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Abstract—In edge computing, service providers aim to provide
users with low latency, high reliability, and more secure services
by deploying services to edge servers close to users. However,
scheduling service requests in edge computing scenarios is chal-
lenging because the edge service nodes typically have limited
resources. This limitation makes it difficult to simultaneously
optimize multiple objectives, including resource utilization, total
running time, and average waiting time. Existing methods are
insufficient to provide intelligent scheduling services that con-
sider multiple optimization objectives, resulting in unsatisfactory
scheduling results. To address this problem, we propose PSNet, a
deep reinforcement learning-based Pointer Scoring Network, for
edge task scheduling. PSNet integrates multiple pointer networks
to optimize multiple objectives and obtain final scheduling results.
Experiments carried out on three publicly available real-world
datasets show that our method can effectively solve the multi-
objective optimization problem on edge service requests, with an
11% improvement over several state-of-the-art methods.

Index Terms—Service Requests Scheduling, Edge Computing,
Pointer Scoring Network, Deep Reinforcement Learning

I. INTRODUCTION

With the development of Internet of Things (IoT) technolo-

gies and intelligent devices, edge computing has gained sig-

nificant attention. Unlike the classical cloud computing model,

edge computing deploys services to edge servers close to users

and offers more personalized and convenient services [1]. The

limited resources of edge servers, however, make dynamically

scheduling tasks on edge server nodes a significant challenge

as the number of accesses to edge servers increases [2].

There are two main types of approaches to scheduling

service requests: strategy-based approaches and machine-

learning approaches. Some strategy-based approaches [3]–

[9] focus on multi-objective optimization, while the majority

of these methods primarily address resource utilization or

running time, rather than considering multi-objective opti-

mization issues comprehensively. Additionally, strategy-based

algorithms often require extensive iteration time to obtain a

superior solution, which is incompatible with the low latency

requirements of service requests in edge contexts. On the other

hand, certain researchers [10]–[13] utilize deep learning tech-

niques to estimate task scheduling and predict future system

load, demonstrating significant performance improvements

over meta-heuristic algorithms. However, many deep learning-

based approaches struggle to achieve optimal scheduling per-

formance due to the absence of quality training tags. Some

methods attempt multi-objective optimization without fully

considering the relevance of objectives. Generally, the sub-

objectives of a multi-objective optimization problem contradict

each other, and improving one sub-objective may result in the

degradation of performance in another or several other sub-

objectives. Therefore, analyzing the correlation between the

optimization objectives can help in addressing the challenges

of multi-objective optimization problems.
Recently, traditional operating system scheduling techniques

have been adapted for edge computing environments. For

instance, deep reinforcement algorithms [14], [15] incorporate

the status of edge servers when training models by dividing

service request sequences into multiple time slices. However,

these approaches often concentrate only on the state of the

services and servers, neglecting the sequential nature of the

scheduling problem. In recent years, several studies have

considered the serialization issues associated with service re-

quests, which can make it challenging for a server to schedule

requests over time slices. A recent work attempts to address the

issue of service request scheduling using deep reinforcement

learning-enhanced pointer networks [16], [17]. The study con-

siders factors such as resource utilization, total running time,

and average waiting time as separate optimization objectives,

and combines multiple optimization objectives through linear

weighting. However, it is challenging to determine the optimal

weights and requires a significant number of experiments.

Additionally, finding parameter weights that can be effectively

applied across various experimental scenarios is also challeng-

ing.
To address these challenges, we introduce PSNet, a novel

approach that utilizes deep reinforcement learning techniques

to integrate multiple pointer networks. By incorporating a

sophisticated scoring mechanism, PSNet generates a compre-

hensive score that facilitates optimal scheduling outcomes. Our

pointer network model consists of several networks, each of

which is optimized for a specific indicator to accommodate

the complexities of multi-objective optimization problems. The

main contributions of this paper are outlined as follows:

• We conduct an experimental analysis to examine the cor-

relation between multiple optimization objectives, which

can help reduce the number of optimization objectives

required.

• We propose a multiple pointer networks model specifi-

cally designed for multi-objective optimization problems,

with each network optimized for a different metric.

• We perform experiments on three publicly available
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Fig. 1. A typical service requests schedule scenario in edge computing

datasets, and the results demonstrate that our proposed

approach outperforms several state-of-the-art methods.

The rest of the paper is organized as follows. In Section

II, the scenario and the problem are described. A detailed

description of the proposed model is provided in Section

III. Section IV reports the experimental results on real-world

datasets. More information about the related work can be

found in Section V. Section VI concludes this study and

introduces the future work.

II. PROBLEM FORMULATION

In this section, we first highlight the significance of the

service request scheduling problem in edge computing. We

then formalize the edge service request scheduling problem

and propose an optimization objective for this problem, which

serves as the basis for introducing our subsequent model.

A. Scenario Description

We utilize the scenario of autonomous driving as an example

to illustrate the significance of service request scheduling in

edge computing environments. In Fig. 1, we present a typical

service request scheduling scenario in edge computing, where

vehicles can establish communication with their surroundings

and offer various value-added services. Caching content at

the edge, particularly music, video, and web content, can

enhance the performance of content distribution. The reduction

in latency can make a considerable impact. Service content

providers are in search of a content delivery network (CDN)

with an extensive distribution footprint, ensuring network

adaptability and customization to meet user traffic demand.

With the growing popularity of autopilot, the number of

vehicles connected to the network is increasing, resulting in

a substantial surge in communication data. Traditional cloud

computing technologies are unable to meet the criteria of low

latency and high reliability set by the IoT.

B. Problem Definition

In this section, we define the key concepts and optimization

objectives in the edge computing scenario.

1) Edge Server: Services in the edge environment are

deployed in the edge servers.

E = {e1, e2, . . . , em} . (1)

Each edge server consists of a quadratic vector representing

the edge server’s CPU capacity consumption, I/O occupation,

bandwidth, and memory usage. It is expressed as follows:

ei = (ci, oi, bi,mi). (2)

This gives a formal representation of the edge server, and the

request for the edge service is presented next.

2) Service Request: We suppose that n service requests are

awaiting for execution at a particular edge server at a given

time. The service request set S is defined as follows:

S = {s1, s2, . . . , sn}. (3)

We denote each request sj by a vector with seven dimensions

as:

sj = (cj , oj , bj ,mj , τj , tj , πj) , (4)

where the first four-dimensional vectors (cj , oj , bj ,mj) de-

note, respectively, the CPU capacity consumption, I/O occu-

pation, bandwidth, and memory usage required to execute the

request sj . τj denotes the arrival time of the request sj to

the edge server. tj indicates the amount of time necessary

to execute sj . Calculated in accordance with the coverage

connection between service requests and edge servers, πj

represents the set of edge servers available to handle the

request. πj is represented as:

πj =
{
ei | li ≥ ‖αj − βj‖2 , ei ∈ E

}
, (5)

where li denotes the edge server’s coverage radius, αj denotes

the location of the edge server ei, and βj denotes the service

request’s coordinates.

3) Optimization objectives: The scheduling problem in

mobile edge computing involves three optimization objectives:

resource utilization, total running time, and average waiting

time. By studying the task scheduling problem in a real-world

setting, we can identify the following principles. The running

time tends to change proportionally to resource utilization:

as resource utilization increases, the running time tends to be

shorter, and as resource utilization decreases, the running time

tends to be longer. This can be compared to the traditional box-

ing problem, where the number of required boxes depends on

the space utilization inside each box. Higher space utilization

results in fewer boxes needed, while lower space utilization

requires more boxes.

In our study, we have reduced the three optimization objec-

tives to two: total running time and average waiting time. The

specific experimental analysis of these objectives is presented

in the experimental section.

The total running time is calculated by averaging the

response times of all servers. The collection of edge servers

E is known without taking the request timeout into account.

The operating time cost set for edge servers corresponding
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Fig. 2. Framework of PSNet

to (S,CS) is represented by the returned result τmap. Net-

Running uses the total running time as its reward function,

defined as follows.

rewardNet−Running =
1

m

m∑
i=1

τmapi
, (6)

where τmapi is the i-th edge server’s current operat-

ing time. The objective of the optimization is to lower

rewardNet−Running .

Net-Waiting uses the average waiting time as its reward

function, defined as follows:

rewardNet−Waiting =
1

m

m∑
j=1

(
1

n

n∑
i=1

Wi), (7)

where the waiting time Wi of a service request sj represents

the time between the receipt of the request and its fulfillment

by the edge server.

III. THE PROPOSED PSNET METHOD

The proposed PSNet comprises three components, as illus-

trated in Fig. 2. The first component is data processing, where

the user requests and server information are taken as inputs.

The output of this component is the order of request processing

after intelligent scheduling. The second component involves

the construction of pointer networks, namely Net-Running and

Net-Waiting. These networks are designed to optimize the two

objectives of total running time and average waiting time.

The third component integrates the networks with different

objectives using a scoring mechanism. This mechanism is

trained through deep reinforcement learning to obtain the final

output request sequence.

A. Data Processing

The edge server closest to the service request sj in the set of

S is prioritized. The model scheduling technique outputs the

service request subscript sequence. The report shows the edge

server set E execution sequence for microservice request set

S. When the edge server has enough resources, it may perform

many service requests in the parallel output:

CS = { C1 , C2 , . . . , Cn} (8)

In a multi-server scenario, the edge server independently

executes the model scheduling strategy. The servers generate

output denoted as CS . The solution sequence CS corresponds

to the input request set S and has the same length as S. Similar

to the traveling salesman problem, CS represents the indices

of the service requests in our context.

B. Pointer Network

In the previous section, we transformed the original three

optimization objectives into two: total running time and aver-

age waiting time. However, using linear weighting to address

the challenges of edge multi-objective optimization has its

drawbacks. It is challenging to determine the optimal weights,

which requires a significant number of experiments. To over-

come these limitations, we propose a new network model

called the Pointer Scoring Network. This model enhances the
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single actor-critic network by introducing two groups: Net-

Running and Net-Waiting. Each group consists of actor-critic

networks that specifically focus on the optimization objectives

of total running time and average waiting time, respectively.

Both the Net-Running and Net-Waiting network models

follow the structure of the pointer network in RLPNet [16],

with the only difference being the reward function utilized dur-

ing deep reinforcement learning training. The pointer network

is a neural network architecture that simplifies the attention

mechanism by interpreting the attention weights aij as pointers

to elements in the input sequence, rather than as a weighted

sum of the input sequence elements. In the pointer network,

the attention is controlled by the following mechanism.

ui
j = vT tanh ( W1 ej + W2di ) i, j ∈ (1, . . . , n),

(9)

where parameters vT , W1 and W2 in Equation (9) can be

trained by the model.

aij = softmax (ui) i, j ∈ (1, . . . , n), (10)

where aij is the weight the decoder placed on the j−th element

of the input sequence at the i− th stage.

d′i =

n∑
j=1

aijej . (11)

At the i − th iteration of the decoder, the resulting d′i is

combined with the output di of the hidden layer.

p ( Ci |C1 , . . . , Ci−1, Q ) = softmax (ui). (12)

For each individual actor-critic network, such as Net-

Running and Net-Waiting, the actor-network is trained using

the policy gradient algorithm, while the critic network is

trained using the stochastic gradient algorithm. The training

results obtained from the critic network are then used as the

baseline function during the training of the actor-network.

C. Scoring Mechanism

We design a scoring mechanism for PSNet to integrate

the intermediate results output from the two networks, Net-

Running and Net-Waiting, into a final result, as follows.

The intermediate results of the existing Net-Running network

{x1, x2, . . . , xn}, for the service request corresponding to

x1, its score is n. for the service, a request corresponding to

x2, its score is n − 1. For each service request, the score

can be calculated as follow: score1 = {n, n − 1, · · · , 1}.
The more preceding elements in the sequence, the higher the

score; the more posterior elements, the lower the score. The

same scoring strategy is applied to the intermediate results

{y1, y2, . . . , yn} of the Net-Waiting network to obtain the

scoring set score2. The different scores of the same service

request s in score1 and score2 are summed to obtain the total

score of the service request. The full ratings of all service

requests are sorted from the highest to the lowest, and the

final output sequence {r1, r2, . . . , rn} is obtained, which is

fed back to Net-Running and Net-Waiting for training.

Fig. 3. Illustration of the scoring process in PSNet

Fig. 3 shows a specific scoring process with the input

sequence length of five as an example. As we can see

from the figure, when five requests enter, the corresponding

intermediate results will first be calculated by Net-Running

and Net-Waiting, respectively. This intermediate result will

correspond to a specific score. Finally, all requests will be

sorted and output based on the final score to get the order of

service request execution after scheduling.

D. Model Training

The overall training process of PSNet is summa-

rized as follows: the input service request sequence

{s1, s2, . . . , sn} is input to Net-Running and Net-Waiting,

respectively, and the intermediate results {x1, x2, . . . , xn}
and {y1, y2, . . . , yn}, where each element represents a ser-

vice request in the input sequence. After the scoring process,

the two intermediate results are combined into the final result

{r1, r2, . . . , rn}, where each element also represents a ser-

vice request in the input sequence. The final results are fed

to Net-Running and Net-Waiting for training, and the pseudo-

code of the training process is shown in Algorithm 1.

For the Net-Running and Net-Waiting networks, both con-

sist of two stages: Actor and Critic. The key distinction

lies in the reward function used during their deep reinforce-

ment learning training. Specifically, Net-Running employs the

reward function of total running time as its optimization

objective, while Net-Waiting utilizes the reward function of

average waiting time as its optimization objective.

The Actor stage follows a specific process, which is defined

as follows: The original input data undergoes an embedding

operation and is then fed into the encoder. The encoder,

essentially a recurrent neural network consisting of LSTM

neurons, produces the hidden layer state h and intermediate
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Algorithm 1: Training Process of PSNet

Input: Define Q as the training samples in each round;

N as the number of training rounds;

B as the size of the input batch in each round.

Output: the chosen edge server’s id

1 begin
2 Initialize Net-Running network with actor-network

parameter θrunning , Commenter network

parameter θv running, Net-Waiting network

with actor-network parameter θwaiting ,

Commenter network parameter θv waiting;

3 for step = 1 to N do
4 /* Score Process */
5 for i ∈ {1, . . . , B } do
6 Ci

Q
r ← ActorR(Q)

7 Ci
Q
w ← ActorW (Q)

8 Ci
Q
s ← Score(Ci

Q
R, Ci

Q
w)

9 /* Net-Running Training */
10 for i ∈ {1, . . . , B} do
11 bi r ← Critic R(Q)

12 jθ−r ← 1
B

∑B
i=1 (RN−R

(
CQ

i scored

∣∣∣Qi

)
−

13 bir)∇θ logpθ

(
CQ

i scored

∣∣∣Qi

)

14 lθv−r ←
1
B

∑B
i=1 ||bθv (Qi)−RN−R

(
CQ

i scored

∣∣∣Qi

)
||
2

2
15 θr ← ADAM(θ, jθ−r)
16 θvr ← ADAM(θv,∇θv , lθv−r)

17 /* Net-Waiting Training */
18 for i ∈ {1, . . . , B} do
19 biw ← CriticW (Q)
20 jθ−w ←

1
B

∑B
i=1 (RN−W

(
CQ

i scored

∣∣∣Qi

)
−

21 biw)∇θ logpθ

(
CQ

i scored

∣∣∣Qi

)

22 lθv−w ←
1
B

∑B
i=1 ||bθv (Qi)−RN−W

(
CQ

i scored

∣∣∣Qi

)
||
2

2
23 θw(θ, jθ−w)
24 θvw(θv,∇θv , lθv−w)

vector c. The process iterates for n times, where n represents

the number of hidden layers, and its value equals the length

of the input task sequence. During each iteration, h and c
serve as input to the decoder, which generates the hidden

layer state and the intermediate vector for the current round

of decoding. Similar to the encoder, the decoder is a recurrent

neural network composed of LSTM neurons. The values of h
and c are updated with the output of the current round of the

decoder, serving as input for the subsequent round. The target

tasks for the current round are selected through sampling or a

greedy approach. After n rounds of iterations, an output task

sequence consisting of n target tasks is obtained.

The Critic stage shares similarities with the Actor stage

in the first half. After performing the embedding operation

on the original input data, it is also input into the encoder.

Then the final hidden layer state h of the encoder is obtained,

which is input into a deep neural network (DNN). The input

layer of the deep neural network has the same number of

neurons as the number of hidden layers, which corresponds to

the length of the input service requests sequence. The output

layer of the DNN consists of a single neuron, representing

the predicted value of the critic network. This predicted value

serves as the baseline function in the strategy gradient descent

algorithm, assisting the Actor-network during training. The

Critic-network is trained independently using the stochastic

gradient descent algorithm.

IV. EXPERIMENTS

In this section, we conducted experiments using three real-

world datasets. We designed three sets of experiments to

address three specific research questions.

• RQ1: Is there a correlation between different optimization

objectives?

• RQ2: Can the proposed RSNet perform better than cur-

rent methods at various data scales?

• RQ3: Can PSNet effectively solve the multi-objective op-

timization problem of edge service requests scheduling?

In order to investigate the relationship between the three

optimization objectives mentioned in this problem, we formu-

lated RQ1 to explore their interrelationships through a two-by-

two comparison experiment. Building upon the insights gained

from RQ1, we proceeded to conduct experiments using three

distinct real-world datasets. The objective was to validate the

effectiveness of our proposed method by comparing it with

other existing methods. The results obtained from RQ1 and

RQ2 informed our investigation into whether the proposed

PSNet method is applicable and beneficial for solving multi-

objective optimization problems, which constituted RQ3.

A. Data Sets

We constructed experiments on three publicly available real

data sets to validate the questions above. The data marked with

* in the Table I indicates the data constructed from the existing

data combined with the real environment; the data marked with

# indicates the data extracted and calculated from the existing

data.

EUA-dataset [18]: In the Melbourne Central Business

District, we utilized the EUA-dataset, which provides the geo-

graphic positions of 816 mobile users and 125 base stations. To

simulate real-world scenarios, we generated 500,000 service

requests from the 816 end-users included in the dataset. These

service requests were directed towards the 125 base stations,

which served as edge servers for receiving and processing the

requests. The simulation took into account the end-user and

base station information available in the dataset, as well as the

characteristics of service requests in the actual environment.
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TABLE I
EXPERIMENTAL DATA SETS AND PROCESSING

Data #Users #Edge Servers #Trace #Requests #Records
EUA 816 125 0 500,000* 500,000

Google
Cluster
Trace

500* 12,500 (100#) 1,000,000 400,000# 400,000

Alibaba
Cluster
Trace

500* 4,000 (100#) 1,000,000 400,000* 400,000*

Google Cluster Trace [19]: This dataset originates from an

edge-cloud cooperation system, which was initially designed

for cloud environments but later expanded to incorporate

data from edge contexts. The trace information includes over

1,000,000 records from 12,500 machines within the Google

cloud cluster. To focus on edge servers, we randomly sampled

100 out of the 12,500 machines. We extracted all the records

marked as successful in the trace and considered them as

service requests. This resulted in a total of 400,000 service

request records. Finally, we selected 500 end users to send

service requests based on the relevant characteristics of the

successful service request records.

Alibaba Cluster Trace [20]: The dataset used in this study

contains information about the number of CPU cores, RAM

size, and disk size of multiple edge servers. Additionally, it

includes dynamic server information, such as the resource

utilization rate at different timestamps. Specifically, the Al-

ibaba Cluster Trace dataset logs the load of 4,000 machines

within the Alibaba cluster over an 8-day period, resulting in

over 1,000,000 records. To simplify the dataset, we randomly

selected 100 machines from the original 4,000 machines to

represent the edge servers. By combining the machine load

data with the characteristics of service requests in a real-world

environment, we generated a dataset consisting of 400,000

service request records. Furthermore, we selected 500 end

users based on the combined characteristics of the machine

load and the service request to send service requests.

B. Baseline Approaches

The five alternatives listed below are chosen for compar-

ison with our proposed PSNet. The UNIX operating system

employs the multi-level feedback queue scheduling technique,

which is a standard CPU processor scheduling mechanism.

• FCFS [21] (First-Come, First-Served): The edge server

processes all incoming service requests in the order they

are received. To put it another way, service requests that

arrive initially are processed immediately, while those

that come later are processed after that.

• HRRN [22] (High Response Ratio Next): The greater the

response ratio, the higher the priority it will be given in

terms of waiting time and running time.

• OnPQ [19]: The scheduling process is depicted as a

Markov decision-making process. Energy usage and av-

erage wait times for service requests are both lowered by

using the Q-Learning algorithm.

• OnDisc [23] This sensitivity to delay is shown as a

weighted reaction time. The notion of greatest residual

density first (HRDF) is used during scheduling.

• RLPNet [16]: A multi-objective optimization model

based on pointer networks to solve the scheduling of

service requests problem. The WLC model reduces the

complex multi-objective optimization issue to a simpler

one.

We compared with the FCFS and HRRN algorithms, since the

subject presented in this work is also fundamentally a service

requests scheduling problem. OnPQ, OnDisc, and RLPNet,

the three most recent machine learning-based techniques, were

also used for comparison.

C. Parameter Settings

We have set some essential parameters in for the exper-

imental process. For the training part of the network, the

network consists of Actor network and Critic network, and

both Actor and Critic are RNN networks with LSTM as the

unit. The embedding layer and hidden layer of the LSTM have

128 neurons each, and the softmax temperature is set to 1.0.

The optimizer used is Adam, which combines the strengths of

Adagrad and RMSprop to handle sparse gradients and non-

smooth targets, respectively. Adam also adjusts the learning

rate automatically and converges faster, making it suitable

for complex networks. For the sampling strategy, a greedy

approach is employed. The learning rate determines the size

of each step, and an appropriate value needs to be chosen

for tuning. The initial learning rate is 0.0001, with a decay

coefficient of 0.96 and a decay period of 1,000. To prevent

large jitter during the training process, the L2 regularization

method is applied. Due to the large amount of data, a smaller

batch size of 128 is chosen to avoid memory overflow. The

learning step is 20,000.

D. Optimization of Objective Correlation Analysis (RQ1)

Fig. 4. Correlation verification of resource utilization with total running time

Through the analysis of service request scheduling problems

in real environments, we observe the following patterns: as the

resource utilization increases, the running time tends to de-

crease accordingly, while as the resource utilization decreases,

the running time tends to increase accordingly. The analogy

can be made with the classical boxing problem. When the total

amount of goods is fixed, there is a correlation between space

utilization inside the box and the number of required packages.

Specifically, higher space utilization leads to a smaller number
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Fig. 5. Experimental comparison results of the correlation between optimization objectives

of required packages, while lower space utilization necessitates

a larger number of boxes.

To provide empirical evidence for our study, we investigated

the correlation between two optimization objectives: resource

utilization and total running time. In order to establish a

clear focus, we modified the original reward formula to solely

consider the optimization objective of total running time. This

modification enabled RLPNet to undergo independent training

with a specific emphasis on this objective. Throughout the

training process, we retained both the resource utilization data

and the total running time data derived from each training

iteration.

There are several methods to analyze the correlation of

parameters, the most commonly used is the Pearson correlation

coefficient, who measures the linear correlation between two

variables (e.g., α and β). It is also called a parametric

correlation test because it depends on the distribution of the

data. This method can only be applied when both α and β are

sampled from normal distributions. The plot of β = f(α) is

called a linear regression curve.

The correlation of parameters is analyzed using the Pearson

correlation, which is defined as:

r =

∑
(α−mα)(β −mβ)√∑

(α−mα)
2 ∑

(β −mβ)
2
, (13)

where α and β are two vectors of length n, and mα and mβ

correspond to the mean values with α and β, respectively.

The p-value of the correlation can be determined by Equation

(14). We first queried the correlation coefficient table, where

the degrees of freedom are: df = n−2 and n is the

number of observations (length) in the α and β variables.

Next, we calculated the ζ-value using the following approach:

the corresponding p-value is determined by referring to the

ζ-distribution table.

ζ =
r√

1− r2

√
n− 2. (14)

As is commonly known, when the p-value is closer to 1 or

-1, it indicates a higher correlation between the two variables.

On the other hand, when the p-value is closer to 0, it suggests

a lower correlation between the variables.

In Fig. 4, we can see the results of the correlation verifica-

tion of the resource utilization with the other two optimization

objectives. The Pearson correlation coefficient for the original

result is -0.8188. However, when we average the results every

100 rounds out of the 20,000 rounds, the Pearson correlation

coefficient becomes -0.9924.

Additionally, in our correlation experiment, PSNet un-

dergoes independent training consisting of 20,000 rounds.

Throughout the training process, we save the data for resource

utilization, total running time, and average waiting time from

each round. We then utilize this data to generate a scatter

diagram, as depicted in Fig. 5 (a), showcasing the resource

utilization rate and total running time for every 100 rounds.

Moreover, we conduct Pearson correlation analysis based on

Equation (15).

ρ (X, Y ) =
n
∑n

1 XY −∑n
1 XY√

(n
∑n

1 X
2 − (

∑n
1 X)

2
)(n

∑n
1 Y

2 − (
∑n

1 Y )
2
)
,

(15)

where X and Y are the two variables to be analyzed. The re-

sulting Pearson correlation coefficient is -0.97885. We took out

the data of resource utilization rate and average waiting time

to draw a scatter diagram, as shown in Fig. 5(b), conducted

Pearson correlation analysis, and got a Pearson correlation

coefficient of -0.00805. We took the data of total running time

and average waiting time to draw a scatter diagram, as shown

in Fig. 5(c), and performed Pearson correlation analysis. The

Pearson correlation coefficient is 0.032777.

Through the aforementioned experiments, we observed a

negative correlation between running time and resource uti-

lization. Specifically, as the server’s running time increases,

the utilization of resources decreases. This finding implies

that optimizing both metrics can be achieved by enhancing

resource utilization or reducing running time. As a result, our

optimization objective becomes more precise and concise.

E. PSNet Performance on Different Data Sets (RQ2)

In terms of resource consumption, running time, and waiting

time, RSPNet outperforms competing algorithms regardless of

the value of n or m, as shown by the experimental findings.

Because OnDisc seeks to reduce weighted response time,

its latency performance is often superior to that of other

algorithms, except for RLPNet. However, the OnDisc’s success

with other objectives is somewhat subpar. Since OnPQ must
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Fig. 6. Experimental results of controlling the number of edge servers m = 5

consolidate numerous service requests into a single batch

before passing it to the edge server for processing, the next

batch may only be processed after the previous batch has

been completed. Since the execution time needed by specific

service requests varies, an execution strategy will result in

more fantastic idle time inside an edge server, resulting in

poor performance of OnPQ for each optimization target.

The performance of HRRN and FCFS, two conventional

work scheduling algorithms inside operating systems, is pretty

excellent and within the range of expectations. Regarding

waiting time, HRRN is marginally superior to FCFS owing

to the consideration of the response ratio. First, the number

of edge servers is controlled at m and the number of service

requests is divided into four groups: (300∼350),(350∼400),

(400∼450), and (450∼500). We verify the performance of

different algorithms under each optimization objective, as

shown in Fig. 6. Among them, Fig. 6(a) shows the performance

effect under the EUA dataset; Fig. 6(b) shows the performance

effect under the Google Cluster Trace dataset; And the Fig.

6(c) shows the performance effect under the Alibaba Cluster

Trace dataset.

As can be observed from the figure, the level of resource use

for each of the various approaches steadily grows along with

the number of service requests. The approach that we have

proposed for PSNet is the one that has the highest resource

usage on all three different datasets, basically above 90%.

The amount of time it takes for the system to run increases

proportionately as the number of service requests increases

from 300 to 500; our PSNet takes the least amount of time

for varying data sets containing the same number of tasks. The

amount of time that customers have to wait in line is gradually

growing longer as the number of services available rises. Our

method performs the best on the Google trace dataset with

the shortest average waiting time, but the RLPNet’s method

performs better on the EUA dataset and the Alibaba trace

dataset because we add the scoring mechanism to the pointer

network. The approach used by RLPNet in synthesizing the

multi-objective optimization results is WLC, and although as

many as twenty-seven enumeration experiments are conducted

in selecting the three weight coefficients, there is still no

way to guarantee that the final results are optimal. Our

proposed PSNet is better than RLPNet in terms of the resource

utilization and running time on the Alibaba dataset, except

for the waiting time. In fact, this is a normal phenomenon

and it precisely shows that RLPNet has some limitations in

multi-objective optimization by weighting parameters, and the
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Fig. 7. Experimental results for controlling the number of service requests n = 500

selected set of metrics is over-emphasized.

Based on the observation from Fig.6, it is evident that PSNet

exhibits a shorter waiting time in comparison to OnDisc,

OnPQ, HRRN, and FCFS approaches. However, it has a longer

waiting time compared to the RLPNet approach. Both PSNet

and RLPNet utilize deep reinforcement learning and pointer

network methods, demonstrating the effectiveness of these

techniques. The reason for PSNet’s longer waiting time is due

to its increased use of pointer network computing processes.

Although this results in improved resource utilization and

reduced running time, it also lengthens the waiting time in

comparison to RLPNet.

To validate the algorithm performance under different num-

bers of edge servers, we have designed the second set of

experiments. This experiment involves testing the algorithm

using varying numbers of edge servers (m = 5, 7, 9, 11, 13, 15)

and comparing their performance. The reason for choosing

m = 500 is that this provides a large enough sample for

a more adequate training of our method, while we also

chose other values and conducted experiments with the same

conclusion. The performance of different algorithms under

each optimization objective is verified, as shown in Fig. 7. Fig.

7(a) shows the performance effect under the EUA dataset, Fig.

7(b) shows the performance effect under the Google Cluster

Trace data set, and Fig. 7(c) shows the performance effect

under the Alibaba Cluster Trace data set.

We have formulated the service request scheduling problem

in the edge environment as a serialized multi-objective opti-

mization problem and proposed a new pointer network model,

named PSNet, to tackle this problem. Our experiments show

that PSNet outperforms RLPNet in each optimization objective

on the Google Cluster Trace dataset. Moreover, PSNet also

outperforms RLPNet on the EUA dataset and the Alibaba

dataset, exhibiting superior performance in terms of resource

utilization and total running time, but slightly weaker perfor-

mance on average waiting time. These findings suggest that

PSNet has the potential to be a promising solution for service

request scheduling problems in the edge. However, it should

be noted that the effectiveness of the proposed model may

depend on the specific dataset and problem characteristics.

F. Analysis of The Effectiveness of Multi-objective Optimiza-
tion (RQ3)

In order to verify the effectiveness of PSNet for solving

multi-objective optimization problems, we designed a set of

independent experiments: PSNet was trained using the Google

dataset with a batch size of 128 and 10,000 rounds. The values

of the total running time and the average waiting time after
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each round of training were counted and averaged every 100

rounds to form a training curve, as shown in Fig 8. The training

curve of the total running time is shown in Fig. 8(a), and

the training curve of the average waiting time is shown in

Fig. 8(b). As can be seen in Fig. 8(a), when the number of

Fig. 8. The training curve of PSNet

training rounds is relatively small, the overall running time

of the system is still relatively high, with the highest value

around 440. As the training proceeds, it decreases rapidly in

the range of steps taken from 1-17, fluctuates down from inside

the range of 21-97, and finally stabilizes at around 415.

Fig. 8(b) shows that as the training steps increase, the overall

waiting time is decreasing, especially in the first ten rounds at

the very beginning, and his decrease is particularly obvious.

Subsequently, between 10 and 80, the average waiting time

fluctuates but is stable overall. From 81 to 100, the average

wait time decreases again.

The experimental results show that PSNet can successfully

optimize the two metrics of total running time and average

waiting time after training, which shows the effectiveness of

PSNet on the multi-objective optimization problem.

V. RELATED WORK

Task scheduling in edge computing has been a hot topic in

the past years. The works in this area can be categorized into

two types: strategy-based and deep learning-based approaches.

A. Strategy-based Approaches

In edge computing, strategy-based algorithms [4]–[7], [24],

[25] have been widely used in job scheduling. For example, the

multi-service task computing offloading algorithm (MTCOA)

proposed by Song et al. [5], contemplating computational

cost and resource use, establishes optimal solutions to of-

fload multi-service tasks. Wang et al. [6] suggested a task

processing delay-based simulated annealing fusion approach

for edge computing resource efficiency, processing delays,

and uneven system load. In [7], Liao et al. characterized

the dependence linkages between application activities for

mobile edge computing settings as directed acyclic networks

and resolved prioritization-based application assignments and

scheduling issues for the timeout rate of jobs using an online

method. However, this strategy only focuses on optimizing

the workflow completion time. FCFS [21] is a method where

all incoming service requests are processed in the order they

were received by the edge server. In [22], Tan et al. prioritize

jobs with higher response ratios regarding waiting and running

times.

Overall, the above-mentioned strategy-based approaches

have contributed significantly to advancing task scheduling

research in edge computing. However, their analysis is often

limited to optimization problems with narrow objectives, over-

looking the optimization of multiple objectives. Due to their

longer iteration times, strategy-based algorithms may also be

incompatible with low-latency service requests at the edge.

B. Deep Learning-based Approaches

In recent years, the applications of deep learning to resource

scheduling and service request scheduling in the context of

edge computing and the IoT have received increasing attention

from researchers. A number of studies have demonstrated

that deep learning-based scheduling algorithms can outperform

traditional strategy-based algorithms in terms of performance.

For example, Wang et al. [26] utilized tools from matches the-

ory and deep reinforcement learning to create a two-timescale

mechanism for resource scheduling. They proposed A3c-do, a

residual recurrent neural network that can allocate resources in

the IoT efficiently. Cai et al. [11] suggested using distributed

convolutional neural networks to optimize the interaction of

edge network devices. Zou et al. [14] further refined this model

by utilizing the Markov decision process and Asynchronous-

Advantage-Actor-criticA3C deep reinforcement learning. In

addition to these studies, Zheng et al. [27] used Deep-Q-

Network (DQN) techniques to handle a high dimensional and

complex workload scheduling problem. Some studies have

proposed novel approaches to address the challenges of service

request scheduling in edge settings. For instance, OnPQ (

[19]) uses the Q-Learning algorithm to reduce energy usage

and average wait times for service requests by considering

the sensitivity to delay as a weighted reaction time. Another

novel approach proposed by Zhao et al. [16] uses pointer

networks to solve the multi-objective optimization problem of

scheduling service requests. The weighted linear combination

(WLC) model is used to reduce the complex multi-objective

optimization issue to a simpler one. Overall, these studies

have demonstrated the potential of deep learning techniques

to improve resource scheduling and service request scheduling

in edge computing and IoT environments.

In summary, traditional multi-objective optimization algo-

rithms have limitations in addressing the correlation between

multiple optimization objectives, and they often fail to identify

a single best parameter configuration in the generated Pareto

optimal solution sets. For example, in the case of RLPNet,

the optimization objectives are treated equally, and param-

eter experiments are conducted to select a balanced set of

parameters. However, this approach does not fully cover the

research landscape, and selecting appropriate parameter ranges

still requires domain expertise. To overcome these challenges,

we propose a deep reinforcement learning method that incor-

porates multiple pointer networks and scoring mechanisms for

optimal scheduling. Our approach addresses the complexity of

multi-objective optimization problems by optimizing different

metrics in the pointer network model.
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VI. CONCLUSION AND FUTURE WORK

In this paper, we propose PSNet as a solution to the service

request task scheduling problem in edge computing. PSNet

aims to find the optimal parameter ratio by utilizing a linear

weighting approach to address the multi-objective optimization

problem. To accommodate the characteristics of the multi-

objective optimization problem, we divide the pointer network

model into multiple networks and optimize them for different

metrics. Additionally, we introduce a scoring mechanism that

considers different optimization objectives, leading to more

insightful outcomes. Our experiments conducted on three

real-world datasets demonstrate that our method outperforms

several state-of-the-art approaches.

In the future, we intend to validate our approach across a

broader range of multi-objective optimization scenarios and

explore a service request scheduling system that effectively

coordinates between the edge and the cloud, addressing the

pressing challenge in edge-cloud collaborative systems.
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