed by user u,
and N denotes the total number of QoS values.

4.3. Baselines

To evaluate the performance of the proposed approach, we
selected ten baselines for comparison, including the traditional
algorithms and the latest research.

In general, the selected baselines can be categorized into two
groups: memory-based and model-based techniques. UMEAN,
IMEAN, UPCC, IPCC and UIPCC are memory-based prediction
methods. These methods essentially utilize user and item-related
history for the recommendation. The remaining five baselines are
model-based methods. Among them, NMF and HMF are the most
prominent methods based on matrix factorization. LMF-PP takes
into account the invocation similarity. LDCF utilizes geographic
location information. MGCF-DFM integrates graph networks into
the QoS prediction process. To the best of our knowledge, MGCF-
DFM is the latest method for QoS prediction, and LMF-PP is the
latest research on addressing the cold-start problem.

e UMEAN [12]: This approach predicts missing values by av-
eraging the available QoS values based on the target user

e IMEAN [13]: This approach predicts missing values by av-
eraging the available QoS values base,d on the target Web
service.

e UPCC [12]: This approach is one of the memory-based col-
laborative filtering, which calculates the user’s similar
neighbors by PCC, then predicts missing QoS by considering
the historical information of the user and its neighbors.

e IPCC [13]: This approach is similar to UPCC, which calculates
the services’ similar neighbors by PCC, then predicts missing
QoS by considering the historical information of the user and
its neighbors.

e UIPCC [13]: This approach is a hybrid approach that linearly
combines UPCC and IPCC, which computes similar users and
similar services by PCC and combines them to recommend
services to target users.

e NMF [26]: This is a model-based collaborative filtering ap-
proach, applying a constraint that all factorized values must
be nonnegative to predict QoS values.

e HMF [27]: This is a hierarchical MF approach, which clusters
users and services with the location information, then com-
bines the prediction of local matrix factorization and global
matrix factorization.

e LMF-PP [29]: This approach employs invocation and neigh-
borhood information in the process of preference propaga-
tion to predict the missing QoS values.

e LDCF [42]: This approach learns the high-dimensional and
nonlinear relationships between users and services through
an MLP and incorporates the similarity module to correct
the predictive values.

e MGCF-DFM [35]: This approach extracts the high-
dimensional via combining multi-component graph convo-
lutional collaborative filtering and deep factorization ma-
chine.

4.4. Comparison of prediction accuracy for high-sparsity

To evaluate the performance of our model for high sparsity, we
varied the density of the original dataset by 0.5%, 1%, 2%, 3%, and
4%, in accordance with the state-of-the-art work on high-sparsity
QoS prediction [29]. For example, a density of 0.5 means that 0.5%
of the original 1,974,675 interactions are selected for training,
and the remaining 99.5% of the data are used for prediction.
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Performance comparison on response time prediction in the high-sparsity situation.

addressesfMethods Density = 0.5%(D1) Density = 1%(D2) Density = 2%(D3) Density = 3%(D4) Density = 4%(D5)

RMSE MAE RMSE MAE RMSE MAE RMSE MAE RMSE MAE
UMEAN [12] 1.8847 0.9015 1.8721 0.8992 1.8638 0.8783 1.8607 0.8754 1.8596 0.8774
IMEAN [13] 1.9094 0.8019 1.7588 0.7632 1.6424 0.7345 1.6010 0.7187 1.5787 0.7113
UPCC [12] 1.8855 0.9130 1.8828 0.8999 1.8846 0.8946 1.8680 0.8655 1.7920 0.8076
IPCC [13] 2.0062 0.8381 1.8253 0.7875 1.6651 0.7411 1.6092 0.7186 1.5784 0.7063
UIPCC [13] 1.8696 0.8119 1.7549 0.7903 1.6661 0.7600 1.6067 0.7315 1.5631 0.7110
NMF [26] 2.1218 0.8920 2.0740 0.8576 1.8269 0.7099 1.6555 0.6219 1.5482 0.5749
HMF [27] 2.0102 0.7560 1.9585 0.7348 1.8764 0.6942 1.7432 0.6529 1.5947 0.5987
LME-PP [29] 1.8668 0.7256 1.7236 0.6684 1.5554 0.6021 1.4767 0.5733 1.4339 0.5577
LDCF [42] 1.8708 0.7042 1.7111 0.7042 1.4703 0.4917 1.4069 0.4727 1.3513 0.4330
MGCF-DFM [35] 1.7693 0.6743 1.6144 0.6028 1.4618 0.5297 1.4077 0.5325 1.3792 05134
BGCL 1.6813 0.6425 1.5439 0.5482 1.4217 0.4726 1.3919 0.4451 1.3506 0.4233
Gains 10.13% 8.76% 9.77% 22.15% 3.30% 3.87% 1.07% 5.85% 0.05% 2.25%

Table 2

Performance comparison on throughput prediction in the high-sparsity situation.

addressesfMethods Density = 0.5%(D6) Density = 1%(D7) Density = 2%(D8) Density = 3%(D9) Density = 4%(D10)
RMSE MAE RMSE MAE RMSE MAE RMSE MAE RMSE MAE
UMEAN [12] 112.1960 55.0068 111.2856 54.4074 110.8732 53.8467 110.7070 53.6448 110.5742 53.1459
IMEAN [13] 90.7025 35.3947 82.0907 322714 743171 29.0451 72.1900 28.8661 71.3071 28.6747
UPCC [12] 112.0696 54.9263 109.1217 52.6400 106.2907 49.4334 102.9665 47.3301 95.4764 41.5693
IPCC [13] 120.5881 47.5637 120.3505 47.2248 114.1630 46.1030 90.5880 38.6253 73.4479 32.2851
UIPCC [13] 108.0630 51.1348 96.4888 42.1151 81.0827 34.6690 74.6717 33.4364 73.4309 31.6483
NMF [26] 106.7193 43.0964 98.4433 39.4481 90.3144 34.1813 89.1790 33.1333 83.7010 32.5076
HMF [27] 103.6623 39.9637 96.1649 35.8862 92.1575 34.8761 90.0797 34.1184 88.3741 33.4422
LMF-PP [29] 108.3422 39.2184 95.9179 33.1171 77.3738 28.6993 72.1616 26.5359 67.3643 24.9041
LDCF [42] 100.8081 35.1775 83.5723 30.2831 68.5387 23.8206 58.7678 18.6076 55.4478 17.1913
MGCF-DFM [35] 90.7944 33.6987 79.5741 29.2623 71.4496 25.0795 64.9274 23.1045 55.9968 17.6414
BGCL 87.3661 31.8826 77.4896 28.0268 65.0578 20.7998 56.3769 18.0680 51.6141 15.9830
Gains 13.33% 9.37% 7.28% 7.45% 5.08% 12.68% 4.07% 2.90% 6.91% 7.03%

D1(0.5%), D2(1%), D3(2%), D4(3%), and D5(4%) were extracted
from the dataset on response time. D6(0.5%), D7(1%), D8(2%),
D9(3%), D10(4%) were obtained from the dataset on throughput.

Experimental results on response time and throughput are
shown in Tables 1 and 2, respectively. To compare the perfor-
mance between BGCL and LDCF, the best baseline method, the
gains are calculated as follows.

. value (LDCF) — value(BGCL)
Gains = ,

value(LDCF)

where value(F) indicates the performance of method F.

According to Tables 1 and 2, the following observations can
be drawn: (1) Existing approaches produce poor results at low
density, despite the fact that observed data is quite sparse in
reality scenarios. (2) As data density grows, the performance of all
techniques improves, highlighting the necessity of having enough
input data for QoS prediction. (3) The model-based collaborative
filtering prediction approaches outperform the memory-based
ones in terms of prediction accuracy. (4) In most situations, neu-
ral network-based approaches (e.g., LMF-PP, LDCF, MGCCF-DFM,
and BGCL) outperform memory-based methods and factorization
model-based methods in terms of RMSE and MAE, confirming
that deep neural networks can learn well-preformed represen-
tations for QoS prediction. (5) Graph network-based approaches
(e.g., MGCFDFM, BGCL) outperform in low matrix density scenar-
ios, indicating that the graph network may mine implicit infor-
mation from sparse graph structures. Furthermore, we see that
BGCL surpasses MGCF-DFM. (6) In low matrix density scenarios,
BGCL achieves the best performance. It has been demonstrated
that BGCL can extract high-performing embeddings from sparse
data, hence reducing the problem of data sparsity and cold-start.

(20)

4.5. Comparison of prediction accuracy for cold-start

To analyze the prediction accuracy of BGCL for the cold-start
problem, we randomly selected half of the users in the original

dataset as cold-start users, meaning that these users have no
invocation records in the training set. The interaction entries
were then randomly removed from the remaining QoS matrix
with different densities to serve as the training set for BGCL.
After removing the selected cold-start users, the dataset was
constructed in a similar way to Section 4.4. C1(0.5%), C2(1%),
C3(2%), C4(3%), C5(4%) were extracted from the response time
dataset. C6(0.5%), C7(1%), C8(2%), C9(3%), C10(4%) were generated
from the throughput dataset.

Due to the lack of interaction information for the cold-start
users in the training set, UMEAN, UPCC, and UIPCC are unsuit-
able for this situation; hence the baselines for this experiment
no longer include these three methods. Experimental results of
response time and throughput are shown in Tables 3 and 4,
respectively. The following observations can be made: (1) In the
cold-start scenario, almost all methods are less effective than
random sampling with all data for training, which highlights the
need of improving the cold-start prediction accuracy. (2) BGCL
outperforms other baseline approaches in predicting QoS values
for cold-start users, hence mitigating the cold-start issue.

4.6. Impact analysis of parameters

The main parameter settings of BGCL include: the ratio of
dropout P, the weight of similarity «, the temperature in softmax
7, the number of neighbors N, the embedding dimension of user
K. A series of experiments were conducted to investigate the
effects of these parameters.

4.6.1. Parameter determination

The hyperparameter P, in BGCL, is the ratio of dropout, which
determines the probability of dropping out the edges to gener-
ate different perspectives of sub-graphs. Furthermore, « is used
to balance the importance of invocation similarity and location
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Table 3
Performance comparison on response time prediction in the cold-start situation.
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addressesfMethods Density = 0.5%(C1) Density = 1%(C2) Density = 2%(C3) Density = 3%(C4) Density = 4%(C5)
RMSE MAE RMSE MAE RMSE MAE RMSE MAE RMSE MAE
IMEAN [13] 2.0304 0.8394 1.8959 0.7940 1.7978 0.7778 1.7042 0.7560 1.6467 0.7348
IPCC [13] 2.1341 0.8949 2.1628 0.9162 2.1439 0.8811 2.1674 0.8942 2.1063 0.8572
NMF [26] 2.1870 1.6811 2.0554 15209 1.9627 1.3770 1.8731 1.2501 1.7652 1.1073
HMF [27] 2.3099 1.5681 2.2771 1.4708 2.2103 1.3305 2.0559 1.2044 1.8546 1.0392
LME-PP [29] 1.9270 0.8351 1.8980 0.7386 1.8301 0.7238 1.7788 0.6698 1.6853 0.6443
LDCF [42] 1.8864 0.7457 1.8265 0.7129 1.7297 0.6697 1.6688 0.6109 1.6061 0.5655
MGCE-DFM [35] 1.8537 0.8026 1.8012 0.6901 1.7201 0.6005 1.7068 0.5938 1.6132 0.5599
BGCL 1.8446 0.7268 1.7798 0.6736 1.7173 0.6414 1.6585 0.5935 1.6004 0.5577
Gains 2.22% 2.54% 2.56% 5.51% 0.72% 423% 0.62% 2.84% 0.35% 1.38%
Table 4
Performance comparison on throughput prediction in the cold-start situation.
addressesfMethods Density = 0.5%(C6) Density = 1%(C7) Density = 2%(C8) Density = 3%(C9) Density = 4%(C10)
RMSE MAE RMSE MAE RMSE MAE RMSE MAE RMSE MAE
IMEAN [13] 95.7025 38.3947 87.0907 352714 823171 29.7254 783071 29.0451 72.1900 28.8661
IPCC [13] 120.2908 47.6203 120.0982 47.4832 122.1739 485278 120.6128 47.7984 1219700  48.3595
NMF [26] 108.9999  44.0225 100.5857 40,5097 97.0531 36.8258 90.2544 34.1849 89.3990 33.3104
HMF [27] 107.1734  42.1015 99.9592 37.5555 101.9947 39.6587 99.9919 36.6515 93.3305 342158
LME-PP [29] 111.0314  45.8744 110.2515 39.5038 93.3843 36.6333 86.1568 34.2041 82.6183 30.8995
LDCF [42] 107.0368 39.3950 102.9499 37.0925 89.4251 32.7096 74.9650 27.4545 72.9647 27.1299
MGCF-DFM [35] 98.2656 40.1376 88.6542 34,5040 83.2391 30.9734 75.2470 28.6397 73.6545 28.3025
BGCL 94.6935 37.6694 86.0313 31.5286 80.3634 28.6244 73.2179 26.9627 71.4859 25.8113
Gains 11.53% 4.38% 16.43% 15.00% 10.13% 12.49% 2.33% 1.79% 2.03% 4.86%
similarity for obtaining the final similarity ranking. The hyperpa- (a) Impact of p on MAE (b) Impact of p on RMSE
rameter ¢ controls the strength of penalties on the hard nega- O e e o o O e s e
tive samples. The value of parameter N determines the number 0.75 1.9
of sampled neighbors when GAT aggregates neighbor informa- 0.70 18
tion. In BGCL, K denotes the dimensionality of user and service 0.65 '
embedding. It controls the capacity of the representation model. W w7
We validate a large range of the parameters with a series =" z 16
of experiments. For the different scale levels of datasets, there 035
are small changes in the optimal parameters. We find that a 0.50 L5
promising performance can be achieved with the parameters P 0.45 14
=02, =07,7t=07 N=6and K = 128. 0.40 3

4.6.2. Ratio of dropout

The edges were dropped out with a certain ratio P to obtain
different perspectives of sub-graphs. To verify the influence of
dropout, we varied P from 0.1 to 0.9 and carried out a series
of experiments. The performance results in terms of MAE and
RMSE on the datasets are plotted in Fig. 3. It can be seen when
P increases from 0.1 to 0.2, both MAE and RMSE decrease, indi-
cating an improvement in prediction accuracy. As P continues to
increase, both MAE and RMSE maintained a trend of fluctuations.
But their MAE and RMSE are both greater than those when P is
set to 0.2, indicating a decline in prediction accuracy. We believe
that this is due to the fact that employing a certain probability
for edge dropout is helpful for building multiple perspectives on
sub-graphs, but dropping out too much data causes the existing
data to be underutilized, resulting in poor results. Experimental
results show that the best results are obtained when P is set to
0.2.

4.6.3. Weight of similarity

The ultimate similarity ranking is calculated by combining
invocation and location similarity. Given that geographical loca-
tion influences invocation similarity, the weight mechanism is
used to balance the two similarities. We vary « from 0 to 1 to
find a better weight setting. The performance results in terms of
MAE and RMSE metrics on the datasets are plotted in Fig. 4. The
experimental results indicate that when the weight is set to 0.7,
the best prediction effect is achieved. When the weight is set to
this value, we believe the two similarities are properly balanced.

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.80.9 0.1 0.20.30.40.50.60.70.80.9
p p

Fig. 3. The impact of the ratio of dropout (P).

4.6.4. Temperature in softmax

The temperature is used to regulate the level of attention
to the hard negative samples. Specifically, the contrastive loss
with low temperature penalizes considerably more on the harder
negative samples, resulting in a more separated local structure
of each sample and a more uniform embedding distribution. On
the contrary, contrastive loss at high temperature is less sensi-
tive to hard negative samples, and the hardness-aware property
disappears gradually as the temperature rises. To find a better
temperature setting, we conducted a series of comparative ex-
periments on t in the range of 0.1 to 1. The performance results
are shown in Fig. 5. It can be observed that the best performance
is obtained when 7 is set to 0.7.

4.6.5. Number of neighbors

In the experiments, we sampled a fixed number of neighbors
to obtain node embedding instead of aggregating the information
from all the node’s neighbors. To analyze the influence of the
maximum number of neighbors N, we vary N in the range of {4,
5, 6, 7, 8, 9}. The performance results in terms of MAE and RMSE
on the datasets are plotted in Fig. 6. The MAE and RMSE values
fall as the number of nodes rises until they reach a particular
threshold. It suggests that as the number of neighbors grows,
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Fig. 4. The impact of the weight of similarity («).
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Fig. 5. The impact of the temperature in softmax ().

nodes can gather more information from their neighbors and
mine the network structure to learn better representations and
obtain more accurate QoS predictions. However, after a threshold
is reached, the prediction accuracy of QoS improves very slightly
or even decreases as the number of neighbors increases. This is
most likely due to weakly correlated neighbors impairing node
embeddings, resulting in the learning of poor-performing repre-
sentations. The results show that when the number of neighbors
is 6, the MAE and RMSE produce the best outcomes.

4,6.6. Embedding dimension

The choice of the dimensionality of the high-dimensional
space is critical. Lower dimensions will result in overly abstract
derived features, while higher dimensions will contain noise,
making it impossible to extract precise high-dimensional fea-
tures. To study the effect of the embedding dimensions of users
and services K, we varied K in the range of {16, 32, 64, 128, 256,
512}. The impact analysis result of the parameter on prediction
accuracy is shown in Fig. 7. The results indicate that the MAE
and RMSE decrease as the embedding size increases until a
certain threshold is reached. It indicates that 128 is the optimal
dimension size.

4.7. Ablation experiment

To further validate the effectiveness of our model, we conduct
some ablation studies.

4.7.1. Advantage of using location information

Geographic location data plays an essential role in poor-
performing values. To evaluate the effectiveness of introducing
geolocation data, we developed a GCL model. The distinction
between GCL and BGCL is that BGCL includes geographic location
information. We conducted a comparative experiment on the
constructed dataset. The experimental results are shown in Fig. 8.
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Fig. 6. The impact of the number of neighbors (N).
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Fig. 7. The impact of the embedding dimension (K).

Compared to GCL, the MAE of BGCL on D1, D2, D3, D4, and D5 is
increased by 2.81%, 4.54%, 3.61%, 5.70%, 7.70%, while the RMSE is
increased by 3.23%, 2.82%, 1.63%, 1.37%, and 2.07%. On average,
MAE is improved by 4.87% and RMSE by 2.07%. The experimental
results demonstrate that the introduction of geolocation informa-
tion improves the accuracy of QoS prediction, which confirms our
conjecture on the effectiveness of geolocation information.

4.7.2. Advantage of using graph contrastive learning

In QoS prediction, the two most challenging problems to han-
dle are low density and cold-start. Utilizing the existing data
for accurate prediction is a crucial area of study given the lim-
ited observed interactions. We utilize graph contrastive learning
as a data augmentation method for the dataset, building sub-
graphs from multiple viewpoints based on a limited amount
of existing data in order to understand the characteristics of
users and services. The final features are obtained by integrating
the high-dimensional features learned from the sub-graphs. To
demonstrate the effectiveness of graph contrastive learning, we
developed the SGCL model. SGCL is equivalent to a single-graph
variant of BGCL in which graph comparison learning is omitted.
We conducted a comparative experiment on the constructed
dataset. The experimental results are shown in Fig. 9. Compared
to SGCL, the MAE of BGCL on D1, D2, D3, D4, and D5 is increased
by 1.82%, 4.30%, 5.42%, 5.80%, and 8.65%, while the RMSE is
increased by 4.98%, 3.35%, 2.34%, 1.12%, and 2.07%. On average,
MAE is improved by 5.20% and RMSE by 2.77%. According to
the experimental results, the use of graph contrastive learning
improves the accuracy of QoS prediction.

5. Conclusion

In this paper, we propose a Web service QoS prediction
method based on graph contrastive learning. Firstly, we generate
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Fig. 9. The impact of graph contrastive learning.

different perspectives of user-neighborhood sub-graphs and ser-
vice neighborhood sub-graphs based on the sparse user-service
bipartite graph. Next, user and service embeddings are learned
using graph contrastive learning and graph attention aggregation
on the generated sub-graphs. The user and service embeddings
are then fed into an MLP to predict QoS values. This strategy
makes full use of user-service bipartite network information and
user reputation information. Thus it can fully mine the high-order
implicit relations between users (or services) from the historical
data and discover more similar users for the target users. It not
only considers the impact of untrustworthy users on prediction
accuracy but also alleviates the problem of data sparsity to some
extent. Experiments show that our method is more accurate than
the existing methods.

One future direction of this work is to combine the current
model and collaborative filtering method to make full use of the
advantages of collaborative filtering. Moreover, we will further
consider the impact of timing factors on QoS, which includes var-
ious factors such as geographic location information and changes
in network conditions over time.
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