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Facial expression recognition (FER) task in the wild is challenging due to some uncertainties, such as the
ambiguity of facial expressions, subjective annotations, and low-quality facial images. A novel model for
FER in-the-wild datasets is proposed in this study to solve these uncertainties. The overview of the pro-
posed method is as follows. First, the facial images are grouped into high and low uncertainties by the
pre-trained network. The graph convolutional network (GCN) framework is then used for the facial
images with low uncertainty to obtain geometry cues, including the relationship among action units
(AUs) and the implicit connection between AUs and expressions, which help predict the probability of
the underlying emotional label. The emotion label distribution is produced by combining the predicted
latent label probability and the given label. For the facial images with high uncertainty, k-nearest neigh-
bor graphs are built to determine the k facial images in the low uncertainty group with the highest sim-
ilarity to the given facial image. The emotion label distribution of the given image is then replaced by
fusing the emotion label distribution based on the distances between the given image and its adjacent
images. Finally, the constructed emotion label distribution facilitates training in a straightforward man-
ner using a convolutional neural network framework to identify facial expressions. Experimental results
on RAF-DB, FERPlus, AffectNet, and SFEW2.0 datasets demonstrate that the proposed method achieved
superior performance compared to state-of-the-art approaches.
� 2023 The Author(s). Published by Elsevier B.V. on behalf of King Saud University. This is an open access

article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
1. Introduction

Facial expression recognition (FER) is one of the most important
components for human–computer interactive system (Yang et al.,
2008; Zhang et al., 2021) and artificial intelligence (Ondras et al.,
2020; Kuruvayil and Palaniswamy, 2022). Human facial expression
(Tian et al., 2001; Ma et al., 2022), which is a critical carrier of emo-
tion perception, is also a signal that conveys emotional state and
intention (Pantic and Rothkrantz, 2000). As a result, accurate FER
has remarkable real-world significance in a number of fields, such
as immersive and interactive technologies under digital museums
(Donadio et al., 2022; Benford et al., 2022), facial expression recog-
nition of children with autism (Dong et al., 2021b; Dong et al.,
2021a), contactless sport training monitor (Wu et al., 2017) and
abnormal expression detection in physical exercise (Nayak et al.,
2021; Chen et al., 2019). The athletes’ emotional state during the
game is detected through facial expressions and body language.
However, FER has many challenges. On the one hand, the early
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facial expression recognition algorithms (Zhang et al., 2019; Xie
et al., 2019; Majumder et al., 2018; Rodriguez et al., 2017) mainly
input the original facial image directly into the deep model. Such
an approach not only affects the performance of the expression
recognition but also fails to effectively use prior knowledge of cog-
nitive neuroscience as the theoretical basis. Most algorithms max-
imize the facial action coding system (FACS) to solve this problem
(Ekman, 1993). Ekman designed this system as a taxonomy of
human facial expressions. FACS is a comprehensive and anatomical
system that defines facial action units (AUs). These units are
described by a series of atomic facial muscle actions. While facial
AUs capture local variations on human faces, facial expression cat-
egories depict facial behaviors globally (Vasanthi and
Seetharaman, 2022; Revina and Emmanuel, 2021).

Furthermore, FACS can encode diverse human face deforma-
tions based on the combination of AUs (Friesen and Ekman,
1978), thus providing comprehensive emotional categories. In
daily life, various changes in the local muscles of the face occur
when humans produce expressions. Therefore, accurately explor-
ing and obtaining the representation of AUs for FER is a critical
problem in the real world.

On the other hand, facial images collected in emotion recogni-
tion competitions, such as FER2013 (Tang, 2013), as well as emo-
tion recognition in the wild (EmotiW) (Kahou et al., 2013),
provide relatively sufficient data from challenging real-world sce-
narios. Such collections implicitly facilitate the development of
FER from laboratory-controlled to wild settings in recent years.
Inconsistent and incorrect labels for real-world facial expression
images widely exist because high-quality annotation is extremely
challenging due to uncertainty (Wang et al., 2020b). These uncer-
tainties are often caused by various reasons. For example, the
annotators with different psychological knowledge and back-
ground might have different perceptions. Thus, the bias arises from
the subjectivity of the annotation of emotion labels (Zeng et al.,
2018). Moreover, complex emotions may lead to the presence of
a variety of mixed expressions, in which each basic emotion has
a different component in various expressions, especially for in-
the-wild datasets. The low quality of the images due to occlusion
of key parts, large pose changes, and low resolution also cause
uncertainties. The samples are illustrated in Fig. 1. Overall, training
models on FER datasets with uncertainty may result in overfitting
on uncertain facial images and hinder model convergence.

A new and efficient method, namely geometry cues-aware
based on graph convolutional network (GCANet), is proposed in
this paper for FER in-the-wild datasets to address the aforemen-
tioned problems. The motivation principally comes from the fol-
lowing observations. Fig. 2 displays a comparison of various
expressions with their AUs. From top to bottom, the expressions
Fig. 1. Illustration of some real-world samples with high uncertainty from the from RAF
with low resolution. (e) and (f) images with large pose-variant. (g) and (i) ambiguous fa
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demonstrate surprise, happiness, fear, anger, disgust and sadness.
Thus, geometry cues of facial expressions in the real-world envi-
ronment are varied and do not follow a certain standard form.
For example, when feeling surprised one may open mouth wide,
open eyes wide and raise eyebrows, or only open mouth slightly,
open eyes and close mouth. Furthermore, there are a number of
the same combinations of AUs for different expressions. When
raising eyebrows and opening his mouth, a man may be surprised,
or happy, or fear, or even angry. Therefore, this study aims to effec-
tively extract the potential co-occurrence relationships between
AUs to represent expressions. The specific locations of AUs are
illustrated in Fig. 3. Inspired by graph convolutional network
(GCN) (Scarselli et al., 2008; Kipf and Welling, 2016), which is pro-
posed to pass and aggregate information in the graph structure,
exploring the geometry cues containing the relationships among
AUs and the mapping relations between AUs and expressions is
possible. GCN has been extensively utilized in image classification
(Wang et al., 2018), semantic segmentation (Liang et al., 2017) and
relational reasoning (Battaglia et al., 2016), due to their strong
advantages in capturing the discriminative feature representa-
tions. In addition, GCNs can capture the intrinsic connections
between each vertex node in the graph by learning an adjacency
matrix. Moreover, label distribution learning has been effective in
addressing annotation bias and label ambiguity by indicating the
degree to which each label can depict an instance. Thus, this study
mainly aims to construct emotion label distribution through GCNs
to learn AU representation and then facilitate training using a CNN
framework to perform expression recognition.

Overall, the main contributions of this study could be threefold
as follows.

� The GCN framework based on AUs graph representation is
adopted to obtain prior knowledge of geometry cues and con-
struct the emotion label distribution for the first time to the
best of our knowledge.
� K-nearest neighbor graphs are utilized for the facial images with
high uncertainty to gain emotion label distribution. Such a dis-
tribution is obtained by fusing the emotion label distributions
of adjacent images according to the distances.
� The proposed GCANet can effectively deal with the inconsistent
labels, label noise, and reduce the impact of uncertainty. The
experimental results indicate that the proposed method per-
forms better than the existing methods.

The rest of this paper is organized as follows. The related work
in the FER domain, including AUs-based network methods and
label distribution learning approaches, is briefly reviewed in Sec-
tion 2. The details of the proposed GCANet are firstly introduced
-DB. (a) and (b) facial images with critical parts occlusions. (c) and (d) facial images
cial images with their expression label distributions (h) and (j).



Fig. 2. Comparison of various expressions and their AUs from RAF-DB. From top to bottom: Surprise, Happiness, Fear, Anger, Disgust, Sadness.
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in Section 3. The experimental settings, results, comparison, and
analysis are provided in Section 4. Finally, the summary is pre-
sented in Section 5.
2. Related work

2.1. Facial expression recognition

Most of the FER methods have been recently proposed to iden-
tify several basic expressions in labeled facial images. The basic
expressions are formally defined by Ekman (Ekman, 1993), and
comprise happiness (Ha), anger (An), fear (Fe), sadness (Sa), disgust
(Di), and surprise (Su). The automatic FER system consists of three
fundamental components: human face detection, facial feature
extraction, and facial expression recognition. In the first stage, an
automatic face detector, such as MTCNN (Zhang et al., 2016), is uti-
lized to position faces in complicated backgrounds. Then, the
detected faces could be adopted to crop and align. In the next stage,
the facial geometry and appearance features activated by an
expression are captured from facial images. These features fall into
two categories, namely engineered features (Eleftheriadis et al.,
2014a; Zheng, 2014; Sangineto et al., 2014) and learning-based
features (Liu et al., 2014; Eleftheriadis et al., 2014b; Gu et al.,
3

2017), whether they are captured by hand-crafted descriptors or
deep learning algorithms. The engineered features could comprise
local features based on texture, while global features based on
geometry. The hybrid feature combines two or more engineered
features. Moreover, the learned features are learned from deep
neural networks (Rifai et al., 2012). The winners (Tang, 2013;
Kahou et al., 2013) of the FER2013 and Emotiw2013 challenge both
extracted features by adopting deep CNNs. In (Rodriguez et al.,
2017), the temporal appearance and geometry features are
extracted by combining two different models simultaneously. In
addition, the works of deep neural networks for FER tasks have
been considerably increased owing to the emergence of large-
scale training databases, such as RAF-DB (Li and Deng, 2018),
AffectNet (Mollahosseini et al., 2017), and ExpW (Dhall et al.,
2012). In (Li et al., 2018), Li et al. proposed a CNN framework with
an attention mechanism to solve the occlusion problem by perceiv-
ing the occlusion parts of the face and focusing on the discrimina-
tive unblocked patches. A novel region attention network (Wang
et al., 2020a) which can extract valuable regions of the face, is pre-
sented for FER with occlusion and pose diversity. In (Wang et al.,
2020b), the self-cure network (SCN) model is developed to sup-
press the uncertainty of FER through the self-attention and careful
relabeling mechanisms, thus achieving impressive results. Zheng
et al. (Zheng et al., 2021) presented a two-stream spatial–temporal



Fig. 3. Locations of action units on unconstrained faces.
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network which introduce a Symmetry Loss and temporal module
to extract the potential depth feature and multi-scale information
respectively. To address the problem of insufficient samples, in
(Zhao et al., 2022) put forward a hybrid-supervision learning
framework that combines the advantages of supervised and unsu-
pervised learning for expression recognition with fewer
parameters.

2.2. Graph-based deep network

The variants of CNNs have been recently proposed to process
graph data, especially in image and video classification tasks
(Battaglia et al., 2018), due to their interpretability. The graph adja-
cency matrix is used as the main input form in the convolution
process (Luo et al., 2017). Meanwhile, numerous methods adopting
the graph model have been presented for FER and AU recognition
tasks (Mohseni et al., 2014). In (Kung et al., 2015), a dual subspace
nonnegative graph embedding, which is effective for the identity-
independent problem of FER, is developed to represent facial
expression images by employing identity and expression sub-
spaces. In (Li et al., 2019), an innovative algorithm named graph-
based dynamic ensemble pruning is proposed to tackle challenges
in the classifier selection process in the dynamic integrated prun-
ing methods. The dynamic ensemble pruning approach is consider-
ably sensitive about the membership of the test sample
neighborhood. Thus, a novel FER approach named deep AUs graph
network, which is based on the psychological mechanism, is devel-
oped by Liu et al. (Liu et al., 2019). This network transforms the
facial graph into a mutation adjacency matrix with a unique
sequence. Moreover, global geometric and local appearance fea-
tures are mixed by adopting a novel deep structure with sequential
and diagonal convolutions, which works well for FER.

GCNs can effectively deal with graph data while maintaining
the advantages of standard CNN, which are proposed as a new deep
neural network learning framework. In addition, GCNs are suitable
and powerful for diverse image classification tasks. In (Fan et al.,
2020), the semantic correspondence convolution module is intro-
4

duced to learn the semantic relationships among feature maps
automatically, which enhances the discriminability of features.
2.3. Label distribution learning

The facial expression is not a single emotion category but usu-
ally blends with different basic emotions in Fig. 1(g) and (i), which
would lead to the label ambiguity and incorrectness. Label distri-
bution learning is one of the effective ways presented to mitigate
the adverse impact of the aforementioned problem. This method
indicates that the degree of each label could depict an instance.
In (Li and Deng, 2019), a deep dual-manifold CNN framework,
which could learn discriminative features by maintaining the man-
ifold structure of expression labels and the local affinity of the deep
features for multi-label expressions, is introduced. In (Zhou et al.,
2015), a novel label distribution learning approach in auxiliary
label space graphs is proposed to address annotation inconsis-
tency. This approach assumes that facial images and their adjacent
images should have a similar expression distribution in the label
space of landmarks and AUs. In (Chen et al., 2020), a novel label
distribution learning approach in auxiliary label space graphs is
proposed to tackle the problem of annotation inconsistency, which
assumes that facial images and their adjacent images should have
similar expression distribution in the label space of landmarks and
AUs. Zhang et al. (Zhang et al., 2020) suggested the correlation
emotion label distribution learning model based on the similarity
distributions of different expressions for infrared FER, which may
not be fitted for large-scale real-world datasets.

Unlike their methods, the current study obtains geometry cues
via GCN to construct the emotion label distribution and then facil-
itates learning in CNN for FER.
3. Proposed method

This section demonstrates the overall structure of the proposed
GCANet as illustrated in Fig. 4. It consists of two primary stages



Fig. 4. Pipeline of the proposed GCANet model. Given a batch of facial images and the given labels, their emotion label distributions are produced in the stage A, the label
distribution is then combined with our framework for optimization and training to achieve FER in the stage B.
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which are emotion label distribution construction and emotion
label distribution learning in the proposed GCANet. In the first
stage, the given facial images would be divided into two sets of
high and low uncertainty. For the low uncertainty samples, GCN
is applied to investigate facial geometry cues. The new constructed
emotion label distribution for the sample is then gained by fusing
the emotion probability distribution learned from geometry cues
and the given label to suppress uncertainty. However, it is difficult
to accurately extract the feature of an AU which is occluded or a
quite low-resolution region. Thus, the emotion probability distri-
bution of the sample with high uncertainty is generated by the
relationship among AUs, which may cause bias. The outputs of
samples with high uncertainty have two main characteristics after
the softmax function in the model. Firstly, the maximum predic-
tion probability is greater than the probability of the given label,
which indicates that the sample’s expression is misclassified. The
rule (i) is introduced to defined this, which is given as
pmax > pgt þmargin1, where pmax denotes the maximum prediction
probability, pgt stands for the probability of given label and
margin1 indicates a margin threshold. Secondly, there is not much
difference in the probability of each expression, which indicates
that the sample’s expression is ambiguous and difficult to classify.
The rule (ii) is used to describe this as Stdev < margin2, where Stdev is
the standard deviation of predicted expression probabilities and
margin2 represents a margin threshold. The approximate k-
nearest neighbor (KNN) graphs are utilized for facial images with
high uncertainty. The aim is to determine k facial images in the
low uncertainty group that have the highest similarity to a given
facial image. The emotion label distribution of the given image is
subsequently replaced by fusing their emotion label distributions
according to the distances between the given images and its adja-
cent images. From a global perspective, the images that share sim-
ilar global AUs characteristics may have close emotion distribution.
We choose integrating multiple expression image emotional distri-
bution instead of the greatest similarity as an alternative to this
image with high uncertainty, which could reduce the incidental
5

bias. Thus, the emotion probability distribution generated by the
KNN graph method is less biased than GCN. In the second stage,
the new constructed emotion label distribution would be able to
train directly in the traditional way by a CNN framework to com-
plete the facial expression recognition tasks. More details are to
be discussed in the subsequent subsections.

3.1. Emotion label distribution construction

3.1.1. AUGCN-based label distribution construction
AUs Graph Construction: Graph convolutional network is

introduced to explore geometry cues. The node representations
are then updated by propagating information between nodes. Let
U = (u1;u2, . . ., un) 2 Rn�z 0ð Þ represent the feature descriptions of
AUs, where n indicates the number of AUs and z is the dimension-
ality of AUs features. The function r �ð Þ on a graph G is adopted to
represent the GCN, which is different from the standard convolu-
tions operating on local region in an image. Each GCN layer could
be represented as

H lþ1ð Þ ¼ r AH lð ÞW lð Þ
� �

: ð1Þ

where A 2 Rn�n is referred to as the corresponding correlation
matrix, r �ð Þ denotes an activation function which is LeakyReLU

(Eleftheriadis et al., 2014a) in our experiments. H lð Þ 2 Rn�z lð Þ denotes

the matrix of activations in the lth layer, H 0ð Þ ¼ U;W lð Þ 2 Rn�z lþ1ð Þ

means a layer-specific trainable weight matrix and H lþ1ð Þ 2 Rn�z lþ1ð Þ

indicates the output of activation in the lþ 1ð Þth layer. The complex
inter-relationships of the nodes can be learned and modeled by
stacking multiple GCN layers. The final output is W Lð Þ 2 Rz Lð Þ�c ,
where c represents the class of expressions.

Moreover, the correlation matrix plays a pivotal role in GCN
which updates the representation of nodes through information
propagation between nodes. Therefore, constructing the correla-
tion matrix for the proposed model GCANet is crucial. In this paper,
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the correlation matrix A is built through a data-driven way. Specif-
ically, the correlation among AUs is defined by exploring their co-
occurrence patterns in the expression database. The correlation
dependency of AUs is modeled as conditional probability, i.e.,
p AUjjAUi
� �

which represents the probability of the occurrence of
AUj when the AUi appears. It should be noted that p AUjjAUi

� �
is

not equal to p AUijAUj
� �

. Then, the number of times that AUs occur
in the training dataset needs to be counted in order to obtain the
matrix M 2 Rn�n, which is used for the correlation matrix construc-
tion. Specifically, n stands for the quantity of AUs, Mij indicates the
concurring times of AUi and AUj. The next, the conditional proba-
bility pi is obtained via adopting AUs co-occurrence matrix, which
is calculated by

pi ¼ Mi=Ni; ð2Þ
where Mi represents the times that AUi occur in the given samples
and Ni means the number of occurrences of AUi in the training
dataset.

The correlation matrix A can be computed by

Aij ¼
pij=

Xn
j¼1;i–j

pij; i– j;

1� pij; i ¼ j:

8>>><
>>>:

ð3Þ

where pij ¼ p AUjjAUi
� �

denotes the probability of AUj when AUi

occurs. And AUi stands for the category of AU;n indicates the num-
ber of AU;n ¼ 1;2; . . . ;45.

Emotion Label Distribution Construction: Given an image X,
let Y= y1; y2; . . . ; ycf g indicate probability matrix of c possible basic
expressions, and Di ¼ di1;di2; � � �;dicf g denote the emotion label
distribution related to Xi. All CNN base frameworks could be
applied to capture the features from the facial images. Following
the works of (Chen et al., 2020; Bargal et al., 2016; Yang et al.,
2018), the ResNet-50 (He et al., 2016) is adopted to extract facial
features as the skeleton network in our experiments. The image
X is input with the 224� 224 pixels. Subsequently, the feature vec-
tor of the ‘‘conv5_x” layer from neural network is obtained, whose
size is 2;048� 7� 7. Then, the max-pooling and average-pooling
operations are combined as the hybrid pooling layer. The hybrid
pooling layer is utilized to obtain the image-level feature V, which
is defined as

V ¼ f HYP f cnn X; hcnnð Þð Þ 2 RD; ð4Þ
where hcnn represents model parameters, f cnn denotes the feature
vector of the ‘‘conv5_x” layer from neural network, f HYP indicates
the feature vector of the hybrid pooling layer, and D is set to
2,048. In this way, the inter-dependent emotion probability distri-
bution is learnt. According to the learned image feature representa-
tions V as well as the obtained weight matrix W, the predicted
emotion probability distribution ŷi can be expressed by

ŷi ¼WTV: ð5Þ
Moreover, we set the given label distribution of a facial image Xi as
yi 2 Rc , where yij denotes the probability of each emotion appear-
ance and is in the range [0, 1]. The constructed emotion label distri-
bution should conform to a principle that the sum of its element
needs to be equal to 1. Hence the normalized label distribution as,

gij ¼
exp ŷij

� �
X
k

exp ŷikð Þ
: ð6Þ

The given labels of datasets are considered in the proposed method
due to their credibility. Thus, the new constructed emotion label
distribution is defined as
6

dij ¼ egij þ 1� eð Þyij; ð7Þ
where gij represents the probability of emotion label distribution
generated by the GCN, yij is the probability of the given label distri-
bution of a facial image and e denotes the weight parameter bal-
anced the constructed emotion label distribution and the given
label distribution. In addition, our method requires only traditional
cross-entropy loss function to train the entire emotion label distri-
bution construction network, with the following equation

L ¼ �1
c

X
j

yij ln ŷij: ð8Þ

where cdenotes the classes of expressions, yij and ŷij represent the
ground truth and predicted label respectively.

3.1.2. KNN graphs-based label distribution construction
The KNN graphs are built for the images with high uncertainty

to construct their emotion label distributions, which are based on
an assumption that two adjacent facial images in the label space of
the AUs recognition should have close label distributions each
other. AUs recognition can depict expressions from different
angles. Furthermore, AUs descriptions are less ambiguous as well
as can be gained through well-developed methods effectively.
Given the training set S, let U = ui

1;u
i
2; � � �;ui

n

� � 2 Rn�z 0ð Þ represent
feature descriptions AUs, where ui

n denotes the feature descrip-

tions of nth AU of ith sample. There are numerous criteria could
be utilized to measure the distance between two feature vectors,
such as Eu-clidean distance, Manhattan distance, Chebyshev dis-
tance, cosine distance. The cosine distance is adopted to calculate
distance of two feature vectors. Inputting an image Xi, the approx-
imation of the feature distance is to induce the minimization of

fij ¼
Xn
t¼1

uit �u
j
t

kuitk�ku
j
tk
; if Xj 2 N ið Þ;

0; otherwise:

8><
>: ð9Þ

where N(i) denotes the set of k-nearest neighbors of Xi, and Xj is one
of the neighbors of Xi. The emotion label distribution is defined as

Di ¼
Xk

j¼1

fij
-j
� Dj: ð10Þ

where -j ¼
P

jfij means a normalization factor that makes sureP
jdij ¼ 1 . And Dj is the emotion label distribution of Xj.

3.1.3. Label distribution learning and optimization
Given an image Xi with the obtained emotion label distribution

Di, the x=W(X; h) is introduced as the activation of the last fully
connected layer in a deep CNN, where h denotes the vector of
model parameters. Then, the softmax function is adopted to turn
these activations into a probability distribution which is given as

p yjjXi; h
� � ¼ exp xið ÞX

c

exp xið Þ
: ð11Þ

Given the training set S= {(X1;D1), (X2;D2),���, (Xm;Dm)}, the aim of
the proposed structure is to obtain the parameter h to produce a

distribution bDi is close to the new constructed distribution Di.
Numerous metrics could be utilized to measure the distance
between two distribution. And the Kullback–Leibler (KL) divergence
is employed to quantify the distance between the new constructed

emotion label distribution Di and the distribution bDi from our
expression recognition model, which is defined as



Table 1
Notations used in the process of emotion label distribution construction.

Notation Description

n the number of AU
z dimensionality of AU feature
c number of categories of expression
Ni number of AU appearance
Y probability matrix of basic expression
Di label distribution matrix
V image level feature matrix
pij conditional probability
L number of layers of the model
r �ð Þ activation function
U 2 Rn�z feature matrix of AU
A 2 Rn�n correlation feature matrix
H 2 Rn�z activation matrix
W 2 Rz�c weighting matrix
M 2 Rn�n matrix of the number of occurrences of AU
ui feature representation of AUi

yi probability of expression category
dij feature representation of expression categories
gij ground truth
f HYP hybrid pooling layer
f cnn feature vectors of the network layer
hcnn model parameters
e weight parameters
fij cosine distance
-j normalization factor
S training set
z� model classification result
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KL DikD̂i

� �
¼

X
i

Di ln
Di

D̂i

: ð12Þ

Then, the best parameter h� is defined as

h� ¼ argmin
h

X
i

Di ln
Di

D̂i

¼ argmin
h

�
X
i

X
j

dij ln p yjjXi; h
� �

;
ð13Þ

Thus, the loss function of our framework is determined by

L hð Þ ¼ �
X
i

X
j

dij ln p yjjXi; h
� �

: ð14Þ

Optimization: To obtain the minimum value of L hð Þ, we com-
pute the partial derivatives of the loss function (14) adopting back
propagation and update the values of each parameter using the
derivatives and the learning rate. This iterative process aims to
reduce the value of the loss function and make the prediction
results of the model closer to the ground truth. The updating pro-
cess of hj can be represented as

hj  hj � adL hð Þ
dhj

; ð15Þ

where a stands for the learning rate. The partial derivative of the
proposed model regarding h could be calculated by the chain rule

from the parameters of the Lth layer to the first layer. The recursive
partial derivative equation of h is presented by

dL hð Þ
dhj

¼ �
X
i

X
j

dij
1

p yj jXi ;hð Þ
dp yj jXi ;hð Þ

dhj
; ð16Þ

where

dp yjjXi; h
� �
dhj

¼ p yjjXi; h
� �

s j¼kð Þ � p yjjXi; h
� �� �

; ð17Þ

where s j ¼ kð Þ is 1 if k = j, and 0 otherwise for any k and j. Once h is

learned, the distribution D̂ of any new sample X could be created by
a forward propagation of the model. Eventually, the output of the
proposed framework for a sample Xi is z�, where

z� ¼ argmax
i

D̂i: ð18Þ

where z� indicates the class of facial expression output by the
model. The formula symbol for the proposed method is summarized
in Table 1.

4. Experiment

4.1. Datasets

Four public facial expression datasets are applied to the perfor-
mance experiments of the proposed model.

RAF-DB (Li and Deng, 2018) is a large-scale and in-the-wild
database that comprises 30,000 facial images collected on the
Internet. The facial images are annotated with seven basic and ele-
ven compound emotion labels by 40 trained human coders. Specif-
ically, only 15,339 images, with the seven emotions label including
neutral, anger, disgust, surprise, fear, sadness, happiness, are used
in our experiment. It consists of 12,271 training images, and 3,068
testing images.

FERPlus (Barsoum et al., 2016) is also a large-scale dataset
extended from FER2013, which is downloaded from the Google
search engine. It consists of 28,709 training face samples, 3,589
validation facial images and 3,589 test face instances with eight
emotions when the contempt is included.
7

AffectNet (Mollahosseini et al., 2017) involves over 1,000,000
human face images gathered from the Internet with 1,250
emotion-related labels, which is the largest facial expression data-
set by far. Similar to FERPlus database, about 450,000 images are
manually annotated with eight emotion labels. About 280,000
training samples and 4,500 test samples with seven expressions
same as RAF-DB are used to evaluate the proposed model.

SFEW2.0 (Dhall et al., 2011) is built from the AFEW database by
selecting key frames, which contains 879 training face samples,
406 validation instances as well as 372 testing images. And each
facial image is labeled with one of the seven emotions like RAF-
DB dataset.

4.2. Implementation details

4.2.1. Data pre-processing
In the label distribution construction phase, we use ResNet-50,

which is pre-trained on the ImageNet dataset, as the backbone net-
work to extract facial features. The facial features are obtained
from the last pooling layer of the neural network. During the train-
ing process, we fine-tune ResNet-50 to adapt to our expression
recognition task. In addition, since the methods for extracting
AUs are well-developed, we employ the openface2.0 (Baltrusaitis
et al., 2018) to extract AUs and their histogram of oriented gradient
features in our experiments, which are then applied to build AUs
graph as well as KNN graphs.

In the training phase, the MTCNN algorithm is utilized to detect
facial landmarks adopted to align facial region for each facial
image. Then all of them are cropped and normalized to
224� 224 pixels. The pre-trained network is the same as the pre-
vious stage used for initializing the train model.

4.2.2. Hyperparameters selection
In the emotion label distribution construction phase, the margin

d1 and margin d2 are parameters used to divide high and low
uncertainty groups. The margin d1 can be either intended as a
learnable parameter or fixed as 0.20 by default. Similar to the
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margin d1, the margin d2 can be either fixed as 0.32 or intended as a
learnable parameter. Moreover, the e is utilized to balance the con-
structed emotion label distributions with the given labels. And the
e is set to 0.80 by default. Furthermore, the k set at 0.0001 by
default based on the settings of a large number of researches.
4.2.3. Experimental settings
The proposed model is implemented by using Pytorch which is

an open source machine learning library based on Torch. The
experiments are performed on a PC server with two Tesla V100-
SXM2-32 GB GPUs and 48 Intel(R) Xeon(R) Gold 6126
CPU@2.60 GHz. Moreover, the involved models are trained for
300 epochs. Compared to stochastic gradient descent, we consider
that the momentum method has a faster convergence rate, could
avoid oscillations and can jump out of the local optimal point.
Therefore, Momentum-based method is adopted as the optimizer
with a batch size of 128 and dropout rate of 0.5. And the momen-
tum is set to 0.9, the weight decay is 5e-4.
4.3. Experimental results analysis

4.3.1. Results on the RAF-DB dataset
The proposed GCANet was evaluated against five popular

approaches on the RAF-DB dataset, and the results are presented
in Table 2. The GCANet achieved a remarkable accuracy of
88.71%, which outperforms existing methods. This success is
attributed to the model’s effective representation of facial expres-
sions using geometric cues, and its use of GCNs to construct an
emotion label distribution, which facilitates learning of AU expres-
sions in a CNN framework. Additionally, the model demonstrates
improved performance on uncertain samples, enabling efficient
learning and improving overall accuracy. These results demon-
strate the effectiveness of the proposed method in addressing the
challenges of facial expression recognition in field datasets. In
comparison to ReCNN, which proposes a relationship-aware facial
expression recognition method based on key regions such as the
eye and mouth, our method explores the mapping relationship
between AUs and facial expressions at a deeper level, leveraging
geometric cues between AUs to achieve superior results. Moreover,
GCANet-Ri (The samples only satisfy rule (i) are considered to be
highly uncertain) and GCANet-Rii (The samples only satisfy rule
(ii) are considered to be highly uncertain) obtain a lower average
accuracy than GCANet (The samples that satisfy rule (i) or rule
(ii) are considered to be highly uncertain). This fact proves the
effectiveness of the proposed method for uncertainty suppression
through constructing emotion label distribution for the samples
with high uncertainty. And the performance of GCANet-Rii is a little
better than GCANet-Ri. On the one hand, the some of the samples
which satisfy rule (i) may meet rule (ii). On the other hand, the
samples which satisfy rule (i) are less than the samples which sat-
isfy rule (ii). In other word, although those ambiguous samples are
classified correctly, they deserve more attention. Training with
Table 2
Comparison results expression recognition of accuray (%) with existing methods on
RAF-DB database.

Methods Classes Validation ACC(%)

DLP-CNN(Li and Deng, 2018) 7 10 84.22
IPA2LT(Zeng et al., 2018) 7 10 86.77
gaCNN(Li et al., 2018) 7 10 85.07
RAN(Wang et al., 2020a) 7 10 86.90
ReCNN (Xia et al., 2021) 7 10 87.06
SCN(Wang et al., 2020b) 7 10 88.14
GCANet-Ri 7 10 86.57
GCANet-Rii 7 10 87.48
GCANet 7 10 88.71
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those samples of FER might lead to over-fitting on them. Moreover,
it has a poor performance for a model to learn discriminative facial
expression features.

The confusion matrices of the proposed GCANet are presented
in Fig. 5. Specifically, Fig. 5(d) displays the confusion matrix on
the RAF-DB dataset. The proposed GCANet approach achieves
96% accuracy for happiness expression, while attaining over 91%
accuracy for sadness, surprise expressions, and neutral. Anger
and disgust, on the other hand, exhibit relatively low recognition
accuracies, both of which are above 82%. Fear expression exhibits
the poorest performance at 79%, and is often misclassified as hap-
piness and neutral expressions. This may be attributed to the fact
that fear expression shares many similar appearance characteris-
tics with happiness and neutral expressions, resulting in
misclassifications.

4.3.2. Results on the AffectNet database
The experimental performances of the proposed method and

the results comparisons with the existing methods on AffectNet
are presented the database in Table 3. It can be observed that the
proposed method gains a competitive accuracy that is 60.13%.
Our proposed two-stage expression recognition method demon-
strates excellent generalization ability on the large-scale AffectNet
dataset, achieving a competitive accuracy of 60.13%. By including
GCN in the emotion label construction stage, the model’s ability
to learn the mapping relationship between AUs and expressions
during training is improved. This is attributed to the fact that the
distribution of expression labels constructed from geometric facial
cues is more consistent with the real label distribution of Affect-
Net. As a result, the model can extract deeper features related to
facial expressions and improve performance. In contrast to meth-
ods such as IDFL and Tri21, which use loss functions to enhance
inter-class separability and intra-class compactness, our approach
focuses on accurately exploring and obtaining AU representations
for face expression recognition, increasing inter-class distance
and improving accuracy. SCN (Wang et al., 2020b) method
achieves the highest accuracy at 60.23%, which can be attributed
to its self-attention mechanism and careful relabeling mechanism.
These are the only two approaches that exceed 60% accuracy. The
AffectNet dataset contains various challenges such as head pose
changes, occlusions, significant facial rotations, and complex envi-
ronmental factors. Thus, it is hard to obtain robust features for AUs
interpretation because subtle errors or inaccuracies caused by
complicated factors from each procedure are accumulated. Similar
to RAF-DB database, GCANet-Ri and GCANet-Rii gain lower average
accuracy than GCANet, and the performance of GCANet-Rii is a little
higher than GCANet-Ri. In general, the proposed model still
achieves competitive FER performance with the help of accurately
analyzing geometry cues and label distribution learning.

The confusion matrix of the proposed GCANet approach on
AffectNet dataset is exhibited in Fig. 5(b). The accuracy of the pro-
posed GCANet approach achieves 78% at sadness, followed over
60% for surprise, anger and happiness. Except for neutral and con-
tempt expression, the accuracies of remain expressions are less
than 50%. Disgust and neutral expressions are the most difficult
to recognize, particularly neutral expression takes the poorest per-
formance 45%. Generally, although not getting the best results, the
proposed GCANet method still improves the performance of each
type of expression as far as possible.

4.3.3. Results on the FERPLUS database
The performances of our proposed GCANet on FERplus dataset

compared to some of the latest methods are reported in Table 4.
The experimental results demonstrate that our proposed GCANet
model achieves an expression recognition accuracy of 89.25%,
which is a remarkably excellent performance. We hypothesize that



Fig. 5. Confusion matrices of the proposed GCANet on datasets. (a), (b), (c) and (d) represent FERplus, AffectNet, SFEW2.0 and RAF-DB, respectively.

Table 3
Comparison results expression recognition of accuray (%) with existing methods on
AffectNet database.

Methods Classes Validation ACC(%)

Upsample(Mollahosseini et al., 2017) 8 10 47.00
Weighted loss 8 10 58.00
IPA2LTz(Zeng et al., 2018) 7 10 55.11
RAN(Wang et al., 2020a) 8 10 52.97
RAN+(Wang et al., 2020a) 8 10 59.50
IDFL(Li et al., 2021) 8 10 59.20
Tri21(Xie et al., 2021) 8 10 60.12
SCN(Wang et al., 2020b) 8 10 60.23
GCANet-Ri 8 10 58.62
GCANet-Rii 8 10 57.48
GCANet 8 10 60.13

Table 4
Comparison results expression recognition of accuray (%) with existing methods on
FERplus database.

Methods Classes Validation ACC(%)

PLD�(Barsoum et al., 2016) 8 10 85.10
ResNet + VGG(Huang, 2017) 8 10 87.40
SeNet50�(Albanie et al., 2018) 8 10 88.80
RAN(Wang et al., 2020a) 8 10 88.55
RAN-VGG16 (Wang et al., 2020a) 8 10 89.55
SCN(Wang et al., 2020b) 8 10 89.35
GCANet-Ri 8 10 87.87
GCANet-Rii 8 10 88.59
GCANet 8 10 89.25
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the accuracy is due to the precise acquisition of the relationship
features between AUs and expressions in the emotion label distri-
bution construction module. Furthermore, we obtain our newly
constructed labels by applying weighted sums to the original
labels, which results in labels that are closer to the true labels, thus
improving the performance of the model. The highest accuracy at
89.55% is still attained by region attention network (RAN)-VGG16
(Wang et al., 2020a) model. This is largely due to the regional par-
tial loss function, which can encourage a high degree of attention
to the most valuable region. SCN (Wang et al., 2020b) achieves
the second highest accuracy, which might be partly owing to its
self-attention mechanism and careful relabeling mechanism. Fur-
thermore, GCANet-Ri and GCANet-Rii obtain lower average accu-
racy than GCANet, and the performance of GCANet-Ri is slightly
lower than GCANet-Rii similar to RAF-DB and AffectNet datasets.
Overall, the proposed model still has learned discriminative infor-
mation under complex rules on FERplus and obtains competitive
FER performance.
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Fig. 5(a) displays the confusion matrix of the proposed method
on the FERplus dataset. Among all expressions, happiness, surprise,
and disgust are relatively easier to recognize with accuracy over
96%. This may be attributed to the fact that the muscle movements
are relatively more intense compared to other expressions. Fur-
thermore, contempt is an expression that is extremely hard to
identify, with the poorest performance of 70%. Note that a primary
factor contributing to the low accuracy of contempt is its confusion
with disgust. This is probably due to the fact that they share close
muscle movements around the nose and mouth. In addition, there
are two expressions that are often confused, namely sadness and
fear, because these two expressions might share similar muscle
deformation around the mouth.

4.3.4. Results on the SFEW2.0 database
The performance results of the proposed GCANet compared

with prevalent approaches on SFEW2.0 dataset are provided in
Table 5. To the best of our knowledge, our model achieves the most
advanced results on the SFEW2.0 dataset with an accuracy of
56.43%. Unlike other datasets, the SFEW2.0 dataset contains facial
images with substantial depth rotation, critical region occlusion,
and diversity of head postures, which make it challenging to obtain
discriminative information for expression classification. As a result,
all experimental methods on this dataset suffer from reduced accu-
racy compared to other datasets, with most FER methods achieving
performance under 60%. Our model addresses the issues of small
sample size and large intra-class variation present in the dataset.
Furthermore, the experimental results demonstrate that our pro-
posed emotion label construction module effectively learns
expression feature information in small samples. As for our mod-
els, GCANet gains higher average accuracy than GCANet-Ri and
GCANet-Rii, and the performance of GCANet-Rii is a little bit higher
than GCANet-Ri similar to RAF-DB and AffectNet datasets. Finally,
despite the challenges in SFEW2.0, our GCANet model further
enhances the performance slightly through fusing geometry cues
as well as appearance into graph network and constructing label
distribution.

The confusion matrix of the GCANet on the SFEW2.0 database
provided in Fig. 5(c) demonstrates that the proposed method
achieves an accuracy of over 88% for happy expressions, followed
by the recognition result for anger, which is over 75%. The accuracy
for surprise is 62%, while the accuracy for the rest of the expression
categories is less than 60%. Disgust and fear are relatively difficult
for the network to recognize, with the lowest accuracy of 28% for
the disgust expression. Disgust is often misclassified as sadness
or neutral, and these three expressions are sometimes difficult to
distinguish, most likely due to the least amount of facial move-
ment. The confusion between fear, neutral, and anger is probably
because they share similar muscle deformation around the mouth,
eyes, and nose.



Table 5
Comparison results expression recognition of accuray (%) with existing methods on
SFEW2.0 database.

Methods Classes Validation ACC(%)

AUDN(Liu et al., 2013) 7 10 26.14
DLP-CNN(Kung et al., 2015) 7 10 51.05
EmotiW2015(Dhall et al., 2015) 7 10 56.19
GD-DNN(Mollahosseini et al., 2016) 7 10 47.70
SPDNET-4(Acharya et al., 2018) 7 10 58.14
WLS-RF(Dapogny et al., 2018) 7 10 37.10
DAUGN(Liu et al., 2019) 7 10 55.36
RAN(Wang et al., 2020a) 7 10 56.40
GCANet-Ri 7 10 53.92
GCANet-Rii 7 10 54.29
GCANet 7 10 56.43
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4.4. Ablation studies

4.4.1. Effectiveness of emotion label distribution construction module
To demonstrate the effectiveness of each module in GCANet, an

ablation study was conducted to investigate the AUGCN-based
label distribution construction and KNN graphs-based label distri-
bution construction modules on RAF-DB. The experimental results
are shown in Table 6. Several observations can be summarized as
follows. First, a baseline CNN framework (ResNet-50) pre-trained
on AffectNet was adopted in the first experiment (1st row). The
addition of the AUGCN-based label distribution construction mod-
ule (2nd row) into the basic architecture (1st row) resulted in a sig-
nificant improvement in accuracy, increasing the baseline CNN
framework from 84.20% to 87.96% on RAF-DB. This confirms that
the AUGCN-based label distribution construction module is the
most effective module for the proposed method. Moreover, the
result proves that it is reasonable to learn geometry cues through
the GCN architecture that was constructed to a certain extent. Fur-
thermore, the KNN graphs-based label distribution construction
module can further improve the accuracy by 0.75%. This demon-
strates the necessity of designing this module and the effectiveness
of uncertainty suppression.
Table 6
Evaluation of the emotion label distribution construction module of GCANet on RAF-
DB database.

AUGCN-based KNN graphs-based Accuracy (%)

� � 84.20p � 87.96p p
88.71

Fig. 6. Facial expression recognition accuracies with different parameters that are the ma
and the ratio e, respectively.
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4.4.2. Evaluation of the ratio d1; d2 and e
To investigate the effectiveness of various parameter configura-

tions d1; d2 and e utilized in the proposed method, three experi-
ments are performed on the FER task. And the accuracy rates of
these experiments on RAF-DB dataset are demonstrated in Fig. 6.
The d2 and the e are fixed as 0.33 and 0.80, as well as varied d1
in the set {0, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6} to train different models
in the first experiment (a). The average recognition accuracies are
given in Fig. 6(a). d1 = 0 means a sample would be assigned to the
highly uncertain group if maximum prediction probability is
greater than the probability of the given label. Large d1 results in
few samples with high uncertainty. Meanwhile, small d1 could
cause plenty of facial images with high uncertainty which may
damage the performance of the model. We obtain the best accu-
racy rate in 0.2. In the second experiment (b), the d1 is fixed as
0.2 and the e is fixed to 0.80, and evaluate d2 from 0.30 to 0.36.
The results are illustrated in Fig. 6(b), d2 = 0 means that the sample
is belong to the group with high uncertainty if the all prediction
probabilities are equal. This suggests that the model performs
the expression recognition by random guessing without learning
information. Small d2 results in many confusing samples being
divided into lowly uncertain group, which is prone to overfitting
on the highly uncertain samples which might be mislabeled. Large
d1 would lead to the easily identifiable or lowly uncertain samples
being wrongly grouped into the highly uncertain group, which may
greatly reduce the number of useful samples and do great harm to
the model to learn useful facial expression features. The best per-
formance is attained when d2 = 0.33, which confirms that the
parameter should be an appropriate value. In the third experiment
(c), the d1 is fixed as 0.2 and the d2 is set to 0.33, and the e is chan-
ged in {0.5, 0.6, 0.7, 0.8, 0.9, 1.0} to learn different models. Fig. 6(c)
plots the precision rates. And the new emotion label distribution
constructed in the proposed GCANet is made up of two parts, i.e,
emotion probability distribution and ground-truth label distribu-
tion. The parameter e can be considered a confidence level to bal-
ance the two parts, which has a considerable impact on
performance. And the best accuracy is archived when e is set to
0.8. This indicates that the emotion probability distribution gener-
ated by our model is with high confidence, the model we utilized to
construct the emotion probability distribution is reasonable.
4.4.3. Visualization analysis
To investigate the efficiency of the proposed model, the result-

ing 2-dimensional feature representation distributions learned
from different model are visualized in Fig. 7, where the samples
from the RAF-DB with various intensity are attached in different
expression categories. And the t-SNE (Maaten and Hinton, 2008)
is commonly used as a superior tool which is suitable for high
dimensional data reduction to two or three dimensions for
rgin d1 and d2, and the ratio e on the RAF-DB dataset. (a), (b) and (c) represent d1; d2



Fig. 7. Visualization study of the distribution of samples represented by (a) original pixels, (b) baseline CNN features and (c) GCANet features on the on the RAF-DB dataset.

Fig. 8. Comparison of the class-discriminative regions of the different expressions on RAF-DB database. (a) Sadness. (b) Disgust. (c) Disgust. (d) Neutral. (e) Fear. (f) Anger. (g)
Surprise. (h) Happiness.
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visualization. The purpose of visualization comparison is to
demonstrate the effectiveness of the proposed GCANet in sup-
pressing uncertainty. In order to better describe it, Fig. 7 illustrates
the distribution of facial images which are symbolized by raw pix-
els (original images), the feature distribution gained by baseCNN
(ResNet-50) while the feature distribution obtained by the GCANet,
respectively. As can be viewed, the instances which are symbolized
by raw pixels are extremely irregularly distributed in the space in
Fig. 7(a). The samples from RAF-DB database include various iden-
tities, poses, and lighting, and those deviations might not be
restrained in original facial images. Thus, there is an enormous
challenge in separating expressions of various categories in the
original pixel space. In Fig. 7(b), the distribution of features
obtained from the baseCNN model tends to form multiple clusters
in space. Most of the samples of the same expression type appear
in the same cluster. However, there are still overlapping represen-
tations in different clusters, as baseCNN may not be able to effec-
tively suppress uncertainty due to the ambiguity of facial
expressions, the subjectivity of annotators, and low-quality facial
images. In contrast to the raw pixels and baseCNN feature distribu-
tion, the GCANet feature distribution in Fig. 7(c) is more clearly
separated into several expression clusters. This is because the pro-
posed method aims to preserve the local structure of the deep fea-
tures, while implicitly focusing on the natural clusters in the data,
and maintaining smooth transitions within clusters by accurately
analyzing the potential geometric cues. This result indicates that
the proposed model is effective in suppressing uncertainty.

Furthermore, Fig. 8 presents the visualization results of guided
Grad-CAM maps and Grad-CAM maps (Selvaraju et al., 2017),
which visualize the attentive regions of the proposed GCANet
and baseCNN for some sample images. By comparing the results,
it can be observed that the baseline method is distracted by irrel-
evant features such as hairstyles, facial outlines, and backgrounds,
indicating that it is not effectively learning weight information
from the discriminative regions of the face for different expres-
sions. In contrast, the proposed GCANet is able to learn from more
informative regions such as the eye, nose, eyebrow, and mouth,
which contributes to its improved performance. In addition, the
proposed method pays attention to the important regions while
suppressing the less important regions, which facilitates more
accurate learning of facial features.
5. Conclusion

This study is based on the diverse combinations of AUs for the
same expression and the existence of the same AUs in different
expressions. A novel and efficient EFR framework based on geom-
etry cues-aware is proposed to suppress the uncertainty due to the
ambiguity of facial expressions, the subjectivity of annotators, and
low-quality facial images. This framework contains two important
stages: emotion label distribution construction and learning. First,
the given samples are divided into two sets (i.e., low and high
uncertainty) if they meet two rules. The GCN framework is
employed for the low uncertainty group to learn AUs graph repre-
sentation and predict latent motion label probabilities. The emo-
tion label distributions are subsequently produced through the
blending of the given label and the prediction latent label probabil-
ities. The k-nearest neighbor graphs are built to construct their
emotion label distributions. The main idea is to identify a facial
image in the low uncertainty group with the highest similarity
and then replace this image. The second stage, namely the con-
structed emotion label distribution, would be trained directly by
a CNN backbone to recognize expressions. In addition, the experi-
mental results on four public databases, including RAF-DB, FER-
Plus, AffectNet, and SFEW2.0, demonstrate that the proposed
12
method is advantageous and effective in facial expression recogni-
tion tasks.

The next step in the future work is to achieve a complete and
further robust automatic facial expression recognition model with
an accurate AU detection function to handle real-world uncertainty
effectively.
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