
Journal of King Saud University - Computer and Information Sciences 36 (2024) 101869

A
1
(

F

D
w
W
C
a

b

c

d

e

f

g

A

K
H
L
G
A
F

1

r
b
2
e
m
r
p

h
R

Contents lists available at ScienceDirect

Journal of King Saud University - Computer and Information
Sciences

journal homepage: www.sciencedirect.com

ull length article

ADL: Double Asymmetric Distribution Learning for head pose estimation in
isdom museum
anli Zhao a,1, Shutong Wang a,b,1, Xiaoguang Wang a,e,∗, Duantengchuan Li c,∗, Jing Wang d,e,

henghang Lai f, Xiaoxue Li g

School of Information Management, Wuhan University, Wuhan 430072, China
National Engineering Research Center for E-Learning, Central China Normal University, Wuhan 430079, China
School of Computer Science, Wuhan University, Wuhan 430072, China
School of Automation, Chongqing University of Posts and Telecommunications, Chongqing 400065, China
Intellectual Computing Laboratory for Cultural Heritage, Wuhan University, Wuhan 430072, China
School of Computer Science, Fudan University, Shanghai 200438, China
Yichang Education Information Technology Center, Yichang 443000, China

R T I C L E I N F O

eywords:
ead pose estimation
abel distribution learning
aussian distribution
symmetric
eature similarity

A B S T R A C T

Head pose estimation plays a pivotal role in various applications, including augmented reality and human–
computer interaction within intelligent museum environments. Head pose estimation conventionally relies
on hard labels. However, acquiring the ‘‘ground truth’’ through subjective means introduces an element of
uncertainty into the labels for head pose estimation. The introduction of soft labels offers a potential remedy for
this uncertainty. However, existing head pose estimation methods based on soft labels neglect the asymmetry of
head pose. After careful observation, two types of asymmetry have been identified in human head pose: within
angle and between angle asymmetry. Taking these two characteristics into account, we have devised a Double
Asymmetric Distribution Learning (DADL) network model for the precise estimation of head pose angles. This
model employs distinct soft label distribution mechanisms to capture within-angle and between-angle nuances
in head pose variations. Thereby enhancing the interpretability, generalization capability, and classification
accuracy of head pose estimation models. Extensive experiments were conducted on various widely recognized
benchmarks, including the AFLW2000 and BIWI datasets. The results substantiate substantial advantages of
our model over conventional approaches.
. Introduction

Head pose estimation (HPE) has obtained increasing attention in
ecent years, as it plays an important role in many fields, such as
ehavior analysis (Kumar et al., 2017), gaze estimation (Ranjan et al.,
017), virtual reality (Xu et al., 2018), intelligence education (Chen
t al., 2014; Song et al., 2023) and human–computer interaction in
useums (Banfi et al., 2023). It assumes that the human head is a

igid object and contains three degrees of freedom (DOF) in the head
ose, namely yaw, pitch and roll. Existing methods for HPE tasks can
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be roughly divided into two categories: (1) hard label based HPE, and
(2) soft label based HPE.

The hard label methods have higher requirements for the accuracy
of the ground-truth pose. However, in previous studies, the ‘‘ground
truth’’ pose is often obtained in a more subjective way. For example,
the Pointing’04 head pose database is collected by requiring human
subjects to sit in the same position in a room and stare at 93 markers
attached to different positions of the room (Gourier et al., 2004). This
method can only collect rough poses due to the following two points:
First, the subject’s head is not guaranteed to be in exactly the same
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Fig. 1. Characteristics of asymmetry of the head pose estimation task. (a), (b), (c)
indicate the similarity change curves of the rotated image and the center image on
Yaw, Pitch, and Roll angles, respectively.

position in the 3D space. Second, people cannot point their head at the
marker very accurately. The Pandora head pose database is labeled by
a wearable Inertial Measurement Unit (IMU) sensor, which has been
worn in an invisible position by the human subjects (Borghi et al.,
2017). Similarly, owing to limitations of the sensor (e.g., equipment
deviations), the noise in the pose label (i.e., label ambiguity) still exists.
Regarding this issue, Geng et al. think that it is better to use soft labels
to represent the pose of face images (Geng et al., 2022). Different
from explicit hard labels, soft labels make the description degrees
of all poses form a data form similar to a multivariate probability
distribution. Therefore, such soft label of head poses is also known
as label distribution learning (LDL). Compared with hard labels, LDL
provides a more flexible and powerful label representation. Meanwhile,
it also better represents the complexity and uncertainty of the sample
to solve the problem of label ambiguity. The results of several studies
have shown that the LDL-based methods show excellent performance
in HPE tasks.

However, there are two important properties that have not been
considered in the HPE task based on the LDL method. The first property,
which we call within angle asymmetry (WAA), is that the similarity
of the head pose images varies across the three angles of yaw, pitch
and roll for the same pose angle rotated on a fixed central pose. As
shown in Fig. 1, taking the yaw dimension as an example, when the
front face image is turned to the left and to the right by the same angle
respectively, their two similarities are different, with values of 0.803
and 0.794 respectively. The second property is called between angle
asymmetry (BAA), in the same angle, under the same deflection, the
feature similarity of a single dimension will also change. As shown
in Fig. 1, taking the yaw, pitch and roll dimension as an example,
the changes of similarity are different when the front face images are
turned to the left by the same angle consecutively, with values of 0.803,
0.764 and 0.633 respectively.

Considering the angle asymmetry properties in the LDL method,
we propose a novel double asymmetric distribution learning for head
pose estimation (DADL) based on the discovered head pose asymmetry
phenomenon. After careful similarity analysis, we found that similarity
difference is very small in WAA. Therefore, we decide to use three
different standard Gaussian distributions to fit the WAA property to
avoid the introduction of too many model parameters to reduce the
generalization ability of the model, which can also improve the training
efficiency of the model. The main contributions of this work compared
to previous studies can be summarized in three aspects:

• A DADL head pose estimation framework based on Gaussian-
based distribution learning is proposed. The model is trained with
RGB face images. To the best of our knowledge, this is the first
work for HPE with double asymmetric multi-angle distribution
learning.
2

• In label distribution construction, we use three different Gaussian
distributions to construct soft labels to fit the model, considering
the dual asymmetry of the human head pose between and within
angles, and for the label blurring and model overfitting problems
caused by hard labels.

• Our model is trained on the sizeable synthetic dataset 300W-LP,
tested on multiple datasets AFLW2000 and BIWI. The proposed
method achieves the preferable performance on both prediction
accuracy and robustness.

This paper is structured as follows. Related work is presented in
Section 2. The proposed DADL model for HPE and its corresponding
module, including soft-label distribution and hard label distribution,
are described in Section 3. The experiment results, comparison, analysis
and ablation study are elaborately stated in Section 4. Finally, Section 5
summarizes the presented work and prospects of future work.

2. Related work

2.1. Head pose estimation

Convolutional neural networks are widely used in various fields
(Wang et al., 2023b; Li et al., 2023b; Wang et al., 2023a), especially for
image feature extraction. Head pose estimation is the process of analyz-
ing human head orientation from RBG images (Li et al., 2023a), which
can be automatically trained in an end-to-end manner on large-scale
datasets by using convolutional neural networks (CNNs) (Abdullah
et al., 2013; Murtza et al., 2017, 2019). It can be divided into three
angles according to their directions of head motion: pitch (forward to
backward movement of the neck), roll (right to left rotation of the
head), and yaw (right to left bending of the neck) (Thai et al., 2022).
Head pose estimation can be achieved in two ways. One way is to use
a fixed label value to predict the head pose (i.e., Hard Label Learning).
The other way is to utilize the probability distribution of the label to
predict the head pose (i.e., Label Distribution Learning).

2.2. Hard label learning based HPE approaches

Among these hard label learning based HPE approaches, early work
commonly used landmark-based methods to predict head pose. These
methods mainly estimate the head pose by calculating the correspon-
dence between 2D facial landmarks and 3D head models. For exam-
ple, (Sun et al., 2013) adopted a three-layer convolutional network to
estimate the position of facial landmarks, whereas this method does
not achieve the desired results in every task. Therefore, (Kumar et al.,
2017) developed the keypoint estimation and pose prediction of uncon-
strained faces by learning efficient H-CNN regressors (KEPLER) method
that can obtain precise landmarks localization on unconstrained faces.
However, this method cannot meet the requirements of stability, accu-
racy and real-time performance in complex scenes. To solve the prob-
lem, (Ranjan et al., 2017) proposed a multi-task deep learning method
called HyperFace to simultaneously detect faces, locate landmarks and
estimate head pose.

Nevertheless, the performance of landmark-based methods is highly
dependent on the accuracy of facial landmark detection, which is not
applicable to conditions where landmarks are invisible. To tackle this
problem, increasing works use landmark-free methods for HPE predic-
tion task. These methods directly estimate the head pose from images
without facial landmarks. For example, (Ruiz et al., 2018) exploited
a multi-loss deep network to directly predict intrinsic Euler angles
(yaw, pitch and roll) from image intensities. (Zhou and Gregson, 2020)
proposed a wide head pose estimation network (WHENet) method
that can capture more comprehensive head movement information and
enable real-time and fine-grained estimation of head pose. (Cao et al.,
2021) proposes a vector-based head pose estimation method, which
can solve the discontinuity issues caused by Euler angles. However, the
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Fig. 2. The architecture of the proposed DADL model. It mainly consists of two stages: coarse and fine classification. In the first stage we performed soft label distribution
construction and soft label distribution learning, combined with the corresponding hard label distribution, and performed coarse-grained category regression in that stage. The
second stage uses finer-grained losses based on coarse categorization to regress head pose angles respectively.
methods mentioned above (i.e., landmark-free methods) have several
limitations. For instance, landmark-free methods often have higher
computational overhead and require a mass of data to drive network
learning. Moreover, landmark-free methods do not consider the proba-
bility problem of non-category labels, which may lead to the problem
of label ambiguity.

2.3. Label distribution learning based HPE approaches

Given the limitation of hard label learning based HPE approaches,
several researchers use label distribution learning (LDL) methods to
predict head pose. The LDL method describes each label as a probability
distribution rather than a binary classification, that is, a label distribu-
tion covers multiple class labels, and denotes the relative importance
to which each label describes the instance (Jia et al., 2019). The basic
idea of LDL is to provide partial weights for neighboring labels to
introduce strong correlations of observations, meanwhile, neighboring
labels provide rich cues for extracting discriminative features (Geng,
2016). Compared with the hard label learning based HPE approaches,
The LDL method have two advantages. First, it is a novel machine
learning framework that can be used to solve the problem of label
noise and ambiguity (Xu et al., 2021). Second, it effectively relaxes
the requirement for a large number of training images, that is, the
training examples for each head pose can be reinforced without actually
increasing the total training examples (Geng et al., 2022).

Due to the above advantages, the label distribution learning tech-
nique is widely used in image classification and regression tasks, such
as facial age estimation (Wen et al., 2020), facial expression recogni-
tion (Zhao et al., 2021), and head pose estimation (Liu et al., 2021).
By combining the two concurrent processes label distribution refine-
ment and slack regression refinement, (Li et al., 2020) employed label
refinery network (LRN) to estimate facial age from color images. Based
on intensity label distribution, (Chen et al., 2022) presented a novel
facial expression analysis method to analyze the children’s empathy
ability, and they used both the categories and the intensities of fa-
cial expressions to detect children’s emotional states. To solve the
problem of inaccurate pose labels, (Geng et al., 2022) proposed a
hierarchical multivariate label distribution (HMLD) method to deal
with fine-grained head pose estimation.
3

3. Proposed DADL model

In this section, we first describe the overall framework of our model,
then elaborate on each part of the model, and finally describe the
optimization process of the model.

3.1. Outline of DADL

Our proposed DADL network architecture is shown in Fig. 2, which
consists of the following four fundamental modules: feature extractor
module, coarse classification module, fine classification module as well
as prediction model, where the coarse classification stage principally
includes the soft-label distribution construction and the hard-label
distribution learning module. The idea behind this design is that by
performing bin rough classification, we use a very stable softmax
layer, cross entropy, and Kullback–Leibler (KL) divergence loss, so
network learning predicts the neighborhood of the pose in a robust way.
Through a composite loss with three cross entropy and KL, one signal
per Euler angle, three signals are back-propagated into the network,
thereby improving learning. In order to obtain fine-grained predictions,
we calculate the expectation of each output angle of bin.

3.2. Feature extractor

In the task of head pose estimation, a feature extractor can extract
useful features such as edges, shapes, and textures from the raw pixel
data. Common feature extractors include CNN (LeCun et al., 1989),
RNN (Zaremba et al., 2014), and Autoencoder (Rumelhart et al., 1986).
These algorithms learn and optimize parameters to extract the most
representative or discriminative features, thereby achieving accurate
extraction of head pose. Our model adopts the widely used back-
bone model ResNet50 (He et al., 2016a) for extracting head pose
information.

3.3. Coarse classification

To provide a detailed explanation of this module, we first conducted
a rough classification of the head pose range. Then, we elaborated on
the BAA characteristics in detail. Finally, based on these BAA charac-
teristics, we constructed a soft label distribution while also preserving
the construction part of the hard label.
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Fig. 3. Samples classification of head pose anisotropy. The first, second, and third rows
represent samples from yaw, pitch, and roll, respectively. The last row, Bin, indicates
the range of the category to which the current image belongs. We divide the samples
within plus or minus 99◦ according to 3◦, and the divided category is denoted as Bin.
For instance, Bin equals to 33 means that the current image is a frontal face image.

3.3.1. Bins partition details
According to our statistics, the range of different angles variation

in the head pose datasets does not exceed −99◦ and +99◦. Therefore,
we divide all the head pose angle categories (pitch, yaw, roll) into the
following value ranges: [−99◦, −96◦, −93◦, . . . , 0◦, 3◦, . . . , +96◦, +99◦

], so that the angle difference between adjacent head pose categories is
3◦, then the granularity 𝜏 = 3. The angular categories bins after division
are: [0, 1, 2, . . . , 33, 34, . . . , 64, 65].

3.3.2. Between angle asymmetry (BAA)
Our human head is roughly considered a symmetric non-spherical

rigid body, which implies that the variation of head rotation varies in
different directions. In other words, for a certain head pose image 𝑋,
it is rotated by a fixed angle in the directions corresponding to pitch
angle, yaw angle, and roll angle, respectively, and the rotated image
is denoted as 𝑋𝑦𝑎𝑤, 𝑋𝑝𝑖𝑡𝑐ℎ, 𝑋𝑟𝑜𝑙𝑙. However, the similarity between the
original image X and the rotated images 𝑋𝑦𝑎𝑤, 𝑋𝑝𝑖𝑡𝑐ℎ, and 𝑋𝑟𝑜𝑙𝑙 are
different. We named this phenomenon as the between angle asymmetry
(BAA). The details are as flows:

As shown in Fig. 3, the original image with head pose 𝑋𝑜(yaw=33,
pitch=33, roll=33) as an example, it can be observed that the face
shape difference between 𝑋𝑜 and 𝑋𝑦 (yaw=0, pitch=33, roll=33), the
face shape difference between 𝑋𝑜 and 𝑋𝑝 (yaw=33, pitch=0, roll=33)
face shape differences and face shape differences between 𝑋𝑜 and 𝑋𝑟
(yaw=33, pitch=33, roll=0) are different. To quantitatively formulate
this phenomenon, the cosine similarity, which is generally used in
natural language processing, is introduced to calculate the feature
similarity of two images. LeNet is effective in computer vision to
extract the texture and edge features of the underlying image, so a
pre-trained LeNet neural network is used to extract the image features.
The vector generated by the last full-connection (FC) layer is the most
representative feature of the figure. Thus, the vector of the last full-
connection layer from the pre-trained neural network is obtained to
calculate the feature similarity of two vectors to compare the feature
similarity of two images. The whole process of calculating the image
features is denoted as 𝐹 (⋅). Given two head pose images 𝑋1 and 𝑋2,
the head pose feature similarity is defined as follows,

𝑆(𝑋1, 𝑋2) = 𝑆𝑖𝑚𝑖𝑙𝑎𝑟𝑖𝑡𝑦(𝐹 (𝑋1), 𝐹 (𝑋2))

=
𝐹 (𝑋1) ⋅ 𝐹 (𝑋2)

∥ 𝐹 (𝑋1) ∥ × ∥ 𝐹 (𝑋2) ∥
,

(1)

where 𝐹 (𝑋) denotes the feature vector of image 𝑋. Eq. (1) is used to
compute the similarity between the two pose images, which in turn val-
idates the presence of asymmetry in the head pose. It is not difficult to
find that the head pose angles are of natural continuity, and faces close
to the target pose look very similar. Therefore, additional knowledge
about faces in different poses can be introduced to enhance the learning
problem. To put it simply, it is to learn a specific pose while using the
4

Fig. 4. Asymmetric similarity distribution matrix. We compute the all similarity
between center category pose and other category poses in BIWI dataset.

Fig. 5. Asymmetric similarity distribution curve. The shape of similarity distribution
curve is fitted by a one-dimensional Gaussian distribution. (a), (b), (c) denote the
similarity fitting curves for yaw, pitch and roll respectively.

information of faces in adjacent poses. To achieve this, we calculate
the feature similarity of any category of head pose images with all the
remaining categories of images, and several feature similarity matrices
can be obtained. As shown in Fig. 3, we take the front face image 𝑋
(yaw=0◦, pitch=0◦, roll=0◦) as an example, calculating the similarity
between this image and the rest of the head pose bin images by the
formula 𝑆(𝑋1, 𝑋2), we can get the following matrix in Fig. 4.

We can fit the matrix using three different Gaussian distributions,
and the resulting curves are shown in Fig. 5(a), (b) and (c). Here, (a),
(b), and (c) represent the Gaussian distribution curves fitted by the fea-
ture similarity values for the yaw, pitch, and roll angles, respectively.
We can observe that the three curves are generally bell-shaped and
symmetrical and have their highest probability values at the midpoint.
The similarity distribution curve for pitch is flatter, indicating that the
similarity changes for this angle are smoother. Additionally, we can
observe that the curves fitted by the similarity distribution show an
asymmetric characteristic.

We treat each head pose image label as a Gaussian distribution
rather than a traditional hard label, where adjacent head pose images
can provide supplementary information for the target image. Specifi-
cally, since each label of the head pose image based on the Gaussian
distribution describes the similarity between the current image and
the adjacent category head pose images, the Gaussian distribution
label covers the feature information of both the current and adjacent
category head pose images. This may not only help to learn the true
pose of the facial image but also help to learn its adjacent poses. To
strengthen the entire learning process, we use three different Gaussian
label distributions to describe the yaw angle, pitch angle, and roll angle
in the face sample.

3.3.3. Within angle asymmetry (WAA)
The similarity of the head pose images varies across the three angles

of yaw, pitch and roll for the same pose angle rotated on a fixed central
pose. However, when the front face image is turned to the left and
to the right by the same angle respectively, their two similarities are
different. We named this phenomenon as the Within Angle Asymmetry
(WAA). However, different with BAA, the difference of similarities
is very small. Taking into account that the small differences have
minimal impact on our model, we decide to use three different standard
Gaussian distributions to fit the WAA property. This will reduce the
introduction of parameters, make the construction of the model simple
and efficient, and improve the generalization ability of the model.
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3.3.4. Soft-label distribution
Based on the category cosine similarity values of the head pose,

the parameters of the head pose similarity distribution obeying the
proposed Gaussian distribution can be analyzed, and the Gaussian
distribution is applied to the construction of the head pose label dis-
tribution. Formally, the construction for the correlation emotion label
distribution by a mapping function that maps the stored pose labels
and values to the head pose label distribution 𝐷. The process is seen
below: given a training set 𝐸 = (𝑋0,𝐪0), (𝑋1,𝐪1),… , (𝑋𝑛,𝐪𝑛), where
𝐐𝑖 = 𝐪0,𝐪1,… ,𝐪𝑛 is the ground-truth hard-label to 𝑋𝑖, 𝑛 stands for the
size of the batch size. The label of the reconstructed 𝑋𝑖 can be expressed
as

𝑓𝑋𝑖
= 1

√

2𝜋𝜎
exp

(

−
(𝑥 − 𝜇)2

2𝜎2

)

, (2)

he labels under the yaw, pitch and roll dimensions can all be repre-
ented by the 3.3 formula. Where 𝜇 = 0.69 and 𝜎 = 0.17 in the yaw

dimension, 𝜇 = 0.68 and 𝜎 = 0.14 in the pitch dimension, 𝜇 = 0.51
and 𝜎 = 0.23 in the roll dimension. Here we take the yaw angle as an
example to illustrate the soft tag distribution. Given a face image 𝑋𝑖
a complete set of yaw angle labels 𝐲 = 𝑦1, 𝑦2,… , 𝑦𝑛, if its yaw angle
labels are 𝑦𝑖, 𝑖 = 1, 2,… , 𝑛, then the corresponding yaw angle labels are
distributed as 𝐃𝑦

𝑋𝑖
= {𝑑𝑦1𝑋𝑖

, 𝑑𝑦2𝑋𝑖
,… , 𝑑𝑦𝑛𝑋𝑖

}, with the 𝑚-th dimension as
follows:

𝑑
𝑦𝑗
𝑋𝑖

=
𝑌
𝑦𝑗
𝑋𝑖

∑𝑛
𝑘=1 𝑌

𝑦𝑘
𝑋𝑖

, (3)

𝑦𝑗
𝑋𝑖

= 𝑓 𝑦𝑎𝑤
𝑋𝑖

= 1
√

2𝜋𝜎𝑦
exp

(

−
(𝑥 − 𝜇𝑦)2

2𝜎2𝑦

)

, (4)

here 𝑗 represents the yaw angle of the 𝑗-th bin classification, while
denotes the same head pose label as 𝑞𝑖, 𝜇 and 𝜎 represent the

xpectation and variance of the Gaussian function in the yaw angle.
hus 𝑑

𝑦𝑗
𝑋𝑖

denotes the extent to which the labels describe the example
𝑖 under the constraint ∑𝑛

𝑘=1 𝑑
𝑦𝑘
𝑋𝑖

= 1, which means that the set of
labels 𝑦 completely describes the example. The other two angular label
distributions follow the same definition but have different parameter
constraints. 𝐃𝑝

𝑋𝑖
= {𝑑𝑝1𝑋𝑖

, 𝑑𝑝2𝑋𝑖
,… , 𝑑𝑝𝑛𝑋𝑖

} and 𝐃𝑟
𝑋𝑖

= {𝑑𝑟1𝑋𝑖
, 𝑑𝑟2𝑋𝑖

,… , 𝑑𝑟𝑛𝑋𝑖
}

can be obtained by a set of pitch angle labels 𝐩 = 𝑝1, 𝑝2,… , 𝑝𝑛 and roll
angle labels 𝐫 = 𝑟1, 𝑟2,… , 𝑟𝑛 of 𝑋𝑖, respectively.

𝑑
𝑝𝑗
𝑋𝑖

=
𝑌
𝑦𝑗
𝑋𝑖

∑𝑛
𝑘=1 𝑌

𝑦𝑗
𝑋𝑖

, (5)

𝑝𝑗
𝑋𝑖

= 𝑓 𝑝𝑖𝑡𝑐ℎ
𝑋𝑖

= 1
√

2𝜋𝜎𝑝
exp

(

−
(𝑥 − 𝜇𝑝)2

2𝜎2𝑝

)

, (6)

𝑟𝑗
𝑋𝑖

=
𝑌
𝑦𝑗
𝑋𝑖

∑𝑛
𝑘=1 𝑌

𝑦𝑗
𝑋𝑖

, (7)

𝑟𝑗
𝑋𝑖

= 𝑓 𝑟𝑜𝑙𝑙
𝑋𝑖

= 1
√

2𝜋𝜎𝑟
exp

(

−
(𝑥 − 𝜇𝑟)2

2𝜎2𝑟

)

, (8)

According to the distribution curves after similarity fitting, we set
he parameters on the two datasets AFLW2000 and BIWI with variance
𝐴
𝑦 = 1, 𝜎𝐴𝑝 = 2, 𝜎𝐴𝑟 = 0.5 and 𝜎𝐵𝑦 = 0.35, 𝜎𝐵𝑝 = 0.6, 𝜎𝐵𝑟 = 0.3, respectively,
hile the mean 𝜇𝑦 = 𝜇𝑝 = 𝜇𝑟 = 0. Consequently, the training set can
e represented as {(𝑋𝑖, (𝐃

𝑦
𝑋𝑖
,𝐃𝑝

𝑋𝑖
,𝐃𝑟

𝑋𝑖
)), 1 ≤ 𝑖 ≥ 𝑛}. The goal of learning

s to train a set of network parameters 𝜃 to generate probabilistic label
istributions.

.3.5. Hard-label distribution
Based on the earlier classification of bins, we know the number

f predicted categories for the coarse classification module. Following
he one-hot encoding strategy, each category label is encoded to form

hard label distribution. According to the Bins Partition Details, we
now the angular categories bins after division are: [0, 1, 2, . . . , 33,
4, . . . , 64, 65]. Then the [+96◦, +99◦ ] bin’s label distribution is [0,
, 0, . . . , 0, 0, . . . , 0, 1].
5

.4. Fine classification

By using bin classification, the coarse classification module can
btain an accurate category prediction. However, in the head pose task,
he goal is to obtain accurate angle values rather than a category. The
ine classification module calculates the expected value based on the
oarse classification category to achieve the goal of fine classification.
he specific calculation formula is as follows:

𝑛𝑔𝑙𝑒_𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑 = 𝑏𝑖𝑛 ⋅ 3 − 99, (9)

where 𝑏𝑖𝑛 stands for the predicted bin and 𝑎𝑛𝑔𝑙𝑒_𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑 the predicted
value.

3.5. Prediction of DADL model

In this study, to encourage the model to learn both the correct
classification and the misclassified label information with a greater
inclination towards the accurate class information, we continue to em-
ploy the cross-entropy function for loss calculation under hard labels.
The cross-entropy loss function constructed with hard labels is defined
as:

𝐶𝐸𝐿(𝑦, 𝑦̂) = −
∑

𝑖
𝑦𝑖 ln 𝑦̂𝑖, (10)

where 𝑦 stands for the ground truth and 𝑦̂ the predicted value. The
advantage of utilizing hard label distribution (one-hot encoding) lies in
its explicit specification of the class for each sample, providing a clear
error signal. Additionally, the computation of gradients for parameters
in cross-entropy loss is relatively straightforward, facilitating more
efficient parameter updates during the backpropagation process. This,
in turn, aids the network in converging to the optimal solution more
rapidly.

However, the cross-entropy loss constructed from hard labels excels
in learning inter-class information, given its utilization of inter-class
competition mechanism. It only focuses on the accuracy of predicting
the correct label probability, disregarding distinctions among other
non-correct labels. This can lead to the learned features being relatively
scattered. Consequently, the network may become overly absolute in its
predictions during training, which potentially diminish the generaliza-
tion ability of the model. Moreover, large-scale datasets often contain
mislabeled data, implying that neural networks should inherently ap-
proach the ‘‘truth’’ with a degree of skepticism to mitigate modeling
around erroneous answers in extreme cases.

In contrast to hard label distributions, soft labels leverage the infor-
mation from neighboring head pose classes to a fuller extent. In order
to better capture the surrounding neighbor instance, the Kullback–
Leibler (KL) divergence is employed to measure the distance between
the real head pose label distribution 𝐃𝑖 and the predicted head pose
label distribution 𝐃̂𝑖. It is defined as follows:

𝐾𝐿
(

𝐃𝑖 ∥ 𝐃̂𝑖

)

=
∑

𝑗
𝐃𝑗
𝑖 ln

𝐃𝑗
𝑖

𝐃̂𝑗
𝑖

=
∑

𝑖

∑

𝑗
𝑑
𝑦𝑗
𝑋𝑖

ln
𝑑
𝑦𝑗
𝑋𝑖

𝑝
(

𝑦𝑗 ∣ 𝑋𝑖; 𝜃
) ,

(11)

where 𝐃̂𝑖 means the predicted pose label distribution generated by a set
of head pose images trained by the model, 𝐃𝑖 denotes the pseudo-real
pose label distribution we constructed. The learned mapping function
𝑝(𝑦|𝑋) of DADL model is assumed that a parameters model 𝑝(𝑦|𝑋; 𝜃)
learned from 𝐸, where 𝜃 is the vector of model parameters.

Considering that by using bin classification, we use a very sta-
ble softmax layer, cross-entropy, and KL divergence. Consequently,
it allows the network to predict the head pose more robustly and
obtain an accurate category prediction. However, employing only the
coarse classification module for the head pose task does not allow the
model to obtain a more accurate angle value, so to obtain fine-grained
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predictions, we added a mean square error function to the network
to improve the head pose prediction. Indeed to obtain fine-grained
predictions, we sum the features normalized by softmax as probabilities
and the corresponding categories by multiplying them to calculate the
expectation, which is summed with the ground truth angle to calculate
the MSE loss. The mean square error is defined as:

𝑀𝑆𝐸(𝑦, 𝑦̂) = 1
𝑛

𝑛
∑

𝑖=0

(

𝑦𝑖 − 𝑦̂𝑖
)2 , (12)

where 𝑦 and 𝑦̂ respectively designate the ground truth and the predicted
value. Eventually, combining the head pose label distribution learning
module with cross entropy and the mean square error loss function, the
global loss function is:

𝐿 =𝐶𝐸𝐿(𝑦, 𝑦̂) + 𝛼 ⋅𝑀𝑆𝐸(𝑦, 𝑦̂)

+ 𝛽 ⋅𝐾𝐿
(

𝐃𝑖 ∥ 𝐃̂𝑖

)

,
(13)

where 𝑦 and 𝑦̂ respectively designate the ground truth and the predicted
value, 𝛼 and 𝛽 are the regression coefficients.

3.6. Optimization

Most convolutional neural networks for head pose estimation mod-
els solely utilize cross-entropy or mean square error loss functions to
penalize their networks and thus predict the rotation angle of the 3D
head pose. In contrast, the loss function calculated using the cross-
entropy model with hard labels only considers the loss of the correct
label position and ignores the loss of other positions, which leads
to ignoring the loss of other incorrect label positions at the same
time. Consequently, the model places enormous emphasis on increasing
the probability of predicting correct labels while neglecting to reduce
the probability of predicting incorrect labels, eventually leading to
overfitting of the model.

Therefore, we take advantage of head pose label distribution learn-
ing. The smooth label design leads to a loss of the model, considering
not only the loss of correct label positions in the training sample but
also the loss of other incorrect label positions and, eventually, forcing
the model to optimize in the direction of increasing the probability
of correct classification and decreasing the probability of incorrect
classification. In this way, the generalization ability of the model can
be improved. Based on the above analysis, the best model parameter
vector 𝜃∗ is:

𝜃∗ = argmin
𝜃

∑

𝑖

∑

𝑗
𝑑
𝑦𝑗
𝑋𝑖

ln
𝑑
𝑦𝑗
𝑋𝑖

𝑝
(

𝑦𝑗 ∣ 𝑋𝑖; 𝜃
)

= argmin
𝜃

∑

𝑖

∑

𝑗
𝑑
𝑦𝑗
𝑿𝑖

ln 𝑑
𝑦𝑗
𝑿𝒊

− 𝑑
𝑦𝑗
𝑿𝑖

ln 𝑝
(

𝑦𝑗 ∣ 𝑋𝑖; 𝜃
)

= −argmin
𝜃

∑

𝑖

∑

𝑗
𝑑
𝑦𝑗
𝑋𝑖

ln 𝑝
(

𝑦𝑗 ∣ 𝑋𝑖; 𝜃
)

,

(14)

The softmax function is used to calculate the probability of a sample as
follows:

𝑝
(

𝑦𝑗 ∣ 𝑋𝑖; 𝜃
)

=
exp

(

𝑅
(

𝜃𝑗𝑋𝑖
))

∑

𝑘 exp
(

𝑅
(

𝜃𝑘𝑋𝑖
)) , (15)

where 𝜃 denotes the parameters of the network model and R(⋅) is the
output of the pre-trained ResNet network model.

Eventually, combining the head pose label distribution learning
module with cross entropy and the mean square error loss function,
the global loss function is:

𝐿(𝜃) =𝐶𝐸𝐿(𝑦, 𝑦̂) + 𝛼 ⋅𝑀𝑆𝐸(𝑦, 𝑦̂)

+ 𝛽 ⋅ (− argmin
𝜃

∑

𝑖

∑

𝑗
𝑑
𝑦𝑗
𝑥𝑖 ln 𝑝(𝑦𝑗 ∣ 𝑋𝑖; 𝜃))

= − (1 + 𝛼)
∑

𝑖

∑

𝑗
𝑑
𝑦𝑗
𝑋𝑖

ln 𝑝(𝑦𝑗 |𝑋𝑖; 𝜃)

+ 𝛽 ⋅
1
𝑛
∑∑

(

𝑑
𝑦𝑗
𝑋𝑖

− 𝑝(𝑦𝑗 |𝑋𝑖; 𝜃)
)2

,

(16)
6

𝑖 𝑗
Fig. 6. Sample images of the three datasets. The first, second and third rows are
samples from the 300W-LP, AFLW2000 and BIWI datasets, respectively.

where 𝑦 and 𝑦̂ respectively designate the ground truth and the predicted
value, 𝛼 and 𝛽 are the regression coefficients, and 𝜃 denotes the
parameters of the network model.

The mini-batch gradient descent (MBGD) method is adopted to
minimize the objective function . The rule for the optimization iteration
of the parameter is:

𝜃𝑗 ← 𝜃𝑗 − 𝜂
𝛿𝐿(𝜃)
𝛿𝜃𝑗

, (17)

where 𝜂 is the learning rate. According to the chain derivation rule is
able to iteratively compute from layer to the first layer. The partial
derivatives are computed for the parameter as follows:

𝛿𝐿(𝜃)
𝛿𝜃𝑗

= − (1 + 𝛼)
∑

𝑖

∑

𝑗
𝑑
𝑦𝑗
𝑋𝑖

1
𝑝(𝑦𝑗 |𝑋𝑖; 𝜃)

𝛿𝑝(𝑦𝑗 |𝑋𝑖; 𝜃)
𝛿𝜃𝑗

+ 𝛽 ⋅
2
𝑛
𝛴𝑖𝛴𝑗𝑑

𝑦𝑗
𝑋𝑖

− 𝑝(𝑦𝑗 |𝑋𝑖; 𝜃)
𝛿𝑝

(

𝑦𝑗 |𝑋𝑖; 𝜃
)

𝛿𝜃𝑗

(18)

Eventually, updating 𝜃𝑗 by Eq. (17) after 𝛿𝐿(𝜃)
𝛿𝜃𝑗

is obtained.

4. Experiments

4.1. Datasets

To perform a valuable and comprehensive evaluation of our net-
work, we used three popular datasets (BIWI (Zhu and Ramanan, 2012),
300W-LP (Sagonas et al., 2013) and AFLW2000 (Zhu et al., 2016)) to
train and evaluate our model. A few samples of datasets are shown in
Fig. 6. These datasets were collected in different ways, from restricted
laboratory settings to unconstrained field environments.

BIWI dataset is composed of videos of the Kinect device recording
different head pose on 20 different subjects in a laboratory setting, and
the total number of frames in this dataset is 15,000. The three angles
vary in direction: pitch is in the range of −60◦ to +60◦, yaw is between
−75◦ and +75◦, and roll is in the range of −50◦ to +50◦.

300W-LP dataset is a large pose dataset obtained by deformation
flipping on the 300 W dataset, which has more than 120,000 images
containing 3837 volunteers, each with 68 key point labels and three
head pose angle labels.

AFLW2000 is a challenging dataset, acquired and annotated in
the field, collected from the Internet under completely unconstrained
conditions. Both frontal and lateral images were collected under nine
different lighting conditions, and the dataset contains precise fine-
grained pose annotations that were used primarily as a test set for our
purposes.

4.2. Evaluation protocols

To be able to evaluate our proposed model on different datasets
fully, our experiments were performed according to the following two
commonly used protocols, which are the same as HopeNet (Ruiz et al.,
2018).
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4.2.1. Protocol 1
Since HopeNet performs head pose estimation without landmark

annotation, we follow the HopeNet setup: training on a synthetic 300W-
LP dataset and testing on two real datasets, BIWI and AFLW2000.
As with the HopeNet setup, when testing on both datasets, BIWI and
AFLW2000, we cropped based on face landmark labels in the area
around the head and did not use tracking.

4.2.2. Protocol 2
In this protocol, we take 70% of all video frames in the BIWI dataset

video as the training set and the remaining 30% as the test set. And in
this protocol, the video frames include different modes, including RGB,
depth and time, and our proposed method is performed only under RGB
frames. For a fair comparison, our protocols all follow the preprocessing
strategy of the other methods, keeping only samples with Euler angles
between −99◦ and 99◦.

.3. Implementation

In this paper, we use ResNet-50 pretrained on the 300W-LP database
s the backbone. For all the databases, the face in each image is
etected and cropped according to the eye positions. Then, the facial
mage is resized to the size of 256 × 256. During training, all images

were first normalized using ImageNet (Deng et al., 2009) mean and
standard deviation and then randomly cropped to a size of 224 × 224.
All our models are trained on a single NVIDIA RTX 8000 GPU using
PyTorch, with a batch size of 32 for 300W-LP and the other HPE
databases. We divided the images with head pose image angles within
±99◦ into a total of 66 categories according to 3◦ a category, where
n=66. We set the variance of the model for training on the AFLW2000
and BIWI datasets to 𝜎𝑦 = 1, 𝜎𝑝 = 2, 𝜎𝑟 = 0.5 and 𝜎𝑦 = 0.35, 𝜎𝑝 = 0.6,
𝑟 = 0.3, respectively. Where 𝜇𝑦 = 𝜇𝑝 = 𝜇𝑟 = 0. Regarding the model’s
yperparameters, we set the maximum limit of the batch size to 128
ue to the GPU memory limitation. In our experiments, the learning
ate is 1e−5, and the momentum and weight decay are set to 0.9 and
e−4, respectively.

.4. Competing methods

To demonstrate the effectiveness of our method, we compare our
ethod with the following state-of-the-art methods for head pose esti-
ation. The first group of methods is based on landmarks. Dlib, (Kazemi

nd Sullivan, 2014) containing landmark detection, face detection, and
arious other techniques, employs facial landmarks to estimate head
ose. FAN (Bulat and Tzimiropoulos, 2017) method obtains multiscale
nformation for pose estimation by merging feature blocks multiple
imes across layers. 3DDFA (Zhu et al., 2016) uses neural network to fit
D models to generate head pose angles. (Kumar et al., 2017) utilizes a
odified GoogleNet (Szegedy et al., 2015) architecture to predict facial
oints simultaneously and head pose using a multi-task strategy.

The next group of approaches utilized a landmark-free estimation.
opeNet (Ruiz et al., 2018) uses a fine-grained strategy to construct the
uler angular loss, employing ResNet (He et al., 2016b) as the backbone
etwork and training and testing it using MSE and cross-entropy. (Yang
t al., 2019) also proposes a soft-stage regression approach called
SA-Net and achieved good performance in combination with feature
ggregation. (Huang et al., 2020) proposes a novel method named HPE-
0 using two-stage ensembles for head pose estimation. (Zhang et al.,
020b) proposes the FDN, employing a feature decoupling approach
o obtain proprietary features from different angles for estimating
ead pose. SCR-AT (Zhang et al., 2020a) is a approach with Gaussian
istribution and spatial attention structure to predict head pose angles.

Alternative approaches in different multiple modalities are also
ompared. DeepHeadPose (Mukherjee and Robertson, 2015) uses both
lassification and regression strategy to regress the head pose di-
ectly from the RGB-D image. (Gu et al., 2017) employed VGG16 and
7

B

Table 1
Comparison of other state-of-the-art methods on the AFLW2000 dataset. All methods
were trained on the 300W-LP dataset.

Methods Yaw Pitch Roll MAE

Dlib 23.1 13.6 10.5 15.8
3DDFA 5.4 8.53 8.25 7.39
FAN 6.36 12.3 8.71 9.12
HopeNet(𝛼 = 1) 6.92 6.64 5.67 6.41
HopeNet(𝛼 = 2) 6.47 6.56 5.44 6.16
FSA-Net 4.50 6.08 4.64 5.07
HPE-40 4.87 6.18 4.80 5.28
SSR-Net-MD 5.14 7.09 5.89 6.01
WHENet 5.11 6.24 4.92 5.42
DADL 3.99 5.82 4.21 4.67

Table 2
Comparison of other state-of-the-art methods on the BIWI dataset. All methods were
trained on the 300W-LP dataset.

Methods Yaw Pitch Roll MAE

Dlib 16.8 13.8 6.19 12.2
3DDFA 36.2 12.3 8.78 19.1
FAN 8.53 7.48 7.36 7.89
HopeNet(𝛼 = 1) 5.17 6.98 3.39 5.18
HopeNet(𝛼 = 2) 8.80 17.3 16.2 13.9
FSA-Net 4.81 6.61 3.27 4.90
HPE-40 4.27 4.96 2.76 4.00
SSR-Net-MD 4.57 5.18 3.12 4.29
WHENet 4.49 6.31 3.61 4.65
DADL 4.18 6.19 3.27 4.54

VGG16+RNN combined with Bayesian filters to predict head pose from
RGB images and RGB+Time images, respectively. (Martin et al., 2014)
estimates the head pose from the depth image by building a 3D head
model.

4.5. Competing experiment

4.5.1. Results with protocol 1
In this case, our model is trained on the 300W-LP dataset and then

tested on the AFLW2000 and BIWI datasets. The performance of our
method outperforms the above methods. Tables 1 and 2 compare our
model with other state-of-the-art methods on the AFLW2000 and BIWI
datasets, respectively. The mean absolute error (MAE) was used as
an evaluation metric. The features of the training and test datasets in
this protocol are completely different; the training dataset 300W-LP is
synthetic, while the test dataset BIWI is real.

Table 1 shows the results evaluated on the AFLW2000 dataset,
where the proposed DADL always exhibits the smallest errors in yaw
and roll. The MAE of DADL is lowest when the weights 𝛼 = 2 and 𝛽 = 1
re based on the anisotropy of soft label loss and hard label loss, and
he MAE decreases to 4.69. In fact, our network considers each angle
f head pose estimation separately, and for three different angles the
etwork is able to extract anisotropic feature information, making the
odel have better generalization ability and accurate performance.

Table 2 reports the performance of the proposed method on the
IWI dataset. Since the BIWI dataset was collected in a laboratory
etting, it has less noise leading to lower MAE than the results of
ther datasets. Our proposed DADL employs an anisotropy-based soft
abel distribution to model each angle separately, which can further
onstrain the model and predict the corresponding attitude angle more
ccurately.

.5.2. Results with protocol 2
This protocol follows the FSA-Net setting, where BIWI is utilized as

oth a training and test set. And the BIWI dataset is randomly split in
he ratio of 7:3 for training and testing, respectively. As shown in Ta-
le 3, the performance of the approach adopting different modes on the

IWI dataset is demonstrated, with the RGB-based groups using only a
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Fig. 7. Example images with converted Euler angle visualization from the AFLW2000 (a) and BIWI (b) dataset.
Table 3
Comparison with other state-of-the-art methods on BIWI datasets. 70% of the BIWI
datasets were used for training and the others used for testing. Different types of
methods support different modes of the dataset, including RGB, RGB + DEPTH, and
RGB + TIME.

Methods Yaw Pitch Roll MAE

RGB

DeepHeadPose 5.67 5.18 – –
SSR-Net-MD 4.24 4.35 4.19 4.26
VGG16 3.91 4.03 3.03 3.66
FSA-Net 2.89 4.29 3.60 3.60
DADL 3.38 3.46 3.12 3.32

RGB+Depth

DeepHeadPose 5.23 4.76 – –
Martin 3.60 2.50 2.60 2.90

RGB+Time

VGG16+RNN 3.14 3.48 2.60 3.07

single RGB image, while RGB+Depth and RGB+Time additionally use
depth and time information, respectively. Our proposed DADL method
uses only a single RGB image and outperforms RGB-based groups.

4.6. Visualization

In this section, we compare the performance of our proposed DADL
model with HopeNet by taking random samples from the AFLW2000
and BIWI datasets. A visualization of the performance of our method is
shown in Fig. 7. As depicted in Fig. 7, when subjecting the sample to
various distortions like occlusion, illumination changes, and extreme
poses, the DADL model predicts angles that align more closely with
the ground truth. Different approaches estimate the head pose of these
disturbed images to detect the robustness of the model. Evidently,
our approach not only demonstrates superior accuracy in predicting
standard images but also sustains heightened robustness in estimating
extreme head poses. In contrast, when it comes to estimating extreme
head poses, alternative methods falter in effectiveness due to their
failure to consider the anisotropic nature of head pose.

For a more intuitive assessment of the prediction performance
of both DADL and HopeNet, this paper provides visualizations in
Fig. 8, showcasing predicted values and ground truth derived from
samples sourced from the AFLW2000 dataset. In the visualization,
small cubes represent the predicted values, large cubes represent the
ground truth, the yellow line represents the ground truth direction,
and the green, blue, and yellow lines represent the predicted directions.
Fig. 8(a) showcases the experimental results of the HopeNet model on
AFLW2000 samples, while Fig. 8(b) illustrates the experimental results
of DADL on AFLW2000 samples. By comparing the experimental re-
sults, it can be observed that the angle between the predicted direction
of DADL and the ground truth direction is smaller than that of HopeNet.

Fig. 9 shows this paper presents visualizations of predicted and
ground truth using samples extracted from the BIWI dataset. In the
visualization, small cubes represent the predicted values, large cubes
8

Table 4
Performance of the different backbone structures on AFLW2000 and BIWI datasets. All
methods are trained on 300W-LP dataset.

Methods AFLW2000 BIWI

Yaw Pitch Roll MAE Yaw Pitch Roll MAE

ResNet18 4.47 6.24 4.84 5.19 4.34 6.88 3.89 5.04
ResNet152 5.35 6.05 4.79 5.40 4.68 7.20 3.71 5.20
MobileNetV2 4.89 6.34 5.47 5.57 4.73 7.78 4.43 5.66
ResNet50 3.99 5.83 4.22 4.68 4.18 6.19 3.27 4.54

represent the ground truth, the yellow line represents the ground
truth direction, and the green, blue, and yellow lines represent the
predicted directions. Fig. 9(a) showcases the experimental results of
the HopeNet model on the BIWI samples, while Fig. 9(b) illustrates
the experimental results of DADL on the BIWI samples. By comparing
the experimental results, it can be observed that the angle between the
predicted direction of DADL and the ground truth direction is smaller
than that of HopeNet.

Grad-CAM (Gradient-weighted Class Activation Mapping) (Selvaraju
et al., 2017) is a technique employed for interpreting and visualizing
the prediction outcomes of deep neural networks. Its purpose is to
aid in comprehending the specific image regions and features that the
model focuses on during the prediction process, thus bolstering the
capacity to explain and interpret model decisions. As shown in Fig. 10,
the participation regions from different methods can be observed on
samples with the same identity and pose. The HopeNet method focuses
more on certain facial regions, which may lead to incorrect estimation
for samples with extreme pose and facial occlusions. The proposed
DADL model employs an anisotropy-based soft label distribution, where
adjacent head poses offer supplementary information to the target
pose, thereby aiding in addressing pose estimation in these intricate
scenarios. It means that DADL is able to extract more robust and
detailed head pose embeddings.

4.7. Ablation studies

In this section, the performance of different backbone networks is
evaluated through ablation experiments to analyze the model’s total
loss parameters and demonstrate the effectiveness of different com-
ponents, including Gaussian-based soft label distribution modules and
coarse and fine granularity modules. As shown in Table 4, ResNet18,
ResNet50, ResNet152, and MobileNetV2 were selected as the back-
bone networks for feature extraction. These networks undergo train-
ing on the 300W-LP dataset, followed by testing on the BIWI and
AFLW2000 datasets. The outcomes demonstrate that ResNet50 ex-
hibits outstanding feature extraction capabilities, consequently yielding
superior performance.

Furthermore, to verify the performance of the different compo-
nents, we divided the proposed DADL model into four primary parts,
w/o, Hard-label, GSoft-label and DADL module. The first segment,
denoted as w/o, exclusively employs the feature extractor and fully
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Fig. 8. (a) and (b) show the experimental results of HopeNet and ADML on the sample of AFLW2000 dataset, respectively. The first column of small cubes indicates the predicted
values, the large cubes indicate the true values, the yellow line indicates the true values, and the other lines indicate the predicted values.
Fig. 9. (a) and (b) show the experimental results of HopeNet and ADML on the sample of BIWI dataset, respectively. The first column of small cubes indicates the predicted
values, the large cubes indicate the true values, the yellow line indicates the true values, and the other lines indicate the predicted values.
connected layer without introducing any additional module. It directly
applies a single Mean Squared Error (MSE) to minimize the error in
output pose estimation angles. The second method adds hard labels
to perform coarse-grained classification estimation first after the fully
connected layer. The third part adopts a generic soft tag design instead
of hard tags for pose estimation and does not consider the head pose
anisotropy property. The last part of the DADL module employs MSE
for finer-grained regression in a coarse-to-fine manner while adding
9

an anisotropy-based soft label design. Then it calculates model loss
utilizing KL divergence and cross-entropy. For all the above sections,
the feature extractor is ResNet50. These segments are trained on the
300W-LP dataset and subsequently evaluated on the AFLW2000 and
BIWI datasets. As shown in Table 5, the DADL approach has the
minimum error on both datasets. It is evident that the model attains
a heightened level of robustness and achieves optimal results when all
modules are integrated.
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Table 5
Ablation experiments for different components on the
AFLW2000 and BIWI datasets.

Methods AFLW2000 BIWI

w/o 5.56 5.75
Hard-label 5.32 5.29
GSoft-label 5.08 4.94
DADL 4.67 4.54

Fig. 10. Comparison of Grad-CAM generated by different methods on multiple samples
with the same identity and different pose, indicate the experimental effects in
AFLW2000 and BIWI, respectively.

Fig. 11. Comparison of MAE of different components at different angles under protocol
I.

Fig. 11 shows a detailed comparison of the yaw, pitch, and roll for
several settings. Detailed information on the experimental results of
each module at different angles is illustrated.

4.8. Hyperparameter experiment

In this section, the parameters associated with the total losses are
scrutinized through hyperparametric experiments. The total loss is
computed by summing the KL divergence, cross-entropy loss, and MSE
loss, each weighted differently. As shown in Equation (16) (total loss
function L), the total loss consisting of different weights significantly
impacts the model performance. Therefore, we utilize the 300W-LP
dataset as the training set, and to measure the generalization ability
of the model, we adopt different weights on the AFLW2000 dataset
and the BIWI dataset to test the model. The performance comparison
employing different weights is shown in Fig. 12. It can be observed that
the DADL model achieves optimal performance for total loss weighting
𝛼 = 3 and 𝛽 = 3 on the AFLW2000 dataset and total loss weighting
𝛼 = 1 and 𝛽 = 2 on the BIWI dataset, respectively.

5. Conclusion

In this study, we introduce a novel approach called Double Asym-
metric Distribution Learning (DADL) for head pose estimation. The
main objective of this research is to propose a head pose estimation
method based on dual asymmetry attributes and introduces a label dis-
tribution learning mechanism to enhance the performance of the model.
10
Fig. 12. Comparison of MAE of DADL using total losses with different 𝛼 and 𝛽. All
models are trained on 300W-LP train sets, then evaluated on 300W-LP validation sets,
AFLW2000 and BIWI datasets respectively.

This allows the model to consider the information between neighboring
poses of the target image while learning the ground truth of the image.
Experimental results on several popular benchmarks demonstrate that
our method is effective. In future work, we will further explore how
to remove irrelevant features related to head pose tasks in order to
construct more accurate label distributions and improve the precision
of the model. This feature denoising task is an important research
direction in the field of head pose estimation, and its results will
contribute to improving the interpretability and generalization ability
of the model.
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