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A B S T R A C T

Graph neural networks (GNN) have emerged as a new state-of-the-art for learning knowledge
graph representations. Although they have shown impressive performance in recent studies, how
to efficiently and effectively aggregate neighboring features is not well designed. To tackle this
challenge, we propose the simplifying heterogeneous graph neural network (SHGNet), a generic
framework that discards the two standard operations in GNN, including the transformation
matrix and nonlinear activation. SHGNet, in particular, adopts only the essential component
of neighborhood aggregation in GNN and incorporates relation features into feature propaga-
tion. Furthermore, to capture complex structures, SHGNet utilizes a hierarchical aggregation
architecture, including node aggregation and relation weighting. Thus, the proposed model
can treat each relation differently and selectively aggregate informative features. SHGNet
has been evaluated for link prediction tasks on three real-world benchmark datasets. The
experimental results show that SHGNet significantly promotes efficiency while maintaining
superior performance, outperforming all the existing models in 3 out of 4 metrics on NELL-995
and in 4 out of 4 metrics on FB15k-237 dataset.

. Introduction

Knowledge graphs (KGs), such as WordNet (Miller, 1995), NELL (Carlson et al., 2010), and Freebase (Bollacker et al., 2008),
re used in a variety of downstream applications, including recommendation systems (Wang, He, et al., 2019; Wang, Zhang, Wang,
t al., 2019; Wang, Zhang, Zhang, et al., 2019; Wu et al., 2022), question answering (Hao et al., 2018; Hu et al., 2018; Huang et al.,
019; Zhang, Weng et al., 2022). KGs are multi-relational graphs made up of (subject entity, relation, object entity) triplets. Although
uch triplets successfully store structured information, their underlying symbolic composition makes them difficult to manipulate by
ost machine learning methods. To address this problem, knowledge graph representation learning (KGRL) (Ji et al., 2022) (a.k.a.,
G embedding (Li et al., 2022a; Wang et al., 2017; Zhang et al., 2022b)) has quickly gained intensive attention, which attempts

o embed conceptual entities and relations into continuous vector spaces. The acquired features can then retain KGs’ fundamental
tructure.

There is a significant challenge for KGs in predicting missing links (Chen et al., 2020; Li et al., 2022b; Sun et al., 2020). Recent
ears have witnessed massive studies on the link prediction problem and performed remarkable progress in KGRL (Rossi et al., 2021).
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Fig. 1. Knowledge graph representation learning with SHGNet and other models. SHGNet only keeps the feature propagation as opposed to redundant computation
for other models.

The main categories of KGRL methods are translation distance-based models (e.g.: TransE (Bordes et al., 2013) and RotatE (Sun
et al., 2019)), matrix factorization-based models (e.g.: RESCAL (Nickel et al., 2011) and DistMult (Yang et al., 2014)), and neural
network-based models (e.g.: ConvE (Dettmers et al., 2018) and InteactE (Vashishth et al., 2020a)). Most previous models focused
on representing knowledge triplets separately in KGs and ignored the heterogeneity of an entity’s local neighborhood. To solve this
issue, many studies (e.g.: R-GCN (Schlichtkrull et al., 2018), WGCN (Shang et al., 2019), and CompGCN (Vashishth et al., 2020b))
apply the graph neural network (GNN) (Wu et al., 2021) to model multi-relational KGs and achieve superior performance.

As shown in Fig. 1, it can conclude that previous GNN-based KGRL models follow the same propagation rule to learn the features:
feature propagation, linear transformation, and nonlinear activation. However, most operations are directly inherited from GNN,
which may generate unnecessary complexity and redundant computation. Inspired by the simplified GNN model such as SGC (Wu
et al., 2019) and APPNP (Klicpera et al., 2019), this study is aimed at simplifying the design of GNN and making it more succinct and
adaptable for KGRL. SGC and APPNP abandon nonlinear activation and linear transformation while maintaining feature propagation
between GNN layers. However, SGC and APPNP ignore the feature propagation of relations which is not suitable for modeling KGs.
Thus, it needs to design a simplified GNN framework for KGRL to achieve computation efficiently and incorporate the relation
feature.

Furthermore, KGs generally contain multiple entities and relations and are thought to be heterogeneous information networks
(HIN) (Shi et al., 2017). In general, various types of entities and relations have different attributes, which can be segmented into
disparate semantic spaces. Moreover, We must gather valuable semantic characteristics using multiple relation types. Treating
diverse relation types equally is unworkable since it weakens the semantic features gathered by certain essential relation types.
As a result, we should explore the importance of each relationship type and give appropriate weights to them. Thus, it is critical to
understand how to simultaneously combine numerous semantic knowledge sources and choose integrate informative features.

In light of the above discussion, it is advisable to consider the computation efficiency and graph heterogeneity in feature
propagation. In the present study, a novel simplifying heterogeneous graph neural network (SHGNet) for KGRL is proposed,
which could effectively and efficiently learn knowledge graph representation learning. In SHGNet, we remove the two standard
operations including transformation matrix and nonlinear activation, which enables the model more effective and easier to train.
Specifically, the proposed model incorporates the relation feature into the feature propagation formulation. And we design a
hierarchical aggregation architecture for KGs to deal with the heterogeneity of local neighborhoods. It includes node aggregation to
aggregate each relation type-based node feature. The features with different semantic information are then combined using relational
weighting. Finally, the self-connection is utilized to aggregate the feature of the node itself. The acquired features are employed for
numerous downstream tasks such as link prediction and can better model the complicated structure of KGs.

To summarize, our main contributions are set out as follows:

• We propose a simplified GNN-based KGRL model SHGNet, which designs the non-parametric feature propagation and only
keeps the essential feature propagation operation. It makes our model easier to train and more effective.

• We design a hierarchical aggregation architecture for feature propagation in SHGNet. The presented method incorporates
neighbor information via node aggregation and relation weighting, which can selectively aggregate informative features.

• We undertake extensive experiments to assess the effectiveness of the proposed methodology. The results on three benchmark
datasets show that SHGNet has significant scalability while maintaining prediction quality.

The subsequent sections of the present paper are organized as follows. We first review the related work in Section 2. Then we
present the details of the proposed model in Section 3. Section 4 presents the experimental results and analysis, and Section 5
concludes the paper.
2
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2. Related work

Previous studies connected to our method, such as knowledge graph representation learning and graph neural networks, are
iscussed in this section.

.1. Knowledge graph representation learning

The main objective of knowledge graph representation learning (KGRL), also known as Knowledge Graph Embedding (KGE), is
o acquire the embedded representation of entities and relations. The success of the KGRL model based on linear or neural network
perations has been noticed. These models are basically divided into three categories:

Relations are regarded as translations from a subject entity to an object entity in translation distance-based models. TransE (Bor-
es et al., 2013) and its variants, such as TransH (Wang et al., 2014), TransR (Lin et al., 2015), and TransD (Ji et al., 2015), are
xamples of representative translational models. Moreover, TorusE (Ebisu & Ichise, 2020) also keeps the translational characteristic
f a lie group. RotatE (Sun et al., 2019) designs a rotation operation in complex vector space. PairRE (Chao et al., 2021) presents
aired vectors for every relation representation to enable dynamic margin modification in loss function.

Matrix factorization-based models use linear or bilinear transformation procedures to compute the semantic similarity scores of
ntity–relation triplets. The typical models RESCAL (Nickel et al., 2011) and DistMult (Yang et al., 2014) encode interactions of
ntities and relations through a bilinear operation. ComplEx (Trouillon et al., 2016) is a DistMult extension that models asymmetric
elations in complex vector space. TuckER (Balazevic et al., 2019) is a linear model that decomposes triplets into low-rank matrices
or entity–relation feature representation. It is based on the TuckER tensor decomposition.

Entities and relations are utilized as input in neural network-based models for embedding and semantic matching modeling. The
ecent ConvE (Dettmers et al., 2018) is a neural network-based architecture that achieves state-of-the-art link prediction results by
mploying a multi-layer of 2D convolution over embeddings. ConvR (Jiang et al., 2019) creates convolutional features by building
onvolution filters adaptively using relation representations. ConvKB (Nguyen et al., 2018) investigates global linkages between
ame-dimensional entity and relation embeddings using a convolutional neural network. InteractE (Vashishth et al., 2020a) is a
nique KGRL model that extends ConvE capabilities by capturing extra heterogeneous feature interactions. LTE-ConvE (Zhang,
ang, et al., 2022) enhances KGE models with linearly transformed entity embeddings and achieves comparable performance.

.2. Graph neural network

Graph neural network (GNN) is designed to extend the deep neural networks to process data with arbitrary graphical structures.
CN (Kipf & Welling, 2017) first uses graph convolutional networks (GCN) to simplify graph convolutions. Several extensions have
een developed in subsequent studies. FastGCN (Chen et al., 2018) is an efficient form of GCN that uses significance sampling to
mprove inductive node classification. On the basis of node sampling and a disparate aggregating mechanism, GraphSAGE (Hamilton
t al., 2017) combines neighbor feature information. GAT (Velickovic et al., 2018) evaluates the attention values between neighbor
odes for node classification via the self-attention method (Vaswani et al., 2017). We recommend the reader to recent GNN
urveys (Wu et al., 2021; Zhang, Cui, & Zhu, 2022; Zhang, Weng, et al., 2020) for a more comprehensive study.

To learn expressive knowledge graph representations, GNN has recently been presented to model KGs in an encoder–decoder
ramework. Representative GNN-based models include R-GCN (Schlichtkrull et al., 2018), WGCN (Shang et al., 2019), and
ompGCN (Vashishth et al., 2020b). R-GCN introduces relation information into the modeling of GNNs and designs aggregation

unctions that incorporate relation information. WGCN adopts an aggregation function weighted the information of each subgraph to
ield entity information. CompGCN designs a variety of information aggregation functions and implements a unified framework that
eneralizes multiple GNN-based modeling. However, most of them follow the same propagation rule to learn the features which leads
o unnecessary complexity and redundant computation. Actually, it remains a challenge to effectively and efficiently aggregate KGs
cross large node features. Recently, some simplified GNN models such as SGC (Wu et al., 2019) and APPNP (Klicpera et al., 2019)
ave been proposed. SGC offers a way to reduce redundant complexity. It considers a nonlinearity transformation to be cumbersome
nd unnecessary and proposes an alternative to a single linear transformation. APPNP utilizes a propagation architecture built from
odified PageRank to achieve linear computing cost in terms of edge number. LightGCN (He et al., 2020) attempts to simplify the

tructure of GNN in order to make it more concise and appropriate for recommendation. To modify pre-trained KG representations
sing graph context, REP-OTE (Wang et al., 2022) presents the relation-based embedding propagation approach. However, the
forementioned models concentrate on homogeneous graphs, it should develop a simplified heterogeneous GNN framework for KGs
o achieve computation efficiently.

. Methodology

The technical details of the proposed SHGNet are described in this section. First, the preliminaries and overall framework of
HGNet are introduced. Then the detailed procedures of SHGNet are presented. Finally, the loss function and training information
3
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Table 1
Notations and explanations.

Notations Explanations Notations Explanations

 Knowledge graph  Set of nodes/entities
 Set of edges/triplets  Set of relation types
𝑒𝑠∕𝑒𝑜 Subject/object entity 𝑟 Relation type
𝐞 Feature of entity 𝐫 Feature of relation
𝐇 Entity feature matrix 𝐑 Relation feature matrix
𝐀 Adjacency matrix 𝐃 Degree matrix
⋆ Circular correlation  Local neighbors
𝜙 (⋅) Score function ∗ Convolution operation

Fig. 2. An illustration of SHGNet model architecture. Given entity and relation features, SHGNet adopts a composition operation to incorporate relation features
into feature propagation. Then multi-layer simplifying hierarchical aggregation are utilized to fuse rich semantic information for KGs. Finally, a score function
is performed to compute the triplet probability.

3.1. Problem formulation

Knowledge graphs (KGs) are directed graphs that could be represented as  = ( , ). The node set is represented by the symbol
 , while the edge set is denoted by the symbol  . The nodes represent entities, while the edges represent subject-relation-object
triplet facts. Each edge is associated with a relation type 𝑟 ∈ , where  represents the relation type set. An edge such as subject-
relation-object (denoted as

(

𝑒𝑠, 𝑟, 𝑒𝑜
)

∈ ) represents a relation 𝑟 from subject entity 𝑒𝑠 to object entity 𝑒𝑜. The bold letter 𝐞𝑠, 𝐫, 𝐞𝑜 ∈ R𝑑

denotes their features with dimension 𝑑.
Simplified Feature Propagation. The goal of simplified feature propagation is to eliminate the requirement for feature

transformation and nonlinear activation in GNN. Let 𝐇(𝑘) denote the node feature matrix, the equation 𝐇(𝑘) = 𝐃− 1
2 𝐀𝐃− 1

2 𝐇(𝑘−1)

denotes the forward propagation. However, the aforementioned technique is developed for handling homogeneous graph-structured
data. A novel simplified feature propagation framework for heterogeneous KG is necessary.

Link Prediction for KGs. For KGs, link prediction is predicting another reasonable entity to compose a correct triplet. For
instance, given the subject entity 𝑒𝑠 and the relation 𝑟, predicting the object entity 𝑒𝑜. To achieve this goal, a general methodology
is to define a score function 𝜙

(

𝐞𝑠, 𝐫, 𝐞𝑜
)

∈ R for the triplet. The goal of the optimization is to rank correct triplets higher than
incorrect triplets. In the real application area, link prediction with the proposed model can automatically predicting missing links
for large-scale knowledge graphs. Thus, we can complete the knowledge graph and construct a larger knowledge graph.

3.2. Overall framework

An encoder–decoder architecture underpins the proposed SHGNet architecture. Fig. 2 depicts the SHGNet encoder workflow,
which consists of two components: relation composition and feature propagation. In order to incorporate relation features into
feature propagation, the encoder first leverages the entity–relation composition operation. Second, we adopt the simplifying
hierarchical feature propagation for heterogeneous KGs, which can deal with the rich semantic information and complex structure
effectively. Finally, the learned entity features are passed to the decoder, which could be modified by one of numerous KGRL models.
In this paper, TransE (Bordes et al., 2013), DistMult (Yang et al., 2014), and ConvE (Dettmers et al., 2018) are chosen as the decoder.
4
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Fig. 3. An illustration of hierarchical aggregation architecture. SHGNet deals with heterogeneous node features in two steps including node aggregation and
relation weighting. The initial step is to combine the features of each relation type-based node. Then the next step will aggregate features from different relation
types. Furthermore, the self-connection operation is adopted to aggregate the entity feature itself.

3.3. Relation composition

Recently, GNN has proven to be highly effective at modeling graph-structured data. However, KGs are multi-relational graphs
with edges that have entities and relations. Thus, it is necessary to design a novel GNN framework to systematically leverage entity–
relation composition operations for KGRL. Specifically, SHGNet first initializes a 𝑑-dimensional feature representation 𝐞 ∈ R𝑑 for
entity and 𝐫 ∈ R𝑑 for relation. To incorporate the relation feature into the feature propagation formulation, the entity–relation
composition operation is introduced as follows:

𝐞 = Comp (𝐞, 𝐫) ,∀𝑟 ∈ 𝑒, (1)

where Comp (⋅) denotes the composition operator. We also limit the composition operator to be non-parameterized in this paper.
Specifically, inspired by HolE (Nickel et al., 2016), the composition operator is denoted as follows:

Comp (𝐞, 𝐫) = 𝐞 ⋆ 𝐫, (2)

where ⋆ ∶ R𝑑 × R𝑑 → R𝑑 denotes circular correlation, and it can be rewritten as:

[𝐞 ⋆ 𝐫]𝑘 =
𝑑−1
∑

𝑖=0
𝐞𝑖𝐫(𝑘+𝑖) mod 𝑑 . (3)

In comparison to addition composition in TransE (Bordes et al., 2013) and multiplication composition in DistMult (Yang et al.,
2014), the circular correlation composition has two main advantages. First, it is not commutative, i.e., 𝐞 ⋆ 𝐫 ≠ 𝐫 ⋆ 𝐞. Thus, the
circular correlation composition is appropriate to model directed graphs for KGs. Second, the circular correlation composition is also
a non-parameterized operation, which can further reduce the number of parameters for SHGNet.

3.4. Feature propagation

As shown in Fig. 3, distinct types of entities may exist in distinct feature spaces as a result of the heterogeneity of KGs. Directly
incorporating all neighboring characteristics for every entity is not suitable. Thus, SHGNet proposes a hierarchical aggregation
architecture for KGs. Specifically, SHGNet first aggregates each relation type-based node. Then, using relation weighting, features
containing diverse semantic information are fused. Finally, the self-connection is utilized to aggregate the feature of the node itself.
Moreover, we remove the transformation matrix and nonlinear activation to efficiently and effectively aggregate features.

The entity feature matrix is initialized as follows:

𝐇(0) =
[

𝐞(0)
1
,… , 𝐞(0)𝑛

]⊤
, (4)

taking the 𝑖th entity feature 𝐞𝑖 ∈ R𝑑 as the input, each relation type-based entity feature is first aggregated by SHGNet as follows:

𝐞(𝑘−1) 𝑟
𝑖

= Agg
(

𝐞(𝑘−1)𝑗

)

,∀𝑗 ∈  𝑟
𝑖 , (5)

where  𝑟
𝑖 indicates a group of entities based on relation types. Agg (⋅) represents the aggregation function. The objective of this

work is to enhance the effectiveness of feature propagation, so we choose the averaging operation for feature aggregation. It can
also keep features on the same scale. Thus, the aggregation function is defined as:

𝐞(𝑘−1) 𝑟
𝑖

= 1
| 𝑟|

∑

𝑟
𝐞(𝑘−1)𝑗 ,∀𝑗 ∈  𝑟

𝑖 , (6)
5

|

|

𝑖 |
|

𝑗∈𝑖
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Algorithm 1: Simplifying Heterogeneous Graph Neural Network Algorithm.
Input: The knowledge graph  = ( , )
the set of relation types 
the dimension of feature d
the number of network layers K
Output: The entity feature matrix 𝐄 and the relation feature matrix 𝐑

1 Initialize the node feature 𝐞(0)𝑖 ∈ R𝑑 , ∀𝑒𝑖 ∈ 
2 Initialize the relation feature 𝐫 ∈ R𝑑 , ∀𝑟 ∈ 
3 for network layer k in [1,K] do
4 for each relation type 𝑟 in  do
5 for the i-th entity 𝑒𝑖 in  do
6 Execute the entity–relation composition operation Comp

(

𝐞𝑖, 𝐫
)

= 𝐞𝑖 ⋆ 𝐫
7 Aggregate each relation type-based entity features 𝐞(𝑘−1) 𝑟

𝑖
= 1

|

|

|

 𝑟
𝑖
|

|

|

∑

𝑗∈ 𝑟
𝑖

𝐞(𝑘−1)𝑗 ,∀𝑗 ∈  𝑟
𝑖

8 end

9 Aggregate all relation type-based entity features 𝐞(𝑘−1)𝑖
= 1

||

∑

𝑟∈

(

𝛼(𝑘−1)𝑟 𝐞(𝑘−1) 𝑟
𝑖

)

10 end
11 Integrate the self-loops into the feature propagation. 𝐞(𝑘)𝑖 = 1

2

(

𝐞(𝑘−1)𝑖
+ 𝐞(𝑘−1)𝑖

)

12 end
13 Return the entity feature matrix 𝐇(𝑘) =

[

𝐞𝑘1 ,… , 𝐞𝑘𝑛
]⊤

14 Return the relation feature matrix 𝐑 =
[

𝐫1,… , 𝐫𝑛
]⊤

where 𝐞(𝑘−1)𝑗 represents the neighboring node features based on 𝑟. These characteristics are combined and put through a normalizing
term |

|

|

 𝑟
𝑖
|

|

|

. Then the aggregated feature 𝐞(𝑘−1) 𝑟
𝑖

from relation 𝑟 can be obtained. For each entity, given all relation types , || classes
f aggregated features can be constructed. And each class will be semantically specialized, capturing only one piece of semantic
nformation.

It can be observed that various relation types reflect different semantic information. Thus, each relation type-based feature is
ggregated, and the aggregation operation can be represented as follows:

𝐞(𝑘−1)𝑖
= Agg

(

𝐞(𝑘−1) 𝑟
𝑖

, 𝑟
)

,∀𝑟 ∈ . (7)

Nevertheless, the semantic characteristics fused by significant relation types are weakened when each relation is treated equally.
critical concern is how to integrate various semantic features and choose the most appropriate relation type. Thus, SHGNet

roposes the relation weighting operation to selectively aggregate informative features, and it is defined as follows:

𝐞(𝑘−1)𝑖
= 1

||

∑

𝑟∈

(

𝛼(𝑘−1)𝑟 𝐞(𝑘−1) 𝑟
𝑖

)

, (8)

where 𝛼(𝑘−1)𝑟 denotes the weight value of relation 𝑟. After determining the significance of each relation type, each aggregated feature
𝐞(𝑘−1) 𝑟

𝑖
based on that relation type can be weighted with the learned 𝛼(𝑘−1)𝑟 as a coefficient. These features are combined and put

through a normalization term ||.
However, it can see that all nearby features 𝐞(𝑘−1)𝑖

are aggregated without the entity characteristics 𝐞(𝑘−1)𝑖 itself. As a result, the
self-loops must be incorporated. The self-connection operation is defined as follows:

𝐞(𝑘)𝑖 = Agg
(

𝐞(𝑘−1)𝑖
, 𝐞(𝑘−1)𝑖

)

. (9)

Here, the averaging operation for self-connection is adopted to improve the efficiency of feature propagation. Then (9) can be
redefined as follows:

𝐞(𝑘)𝑖 = 1
2

(

𝐞(𝑘−1)𝑖
+ 𝐞(𝑘−1)𝑖

)

. (10)

Finally, we can concatenate each entity feature 𝐞(𝑘)𝑖 in the last layer to acquire the entity feature matrix 𝐇(𝑘). And it can be
efined as:

𝐇(𝑘) =
[

𝐞𝑘1 ,… , 𝐞𝑘𝑛
]⊤. (11)

In summary, the proposed feature propagation framework of SHGNet has two main advantages. On the one hand, SHGNet
emoves the transformation matrix and nonlinear activation in traditional GNN, which can largely simplify the model design. On the
ther hand, SHGNet adopts a hierarchical feature propagation for heterogeneous KGs, which can deal with rich semantic information
6

nd complicated structure efficiently. The overall of feature propagation for SHGNet is shown in Algorithm 1.
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Table 2
The statistics of the datasets.

Dataset # Entities # Relations # Edges Mean
degree

Graph
heterogeneity

Grap
scale# Train # Valid # Test # Total

WN18RR 40,943 11 86,835 3,034 3,134 93,003 2.12 Low Small
NELL-995 74,536 200 149,678 543 2,818 153,039 2.05 Low Medium
FB15k-237 14,541 237 272,115 17,535 20,466 310,116 18.71 High Large

3.5. Triplet score

The construction of a score function 𝜙
(

𝐞𝑠, 𝐫, 𝐞𝑜
)

∈ R is a generic technique for link prediction. Given the triplet
(

𝑒𝑠, 𝑟, 𝑒𝑜
)

, it
should first look-up the matrices 𝐇(𝑘) and 𝐑 for the feature of each entity and relation. The look-up equation is given as:

⎧

⎪

⎨

⎪

⎩

𝐞𝑠 = 𝐈⊤𝑠 𝐇
(𝑘)

𝐫 = 𝐈⊤𝑟 𝐑
𝐞𝑜 = 𝐈⊤𝑜 𝐇

(𝑘)

, (12)

here 𝐈⊤𝑠 , 𝐈⊤𝑟 , and 𝐈⊤𝑜 denote the high-dimensional index of 𝑒𝑠, 𝑟, and 𝑒𝑜, respectively. In SHGNet, TransE (Ebisu & Ichise, 2020),
istMult (Yang et al., 2014), and ConvE (Dettmers et al., 2018) are selected to score the triplet. Taking ConvE as an example, the

ollowing is the definition of the score function 𝜙
(

𝐞𝑠, 𝐫, 𝐞𝑜
)

:

𝑦̂ = 𝜙
(

𝐞𝑠, 𝐫, 𝐞𝑜
)

= 𝑓
(

vec
(

𝑓
([

𝐞𝑠; 𝐫
]

∗ 𝜔
))

𝐖
)

𝐞𝑜
, (13)

where 𝑦 is the triplet probability. The 2D reshaping is denoted by ⋅̄, and the concatenation operation is denoted by [⋅]. The notation ∗
represents the convolution operation, and the symbol 𝜔 represents the convolution filter. The linear transformation matrix is denoted
by 𝐖. The probability 𝑦 should be 1 if the triplet

(

𝑒𝑠, 𝑟, 𝑒𝑜
)

is right; otherwise, the probability should be 0. As a consequence, SHGNet’s
loss function is as follows:

 = − 1
𝑁

∑

𝑒𝑠 ,𝑟,𝑒𝑜∈∪ ′
(𝑦 log 𝑦̂ + (1 − 𝑦) log (1 − 𝑦̂)) , (14)

in which

𝑦 =

{

1 if
(

𝑒𝑠, 𝑟, 𝑒𝑜
)

∈ 

0 if
(

𝑒𝑠, 𝑟, 𝑒𝑜
)

∈  ′
, (15)

where  ′ is a group of inaccurate triplets constructed by altering the accurate triplet group  .
To prevent overfitting and increase generalization in SHGNet and ConvE, the following strategies were included: batch

ormalization (Ioffe & Szegedy, 2015), dropout technique (Srivastava et al., 2014), and label smoothing (Szegedy et al., 2016).
he Adam optimizer (Kingma & Ba, 2015) is employed in the proposed model’s learning process.

. Experiments

In this part, we perform comprehensive experiments using benchmark datasets and compare our proposed model to the state-
f-the-art to demonstrate its effectiveness. Before discussing the experiment findings, the general settings are briefly described. The
earning process can be shown in Fig. 4.

.1. Experimental setup

.1.1. Datasets
To cover different structures and scales of KGs, comprehensive experiments are conducted on the following benchmark datasets:

N18RR (Dettmers et al., 2018), NELL-995 (Xiong et al., 2017), and FB15k-237 (Dettmers et al., 2018). Table 2 summarizes the
tatistics of these datasets. The number of edges connected to the entity is the degree of graph heterogeneity. The entity with a higher
egree has more neighboring nodes. It could be observed that WN18RR and NELL-995 datasets have relatively low heterogeneity.
ompared to the former, the graph heterogeneity and scale of the FB15k-237 dataset are high.

.1.2. Baseline models
The presented model is compared to the following list of KGRL models:

• TransE (Bordes et al., 2013): TransE is translational KGRL method that models relations as translation operations between
entities in vector semantic spaces.

• DistMult (Yang et al., 2014): DistMult utilizes the bi-linear score function to score the knowledge triplets. It is a well-known
7
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Fig. 4. Learning process of SHGNet model. We first initialize the node and relation feature for data processing. Then the proposed SHGNet is used for model
training. Finally, different score functions are adopted to predict missing links in KGs.

• ComplEx (Trouillon et al., 2016): ComplEx is a DistMult extension that expresses relations and entities in complex space.
• RotatE (Sun et al., 2019): RotatE also defines relations and entities in complicated space. RotatE defines each relationship as

a rotation between the entities.
• PairRE (Chao et al., 2021): To handle complex relations, PairRE learns the paired relation representations to encode three

important relation patterns.
• ConvE (Dettmers et al., 2018): ConvE, as the well-known CNN-based KGRL method that performs 2D convolution over the

features. The output is then combined with the object entity feature to compute a score for the triplet.
• ConvR (Jiang et al., 2019): ConvR creates an adaptive convolutional network to increase relation–entity interactions.
• InteractE (Vashishth et al., 2020a): InteractE is proposed to increase the number of entity–relation interactions. It adopts the

circular convolution for the subject entity and relation features.
• LTE-ConvE (Zhang, Wang, et al., 2022): LTE-ConvE uses linearly transformed entity representations and adopts the ConvE as

the score function to achieve comparative performance.
• R-GCN (Schlichtkrull et al., 2018): R-GCN is GNN-based KGRL method which can aggregate context information to entities.

It is capable of handling multi-relational graph data.
• WGCN (Shang et al., 2019): To achieve the joint benefit of ConvE and GNN together, WGCN proposes the weighted graph

convolutional.
• CompGCN (Vashishth et al., 2020b): CompGCN first learns the entity and relation features by incorporating the multi-relational

information into the graph convolutional framework.
• REP-OTE (Wang et al., 2022): During the post-training process, REP-OTE makes use of graph context in KGs. The major point

is to incorporate information about relational graph structure.

4.1.3. Implementation details
Following previous KGRL models, we use Hits@k and MRR as evaluation metrics. As for the settings in training, we execute a

hyper-parameter search on feature dimension, learning rate, network layer, batch size, filter size, filter number, and dropout rate.
We report the best hyper-parameters for each dataset as follows: {WN18RR: 200, 0.0001, 4, 128, 2 × 5, 64, 0.3}, {NELL-995: 200,
0.001, 4, 128, 2 × 7, 64, 0.4}, {FB15k-237: 200, 0.0001, 4, 128, 2 × 5, 64, 0.4}. We utilize PyTorch (Paszke et al., 2017) to develop
the proposed model.

4.2. Performance comparison

In this subsection, SHGNet is compared to existing state-of-the-art methods on link prediction. The overall results and detailed
findings are shown in Tables 3 and 4, respectively. According to the experiment results, it could be observed that:

• The proposed SHGNet outperforms significantly the translation-based KGRL model like TransE on all datasets. The primary
explanation could be that SHGNet can aggregate the structural information for entities rather than modeling independent
triplets. Furthermore, in most cases, SHGNet performs better than RotatE which models features in complex spaces and leads
to more parameters.

• Compared with the bilinear-based models DisMult and ComplEx, our model performs better. ComplEx, despite being based on
the bilinear operation, extends DisMult to the complex space, obtaining more information than the latter.

• In a general manner, CNN-based methods outperform translation-based or bilinear-based models in terms of performance.
Furthermore, the proposed SHGNet generally outperforms all CNN-based models on the WN18RR and FB15k-237 datasets.
8
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Table 3
Link prediction performance comparison on WN18RR, NELL-995, and FB15k-237 datasets.

Model WN18RR NELL-995 FB15k-237

MRR Hits MRR Hits MRR Hits

@1 @3 @10 @1 @3 @10 @1 @3 @10

Shallow

TransE 0.182 0.027 0.295 0.444 0.456 0.514 0.678 0.751 0.257 0.174 0.284 0.420
DistMult 0.430 0.390 0.440 0.490 0.522 0.610 0.704 0.795 0.241 0.155 0.263 0.419
ComplEx 0.440 0.410 0.460 0.510 0.652 0.614 0.784 0.815 0.247 0.158 0.275 0.428
RotatE 0.476 0.428 0.492 0.571 0.754 0.670 0.812 0.854 0.338 0.241 0.375 0.533
PairRE 0.454 0.411 0.469 0.548 – – – – 0.351 0.256 0.387 0.544

CNN

ConvE 0.430 0.400 0.440 0.520 0.747 0.672 0.808 0.864 0.325 0.237 0.356 0.501
ConvR 0.475 0.443 0.489 0.537 0.749 0.679 0.814 0.869 0.350 0.261 0.385 0.528
InteractE 0.463 0.430 0.483 0.528 0.751 0.681 0.816 0.872 0.354 0.263 0.386 0.535
LTE-ConvE 0.472 0.437 0.485 0.544 – – – – 0.355 0.264 0.389 0.535

GNN

R-GCN 0.123 0.080 0.137 0.207 0.120 0.082 0.126 0.188 0.249 0.151 0.264 0.417
WGCN 0.466 0.427 0.478 0.535 0.744 0.668 0.826 0.859 0.352 0.261 0.385 0.536
CompGCN 0.479 0.443 0.494 0.546 0.753 0.679 0.825 0.876 0.355 0.264 0.390 0.535
REP-OTE 0.488 0.439 0.505 0.588 0.759 0.690 0.819 0.869 0.354 0.262 0.388 0.540

Ours SHGNet 0.476 0.448 0.496 0.549 0.764 0.677 0.831 0.884 0.355 0.268 0.395 0.544

Table 4
Results on link prediction by relation category on FB15k-237 dataset.

Evaluation Metric GNN-based Model Subject entity prediction Object entity prediction

1-to-1 1-to-N N-to-1 N-to-N 1-to-1 1-to-N N-to-1 N-to-N

MRR

R-GCN 0.398 0.086 0.448 0.256 0.527 0.778 0.059 0.379
WGCN 0.422 0.093 0.454 0.261 0.406 0.771 0.068 0.385
CompGCN 0.457 0.112 0.471 0.275 0.453 0.779 0.076 0.395
REP-OTE 0.462 0.114 0.478 0.279 0.462 0.786 0.089 0.402
SHGNet 0.470 0.116 0.481 0.286 0.467 0.795 0.112 0.415

Hits@10

R-GCN 0.531 0.179 0.639 0.448 0.534 0.869 0.137 0.589
WGCN 0.547 0.187 0.647 0.459 0.531 0.875 0.139 0.607
CompGCN 0.604 0.190 0.656 0.474 0.589 0.885 0.151 0.616
REP-OTE 0.462 0.114 0.478 0.279 0.462 0.786 0.089 0.402
SHGNet 0.615 0.207 0.672 0.495 0.599 0.891 0.176 0.634

• Compared with the latest GNN-based models, our model performs better in most cases. The main reason might be that SHGNet
adopts a hierarchical feature propagation for heterogeneous KGs, which can deal with the rich semantic information and
complicated structure efficiently.

• Following TransE (Bordes et al., 2013), we investigate the performance of SHGNet with different relation categories. When
compared to the most recent GNN-based models, the proposed SHGNet surpasses all baselines in both subject entity prediction
and object entity prediction.

4.3. Model efficiency

In this subsection, the model efficiency of SHGNet and GNN-based models is investigated. The model complexity of SHGNet
s 

((

||𝑑2 + ||𝑑
)

𝐾
)

, here 𝑑 is the size of the embedding. The letters || and || represent the entire amount of entities and
elationships respectively. 𝐾 represents the GCN feature propagation layer. As shown in Fig. 5, we compare the running time on
mall-scale WN18RR and large-scale FB15k-237. It could be found that SHGNet is the fastest while still achieving competitive
erformance. Specifically, compared with the latest GNN-based model CompGCN, SHGNet achieves nearly three times the relative
mprovement in running time. The main reason is that we remove all the transformation matrix and nonlinear activation in the
eature propagation, which makes our model easier to implement and train.

.4. Ablation study

To verify the impact of relation composition and relation weighting operations in SHGNet, we conduct an ablation research by
xamining three variants:

• SHGNet(w/o rc): It is a variant of SHGNet, which removes the relation composition operation and only considers the node
9
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Fig. 5. Performance over running time on (a) WN18RR and (b) FB15k-237 datasets. SHGNet is the fastest while achieving competitive performance.

Table 5
Contributions of each component.

Model WN18RR NELL-995 FB15k-237

MRR Hits@10 MRR Hits@10 MRR Hits@10

SHGNet(w/o rc&rw) 0.459 0.530 0.748 0.866 0.334 0.528
SHGNet(w/o rc) 0.470 0.542 0.758 0.877 0.351 0.539
SHGNet(w/o rw) 0.465 0.538 0.751 0.870 0.342 0.531

SHGNet 0.476 0.549 0.764 0.884 0.355 0.544

Table 6
Link prediction results on WN18RR and FB15k-237 datasets with different score functions.

Score Function Model WN18RR FB15k-237

MRR Hits@10 MRR Hits@10

TransE
– 0.182 0.444 0.257 0.420
CompGCN 0.394 0.482 0.336 0.518
SHGNet 0.421 0.503 0.341 0.521

DistMult
– 0.430 0.490 0.241 0.419
CompGCN 0.442 0.521 0.335 0.514
SHGNet 0.458 0.531 0.345 0.528

ConvE
– 0.430 0.520 0.325 0.501
CompGCN 0.479 0.546 0.355 0.535
SHGNet 0.476 0.549 0.355 0.544

• SHGNet(w/o rw): It is a SHGNet variation that removes the relation weighting operation and assigns equal significance to all
relation types.

• SHGNet(w/o rc&rw): It is a variant of SHGNet, which removes both relation composition and relation weighting operations
in the feature propagation.

The experimental results are summarized in Table 5 and the following observations can be found: (1) Removing the relation
composition and relation weighting operations degrades the link prediction performance. SHGNet(w/o rc&rw) consistently under-
performs SHGNet(w/o rc) and SHGNet(w/o rw). It can be found that SHGNet(w/o rc&rw) ignores relation feature aggregation and
relation type importance, which confirms SHGNet’s significant effect. (2) Compared with SHGNet(w/o rw), SHGNet(w/o rc) shows
better performance in most instances. One plausible explanation is that relation weighting plays a more valuable role than relation
composition for SHGNet.

Furthermore, the impact of various score functions is investigated. As shown in Table 6, it can observe that the experimental
results achieve a substantial improvement with different GCN components (CompGCN, SHGNet) as an encoder. And SHGNet
performs better performance in most cases on FB15k-237 and WN18RR datasets. When compared to CompGCN, with TransE and
DistMult as the scoring functions, SHGNet obtains a relative improvement in MRR of 6.8% and 3.6%, respectively. The outcomes can
be attributable to the fact that SHGNet can selectively aggregate neighbor features of entities through the hierarchical aggregation
architecture.
10
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Fig. 6. Hyper-parameter sensitivity of network layer K on (a) WN18RR, (b) NELL-995, and (c) FB15k-237 datasets.

Fig. 7. Hyper-parameter sensitivity of feature dimension d on (a) WN18RR, (b) NELL-995, and (c) FB15k-237 datasets.

4.5. Hyper-parameter sensitivity

In this subsection, the influence of network layers K is investigated. Fig. 6 depicts the link prediction performance of SHGNet
and its variants. We can observe from the results on three datasets that the proposed model SHGNet and its variants perform better
when the layer is 4. Increasing the network layers leads to worse experimental results. The main reason for this may be that as
network layers deepen, the aggregated features become too smooth.

Furthermore, the effect of different feature dimensions d is investigated. We report the link prediction results with the
dimensionalities d ∈ {100; 200; 300} on three datasets. As shown in Fig. 7, it can find that the metric Hits@10 changes consistently.
The best value of d is about 200, which achieves a better performance on three datasets. Both larger and smaller feature dimensions
will lead to worse performance. Furthermore, it is advised to assess the impact of feature dimension on a per-dataset basis.

4.6. Case study

As previously stated, the value 𝛼𝑟 of relation types can be acquired throughout the training process. Fig. 8 shows multiple relation
types and accompanying weight values. A particular relation type as well as its weight value have a positive connection. Higher
weight values are assigned to the relation types nation and capital_of, indicating that SHGNet believes these two relations to be more
essential. The findings suggest that the relation weight mechanism could detect and learn the differences between these relation
types. The proposed model can aggregate useful information selectively based on the weight value of each relation type.

5. Conclusion

To simplify the feature propagation and model the multi-relational graph data, we propose a novel GNN-based method
named SHGNet for KGRL. SHGNet discards the two standard operations including transformation matrix and nonlinear activation,
which makes our model simpler to train and more efficient. In addition, we propose a hierarchical aggregation architecture for
capturing complicated structures and rich semantics in heterogeneous KGs. SHGNet first aggregates each relation type-based node
feature. Then, using relation weighting, features with different semantic information are fused. Massive experiments on the link
prediction problem are carried out to demonstrate the effectiveness of the proposed model. SHGNet provides better scalability while
maintaining prediction quality according to the results. SHGNet obtains around 6.8% and 3.6% relative increase in MRR with TransE
and DistMult objective respectively compared to the best performing baseline, and achieves nearly 3x the relative improvement in
running time. The limitation of proposed model and future research in this paper mainly consists of two parts. Firstly, a critical goal
11
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Fig. 8. Case study of various relation types and their corresponding weight value 𝛼𝑟.

is to obtain useful incorrect training triplets. We plan to examine whether the performance of SHGNet can be enhanced further by
sampling valuable wrong triplets. Secondly, each entity in a KG may also contain additional background information, expanding
SHGNet to leverage logical rules alongside words, pictures, and so forth.
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