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Attention-Based Deep Reinforcement Learning
for Edge User Allocation

Jiaxin Chang", Jian Wang ', Member, IEEE, Bing Li

Abstract—Edge computing, a recently developed computing
paradigm, seeks to extend cloud computing by providing users
minimal latency. In a mobile edge computing (MEC) environ-
ment, edge servers are placed close to edge users to offer
computing resources, and the coverage of adjacent edge servers
may partially overlap. Because of the restricted resource and
coverage of each edge server, edge user allocation (EUA), i.e.,
determining the optimal way to allocate users to different servers
in the overlapping area, has emerged as a major challenge in
edge computing. Despite the NP-hardness of obtaining an optimal
solution, it is possible to evaluate the quality of a solution in a
short amount of time with given metrics. Consequently, deep
reinforcement learning (DRL) can be used to solve EUA by
attempting numerous allocations and optimizing the allocation
strategy depending on the rewards of those allocations. In this
study, we propose the Dual-sequence Attention Model (DSAM)
as the DRL agent, which encodes users using self-attention mech-
anisms and directly outputs the probability of matching between
users and servers using an attention-based pointer mechanism,
enabling the selection of the most suitable server for each user.
Experimental results show that our method outperforms the base-
line approaches in terms of allocated users, required servers,
and resource utilization, and its running speed meets real-time
requirements.

Index Terms—Edge user allocation, deep reinforcement learn-
ing, edge computing.

I. INTRODUCTION

DGE computing is a novel computing paradigm that
Eprocesses data at the network’s edge. This reduces the
distance between the data source and processing, which
in turn lowers the latency between end-users and servers.
The reduction in latency benefits numerous latency-sensitive
applications, such as autonomous driving and online gam-
ing. Mobile edge computing (MEC) is a specific technology
that provides computing resources within a radio access
network (RAN) close to end devices, allowing users to offload
compute-intensive tasks to neighboring edge servers. However,
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compared to cloud servers, edge servers have restricted cov-
erage and limited resource capacity [1]. Efficient resource
allocation in the MEC is critical to support users’ task
offloading.

Previous studies on computation offloading, such as [2]
and [3], mainly focused on resource allocation for multiple
users on a single edge server, with the aim of minimizing task
completion time and resource demand. Wang et al. [4] con-
sidered allocation decisions in a scenario with multiple edge
servers deployed with different applications, with the goal of
achieving resource and network load balancing. Additionally,
Dai et al. [5] explored a coordinated architecture of end-edge-
cloud that supports both local computing and computation
offloading to the edge or cloud, with the objective of minimiz-
ing system energy consumption through offloading decisions.
These studies primarily focus on factors such as task comple-
tion time, resource or energy consumption, channel selection,
and transmission power during data transfer, from the perspec-
tive of devices or edge infrastructure providers. In contrast,
this paper focuses on computation offloading from the service
provider’s perspective. We assume that the edge infrastructure
providers can offer low-latency edge servers with fixed cover-
age and limited computing resources (such as CPU, memory,
storage, and bandwidth) to service providers. Service providers
need to rent edge servers to provide low-latency services to
users and must consider how to rent fewer servers to serve
more users efficiently. This requirement necessitates an effi-
cient user allocation strategy, which is referred to as the edge
user allocation (EUA) problem [6].

The EUA problem typically considers two constraints: cov-
erage limits and resource capacity constraints. In addition,
from the service provider’s perspective, there are two objec-
tives: enabling more users to connect to edge servers to
improve the quality of service (QoS) and renting fewer servers
to save costs. It is a multi-objective optimization problem and
proved to be NP-hard [6]. In this paper, we study quasi-static
scenarios like [6], [7], [8], and [1], where users do not migrate
from the coverage of one edge server to another. For example,
the users could be intelligent speakers, family webcams, and
IoT devices with fixed locations.

Prior studies on the EUA problem have some limitations.
Some researchers used mathematical optimization methods
such as Lexicographic Goal Programming techniques [6],
while others used traditional metaheuristic algorithms such as
genetic algorithms [9]. These methods often suffer from the
exponential growth of the search space and a heavy computa-
tional burden, especially in large-scale scenarios. To provide
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real-time solutions, some researchers have used heuristic meth-
ods such as [I] and [7], which utilize optimized greedy
algorithms and can provide solutions in a short time, but
there is still a gap between the obtained solutions and the
optimal solutions. Currently, no method can provide near-
optimal solutions in a short time. Due to the NP-hardness of
the EUA problem, it is impracticable to achieve an optimal
solution in polynomial time. However, it is relatively easy
to assess the quality of a solution. By testing a large num-
ber of allocations and utilizing their scores to optimize the
allocation policy, we may arrive at a near-optimal allocation
policy. Deep reinforcement learning (DRL) has shown sig-
nificant potential in addressing this problem. Leveraging the
powerful fitting ability of deep neural networks, DRL can gen-
erate optimal allocation policies when receiving inputs from
users and servers. Furthermore, reinforcement learning can
optimize the neural network by attempting a large number
of allocations with the computed rewards based on various
metrics.

Many studies in the field of computation offloading have
used DRL, but their methods cannot be directly applied to
the EUA problem due to different scenarios with different
states and actions. The different inputs and outputs necessitate
the redesign of neural networks. Additionally, most traditional
DRL agents use combinations of multilayer linear layers (fully
connected networks), which have two main drawbacks. First,
if all users are encoded through linear layers, the embedding
of each user only contains its own information, which can-
not provide the neural network with more complete global
information, resulting in potentially local optimal allocation
policies. Second, the output dimension of the linear layer
is also fixed. The conventional practice is to set the num-
ber of servers as the output dimension, and the probability
of selecting each server is determined by the output value
of each dimension. However, this kind of method fails to
exploit the dual-sequence nature of the problem and does not
directly output the matching degree between users and servers,
which may result in unsatisfactory server selection for users.
Moreover, these methods necessitate changing the network
structure and training a new neural network when the number
of servers changes. Therefore, we propose a dual-sequence
attention model to solve these two problems. First, we use
self-attention to encode users, making each user’s embed-
ding incorporate information from related users. Second, when
selecting a server for a given user, we use a pointer mechanism
(a simplified attention mechanism) to dynamically calculate
the matching degree between each server and the user. The
introduction of the attention mechanism has tremendous poten-
tial in the context of MEC, given its dynamic and flexible
nature. This mechanism enables neural networks to effectively
handle the variability and adaptability of inputs and outputs.
Specifically, when the number or configuration of servers
changes, the neural network empowered by the attention
mechanism can output the probability of the corresponding
server without changing the network structure. In this work,
we propose an attention-based deep reinforcement learning
method to solve the EUA problem. Our main contributions
are summarized as follows:

¢ We model the EUA problem as a Markov decision pro-
cess (MDP) and use a DRL approach to solve it, which
can obtain near-optimal solutions in a short time.

e We design a dual-sequence attention model (DSAM) as
the agent for DRL. DSAM uses a self-attention mech-
anism to encode users and an attention-based pointer
mechanism to output the probability of matching between
users and servers. It can handle variable-length user and
server sequences and make decisions on which server to
allocate each user to.

e We conduct a series of experiments on a real-world
edge server dataset to evaluate the performance of our
proposed DSAM. The results show that our approach
outperforms baseline approaches.

The paper is organized as follows. Section II describes
an example of the EUA scenario and formalizes the EUA
problem as an MDP. Section III models our proposed DSAM.
Section IV introduces the DRL algorithm to train our model.
Section V is the experimental part, which evaluates the
performance of our approach. Section VI reviews the related
work. Finally, Section VII concludes this paper and looks
ahead to future work.

II. PROBLEM STATEMENT
A. Motivating Example

One typical application scenario of the EUA problem is
the smart traffic management system [10]. Traffic cameras in
the city capture a large amount of video data daily. If these
data are uploaded to the cloud server for processing, it will
occupy a lot of bandwidth and have high latency. Edge com-
puting can solve this problem. Traffic cameras in different
locations may connect to edge servers for video processing.
When connected to edge servers, the camera requested ser-
vice will occupy a certain amount of CPU and memory for
video processing, use a certain amount of bandwidth to upload
videos and occupy much disk storage for recent monitor-
ing records. Since different cameras execute different tasks,
the amount of resource requests for corresponding services
also varies. Service providers rent edge servers from edge
infrastructure providers to offer video processing and anal-
ysis services. Each traffic camera (later referred to as a more
general term “user”’) can only connect to one edge server that
can cover its location and has enough capacity. The cover-
age areas of different edge servers overlap, and users in the
overlapping areas have multiple choices. However, due to the
limited capacity of edge servers, the choice of one user may
affect other users. Service providers hope to rent fewer servers
to save costs while allowing as many users as possible to con-
nect to edge servers, which requires an efficient allocation
strategy. We will use an example to illustrate this scenario
next.

In Fig. 1, the user u is located in the overlapping area of
edge servers e and es. His resource requirements are repre-
sented by the values (2, 3, 3, 4) for CPU, memory, storage,
and bandwidth, respectively. If we allocate u; to e; whose
capacity is (10, 12, 9, 15), the remaining capacity of e; will
be (8,9, 6, 11). Consequently, e1 can only handle either ug or
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Fig. 1. Example edge computing scenario.

u3 because the sum of their resource requirements is (7, 10, 9,
10), and the memory and storage capacity of e is insufficient.
One of them must connect to a cloud server, leading to higher
latency. But if we allocate u to eg, we can allocate both w2
and u3 to ej. In the meanwhile, u4 can be allocated to eo,
while us, ug, and w7 can be allocated to e3. Thus, all users
will be allocated to edge servers, and the proportion of users
allocated to edge servers has increased. This demonstrates that
the allocation of a single user affects the whole allocation.
In the real world, the scale of the EUA problem involves a
much larger number of users and servers, making the search
for an optimal strategy much more complex than the example
illustrated above. Therefore, solving such a problem is highly
challenging and demands a more efficient allocation approach.

B. Problem Formulation

This section formulates the EUA problem and models it as
an MDP that is amenable to DRL-based solutions. First, the
relevant notations are defined in Table I.

The EUA problem contains two constraints. The first one
concerns the server coverage: a user can only be allocated
to a server whose coverage encompasses the user’s current
location:

dir, < covg,, t=1,2,...,n A7 #—1. (1)

The second constraint relates to resource capacities: a
user can only be allocated to a server whose capacities can
accommodate the user’s resource requirements:

wy, < ek t=1,2,.. AT £ -LVE=1,234.(2)

In MDP, an agent plays the role of both a learner and a
decision maker [11]. In our approach, the agent refers to a
neural network model that must be trained. It continuously
interacts with the environment. At each time step, the agent
chooses an action according to the current state, and then the
environment updates the state accordingly. The environment
also gives the reward earned for that action to evaluate its
quality. We model EUA as an MDP with the sets of states S,
actions A, and rewards R. In EUA, the length of the MDP
is the number of edge users. S is a set of states at each time
step:

S=1{s1,82,.-.,8¢t,-.-8p—1,8n}- 3)

TABLE 1
NOTATIONS
Notation Description
U={ui,uz,...,un} A finite set of edge users
E={ei,ez,...,en} A finite set of edge servers

w; =< w},wz,w?,wgl >

; The computing resource require-

ments of user u;, including four di-
mensions: CPU, memory, storage,
and bandwidth

The resource capacities of edge
server e; at time step ¢, including
four dimensions: CPU, memory,
storage, and bandwidth

T __ &t I f
c; =< Cj15Cj25 €35 Cjg >

ulo;, ula; The longitude and latitude of the
ith user

eloj, ela; The longitude and latitude of the
jth edge server

cov; The coverage of edge server e;

act§ An indicator of whether edge

server e; has been activated before
time step ¢

The 6-dimensional vector represen-
tation of user w;

The 8-dimensional vector represen-
tation of edge server e; at time step
t

u; =< ulo;, ula;, w1, w2,

W;i3, Wig >

T _— R R AP
=< elo],ela],covj,cjl,

e’
t ot t
cj2,cj3,cj4,actj >

dij The distance between user u; and
edge server e;

Tt The id of the server allocated at
time step t. We specify m = —1

if there is no suitable server to
accommodate the user

Our model allocates one user at each time step. Therefore,
the information needed for each time step is the user being
allocated and all servers at that time step. The state s; is
defined as:

tot t t
st =< ut,€e1,€9,...,€, 1, €, >. “4)

When ¢ = 1, the initial state is defined according to the
problem statement. The next state can be calculated from the
current state and action. Action is a set of the server-id chosen
at each time step:

A={m,m, ..., Tty...Th—1, Tn}. (®))

If m; = —1, indicating that no edge server can cover or
accommodate u;, the edge servers in s;41 will remain the
same as s;. Otherwise, the resource capacity of edge server
ex, should be subtracted from the resource requirement of user
ug, while the resource capacity of the other edge servers will
stay unchanged.

After allocating all users, the reward can be calculated based
on the objectives of the EUA system. Typically, these objec-
tives involve maximizing the percentage of allocated users
while minimizing the percentage of required servers. However,
incorporating both positive and negative objectives into the
reward function can make it challenging to set. In this case,
reducing the number of required servers can be accomplished
by improving the resource utilization of the rented server.
When the resource utilization of each edge server is increased,
it leads to a reduction in the number of required servers with
the same number of allocated users. Therefore, resource uti-
lization is a more meaningful metric to use in the reward
function than the percentage of required edge servers. To
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account for these objectives, the reward R at the current time
step is defined as a weighted sum of the percentage of users
allocated and the resource utilization of the servers, as shown
in Equation (6):

R=(1-7v)x R*(A)+vx R°(A), (6)

where R" denotes the percentage of users allocated and R*
denotes the percentage of server resource utilization, and both
can be calculated by the allocation actions 4. ~y is a parameter
to balance the weights of the two percentages.

Equation (7) defines the reward set R. It’s worth noting that
rewards for all previous time steps are set to 0, as rewards can
only be calculated when all users have been allocated.

R = {0,0,...,0, R}. 0

The percentage of users allocated is the ratio of allocated
users to the total number of users:

u [{rme|me # —1}

R%(A) = - . ®)
The utilization for each resource is defined as the ratio of
the total resource requests of all allocated users to the total
initial capacity of all activated edge servers. The total server
resource utilization is the average of the utilization rates of
the four types of resources, as given by Equation (9)

R (A) = I s Dicfilmz1) Wik

; ©))
1
4 k=1 ZjE{ﬂaot;""l:l} €k

where ac indicates the activation status of the jth server
at time step n+ 1, i.e., after all users have been allocated, and
c]lk, refers to the initial capacity of the kth resource at the first
time step.

n+1
4

III. DUAL-SEQUENCE ATTENTION MODEL

Section II described a problem instance with state S and a
solution A = (my, ..., m¢,..., my) as a list of edge servers.
At each time step ¢, user u; is allocated to server er,, where
m € {1, ..., m}. To address the EUA problem, this sec-
tion builds a dual-sequence attention model (DSAM) capable
of receiving input states and generating actions. Because the
number of users and servers is not fixed for each problem
instance, we employ an encoder-decoder that can accept
variable-length sequences, analogous to translating sentences
of varying lengths. Given a problem instance S, our proposed
DSAM defines a stochastic policy p(A|S) for selecting a
solution A. It is factorized and parameterized by 6 as follows:

n
po(AlS) = [ [ po(milse). (10)
t=1
DSAM differs from traditional encoder-decoder models in
that our proposed model contains two encoders due to the
presence of two types of input sequences. The user encoder
produces embeddings of all users, while the server encoder
produces embeddings of all edge servers. This model can
accept a variable number of users and servers, which means
that when the number of users changes, the original model can

; User input
i User ” ” @ b u
! A a ; ) 5
Encoder User embedding
G o) A 01
\ \ Projection
MHA > /' > /) L J
layers H Message
2 2,) - % s Ry e Yers

Attention query

FF 3 )
) i

Skip connection

Fig. 2. Structure of the user encoder.

be used without the need for retraining. The decoder produces
the list 7 in n time steps as the solution for the input users
and servers. Next, we will introduce DSAM in four subsec-
tions. The first three subsections will cover the components
of the model, namely, the user encoder, server encoder, and
decoder, respectively. The final subsection will describe the
overall workflow of these three components together.

A. Server Encoder

In a typical encoder-decoder model, the encoder is usually
an RNN [12] or LSTM [13], because they share in common
the ability to convey sequence information. For example, in
a translation task, the order of words is essential for accurate
translation. For the EUA problem, however, the input order
of the edge servers is meaningless. When feeding the servers
into the encoder in a different order, the encoder should pro-
duce identical vectors for each server. Moreover, at each time
step, the server encoder must be executed once to update the
server features following each allocation, necessitating a basic
structure with minimal calculation requirements to reduce the
running and training time. Therefore, we use a linear layer
with parameters W ¢ and b° instead of an RNN or LSTM in
our model to embed the jth input server e§ at time step #, as
shown in Eq. (11).

y; = Weel +b°. (11)

B. User Encoder

The user encoder is more complicated than the server
encoder. The user encoder is comparable to that of the
Transformer architecture [14], which is inspired by the work
on tackling the TSP issue [15]. Similar to the server encoder,
positional encoding is not used because the input order is irrel-
evant, which is also why we do not use LSTM. LSTM captures
the temporal order of input users, which is unnecessary. Linear
layers are not utilized because they encode each user inde-
pendently and fail to capture information about other users.
In contrast, the self-attention mechanism in the Transformer
enables each user’s vector to incorporate information from
other users, making it more comprehensive. This feature is
particularly beneficial when allocating users, as it enables
the model to select servers with more appropriate capacities.
Moreover, the Transformer is parallelizable, resulting in faster
training times compared to RNN and LSTM. Fig. 2 shows the
user encoder’s structure, which consists of a linear layer and
L layers of self-attention to capture the latent relations among
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the input users. When users are fed into the encoder, they are
embedded into a vector space by passing through a learned lin-
= W"%u,; +b".
Then, wgo) will be processed by L sequential layers of self-
attention, each consisting of a multi-head attention (MHA)
sublayer and a feed-forward (FF) sublayer. Finally, we obtain

ear layer with parameters W* and b" : x,

asz), which contains information of the ith user as well as
information about other users with which it is associated.
Self-Attention Layers: Each self-attention layer consists of
two sublayers: multi-head attention and feed-forward. Each
sublayer includes a skip-connection [16] and batch normaliza-
tion (BN) citeioffe2015batch. Egs. (12) and (13) are used in

self-attention layers
&; = BN(mEH) 4 MHA! (mgl*”, N S m$f*1>>),
(12)

2\ = BN(@-ﬁ-FFZ(fci)). (13)

O]

Here x; computed from the previous layer is fed into the

next layer, represented as scgl*l), until it goes through all L
layers. It is important to note that each layer has its own set
of parameters, and they are not shared. The final output of the
user encoder is a:i(L), which is the user embedding obtained
after L layers of self-attention. Since the concept of the layer
is only present in the user encoder, in other components, we
use z; to denote the user embedding without the superscript
for simplicity, which defaults to the embedding obtained after
L layers.

Attention Mechanism: Before discussing multi-head atten-
tion, the standard attention mechanism is described. For each
node, three vectors, query, key, and value, are calculated by
projecting with learned parameters we Wk and wV:

a; = Wnglil)a kj= WKfE]('lil)’ v = chcyfl).
(14

The compatibility of each node pair is then calculated using
Eq. (15).
b ik
1) \/@ 9
where d; is the dimension of vector k;, which is used
to scale the result [14]. Next, through softmax operation,
the compatibility can be transformed into attention weight
a5 € [0, 1]:

15)

ebij

Sy et

Finally, vector u; will be computed by a weighted sum of
values v;:

aj = (16)

l
2 =3 ayv;. 17)
J
Muti-head Attention: The calculation procedure of the
single-head attention mechanism is depicted above. Muti-head
attention enables the model to learn relevant information in

different representation subspaces. When the number of heads
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Fig. 3. Structure of the decoder.

M is set to eight, the dimensions of q;, k; and v; will be
divided by eight. Moreover, the query, key, and values of
each node will be computed eight times with eight different
groups of W%, Wﬁ and W,‘g to get q;,,, Kim and vy,
where m € [1, M]. Next, with Egs. (15), (16), and (17), we
can obtain x;,,. Finally, the vector of the ith node will be
computed by Eq. (18):

MHAli (wgl71)7 e m(lil), cey wgfl))

2

— Wﬁ{xﬂ)m% , (18)

where W% denotes the linear layer parameters and

[:cgll), ce ngl\)ﬂ means the concatenation of each CEEQL
Feed-forward sublayer: The feed-forward sublayer consists

of two linear layers and a ReLu activation between them, as

shown in Eq. (19).
FF(&;) = W ReLu( W02, + 610) + 5L, (19)

where Wﬁ’o, Wff’l, bﬁvo, and b1 denote the parameters
of linear layers.

C. Decoder

The decoder is responsible for selecting an appropriate
server for a user. At each time step, the decoder receives a
user embedding and all server embeddings. Fig. 3 shows the
structure of the decoder.

There are two components to allocate user u; to an appro-
priate edge server for each time step t. First, the glimpse
part [17] computes ¢, the contextual embedding of the ¢-th
user being allocated, with a complete attention mechanism
shown in Egs. (20), (21), (22), and (23). The attention differs
from the one in the user encoder in that query q, is computed
by the final user embedding ng) but key k; and value vjt»
are computed by server embedding y;f. Thus, the glimpse part
produces a fusion representation of server information related
to this user.

L
go =W, Kl =wiy! ol =Wyl 0
T 1.t
q; k]—
bt' = 5 (21)
J /dk
_et (22)
ap; = ,
tj Z]/ ebtj/
(23)

c
Ty = Z atj'uj.
J
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Then, the pointer part [18] computes the compatibility
between this user and each server by Egs. (24) and (25):

it { C - v 7T tanh (Wlamf + Wgyj) if dy; < cov;

J —00 otherwise
(24)
e?l
p; = 25)

Zj’ epj’

where v, W1, and Wy are parameters in the linear layer. C
and « are hyperparameters. C is a temperature parameter [19]
in softmax that makes the probability smoother and increases
the likelihood of the original’s negligible ones, so as to expand
the exploration capability of reinforcement learning. In addi-
tion, « is a scaling parameter used to adjust the size of the
contextual user embedding xic. In this case, the value of the
user’s embedding vector is smaller than that of the server’s
since the user’s resource requirements are significantly less
than the server’s resource capacities. However, the glimpse
part transforms the contextual user embedding into a weighted
sum of server embeddings. Therefore, to make the contextual
user embedding as small as the original user embedding, the
parameter o must be adjusted. The probabilities of allocating
a user to a specific server are then estimated by softmax in
Eq. (25).

D. Workflow
The model takes in all user vectors uq, ..., U, ..., U, and
all initial server vectors 611, ce ejl, ce e%l. DSAM first sends

all user vectors into the user encoder to obtain all user embed-
dings. Then DSAM starts running step by step, as shown in
Fig. 4.

For each time step t, the server encoder first encodes
the server vectors of the current time step to obtain server
embeddings. Then the decoder receives the user embedding

Server
Encoder
Ll

Decoder

Server
Encoder
Ll

Decoder

Select a server
based on its
probability

Select a server
based on its
probability

Update the server

- capacity and !
capacity

Vo [ !

i ! ! i Update the server |

i i
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z; and m server embeddings y{, ..., yjﬂ ..., yk , and generates
pf, ceey p;, ..., pL representing the probability value of allo-
cating z; to each server. Based on these probabilities, DSAM
chooses a server ¢, which may be the server with the highest
probability, or randomly sampled according to the probabilities
(details will be discussed in Section IV). If the resources of
the selected server are insufficient to accommodate the user,
7 1S set to —1. Otherwise, the resources of the server are

updated to obtain e} ™1 ... e/ el before allocating

L ey
the next user in the next timej step.

After all users are allocated, the reward can be calculated
based on the user allocation rate and the server resource uti-
lization rate. With the probabilities of each action generated
by the model and the final reward, the model can be trained.

The next section will introduce the model’s training method.

IV. SELE-CRITICAL SEQUENCE TRAINING

As stated in Section III, given a problem instance state S
that contains multiple users and edge servers, the proposed
DSAM (with parameters 6) can generate a probability distri-
bution py(.A|S) from which a solution A|S can be sampled. In
this section, we train our model using policy gradient [20]. The
reward of our DRL model is defined in Section II. Then, we
take the expectation of all negative rewards, [(A) = —R(A),
as the loss of all given instances:

L(AIS) = Ep, (45)[[(A)]- (26)

We optimize L by gradient the

REINFORCE [20] algorithm:

descent, using

VL(O|S) = Ep,a19)[(1{A) = b(5))VIog pg(AlS)], (27)

where b(S) denotes a baseline function that reduces gradient
variance to increase learning speed, and pg denotes the policy
defined by the model of parameter 6.
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Algorithm 1 Self-Critical Sequence Training

Input: number of epochs E, steps per epoch T, batch size B
Output: model parameter 6
Initialize model parameter 0
for epoch = 1,..., E do
for step=1,..., 7 do
Sp < RandomlInstance() Vb € {1,..., B}
A%% SampleRollout(Sy, pg) Vb € {1,..., B}
Ay L GreedyRollout(Sy, pg) Vb € {1,..., B}
VL 55 (1A = 1(AFY) ) Vg log pp(Ay|S))
0 < Adam(0, VL)

end for
end for

Similar to the self-critical training method proposed by
Rennie et al. [21], our self-critical sequence training (SCST)
method contains a rollout baseline. SCST does not require a
critic network since it uses the training model itself as the critic
and gets a baseline reward in a different way. The baseline
b(S) is the loss (the negative value of the reward) of a solu-
tion resulting from a deterministic greedy rollout of the policy
defined by the training model. It means that in each batch of
the decoder, the model’s forward function must execute twice.
First, a stochastic server was sampled by its allocation proba-
bility for each time step of the decoder. After completing all
steps, we can have a sampled solution with its likelihood and
loss. The second time, the specific server with the largest allo-
cation probability is selected for each time step of the decoder.
Finally, we get a second solution with its loss, which is the
required baseline loss. This baseline does not necessitate a
critic network, so conserving GPU memory and training time.
However, it must repeat the neural network’s forward propa-
gation, increasing the running time by 50%. Due to the fact
that the two forward methods use the same model and are
not sequential, they may be parallelized on two GPUs with-
out increasing training time. Algorithm 1 shows our training
method, using Adam [22] as the optimizer.

V. EXPERIMENT

We conducted a series of experiments using a real-world
dataset to evaluate the performance of our proposed DSAM.
Three groups of experiments were designed to answer the three
research questions:

e RQI: Does our proposed DSAM outperform the baseline

approaches under different data scales?

e RQ2: How does the setting of the reward weight param-
eter v affect the experimental results?

e RQ3: How is the model’s convergence affected by the
introduction of the attention mechanism and the new
training method?

¢ RQ4: Does DSAM meet the real-time requirements?

A. Dataset

Edge servers: To ensure the accuracy and objectivity of our
dataset, we extracted all the locations of edge servers from
the EUA dataset [6], which covers 125 servers in an area of
1.8km? in the real world. To maintain the consistency of data

magnitude, we converted the latitude and longitude in the orig-
inal dataset to a Cartesian coordinate system. We randomly
generated the coverage radius between 100 and 150 meters.
As for the resource capacity of edge servers, we take into
account a realistic server that consists of a 16-core CPU, 32
GB of memory, 400 GB of storage, and 50 Mbps of band-
width. To maintain the consistency of the numbers fed to the
neural network, we can express the units of each of the four
resources as 0.5 core CPU, 1 GB memory, 10 GB storage, and
1 Mbps bandwidth. Consequently, the final resource capacity
of the server becomes (32, 32, 40, 50). Since the edge servers
in the real world exhibit a heterogeneous nature, we initialize
the resource capacities using a normal distribution N (u, 02),
where f is set to 35 based on the real server configuration,
and o is set to 10. The final server data input to the DSAM
model includes horizontal and vertical coordinates, coverage,
and resource capacity in four dimensions.

Edge users: Due to the uncertainty of the number of users
and their random location in the real world, we randomly gen-
erate users with various numbers and distributions in the edge
scenario. This approach allows for a more objective evaluation
of various methods in different situations. To this end, the loca-
tion of each user is randomly generated within the coverage
of all servers, and their resource requirements are randomly
selected from {<1, 2, 1, 2>, <2, 3, 3, 4>, <5, 7, 6, 6>}, as
referenced in [1]. Similar to their work, our DSAM-DRL also
sorts the users in ascending order of their computing resource
requirements. The final input data for each user in the DSAM
model includes their horizontal and vertical coordinates, as
well as their resource requests in four dimensions.

B. Comparison Approaches

To evaluate the proposed model, nine approaches are
selected for comparison. The first six did not use deep
reinforcement learning.

e Random: This method assigns each user to a random
edge server as long as the server’s coverage and resource
capacity are sufficient to satisfy the user.

e Greedy: For each user, this approach finds all available
edge servers that satisfy the coverage and resource capac-
ity constraints. The user is then assigned to the edge
server with the most available resource capacity.

o MCF (Most-Capacity-First Heuristic) [1]: Tt is a state-
of-the-art approach. MCF first ranks users in ascending
order based on their computing resource requirements.
Next, MCF allocates users sequentially, like the Greedy
method. MCF differs from Greedy in prioritizing allo-
cating users to active servers, which implies it strives to
allocate users to a server that has already been started and
is available. MCF initiates a new edge server only when
all active servers are out of coverage or have insufficient
capacity for allocating users.

o GA (Genetic Algorithm): This is a traditional optimization
method. The chromosome is set to the chosen server id
corresponding to each user. We use the reward of the EUA
problem as the fitness function of the genetic algorithm
for optimization.
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o DROEUA  (Decentralized Reactive approach  of
EUA) [23]: Tt employs a fuzzy control mechanism
to decide the destination servers for edge users in
real-time in a decentralized and reactive way.

e Optimal [6]: It models EUA as a variable-sized vector
bin packing (VSVBP) problem and solves it with the
Lexicographic Goal Programming technique using IBM
ILOG CPLEX Optimizer. It can obtain the mathemati-
cally optimal solution for the EUA problem.

The remaining three are variants of our DSAM. The first
two variants change the user encoder, and the other variant
changes the training method.

o DSAM-Linear-SCST: This variant uses a linear layer as
the user encoder. The model’s training approach remains
unchanged; it is still SCST.

o DSAM-LSTM-SCST: This variant uses an LSTM as
the user encoder while keeping SCST as the training
approach.

o DSAM-Transformer-EMA: It is another variant of our
DSAM. The REINFORCE algorithm is used to train the
variant with an exponential moving average (EMA) as the
baseline, and the model’s components remain unchanged.

C. Experiment Settings

Data settings: In each experiment, we evaluate the
performance of different approaches with a fixed number
of servers and users. As edge infrastructure providers rarely
change the location and resource capacity of edge servers once
they have been deployed, we keep them fixed for each experi-
ment to simulate the distribution of servers in a specific region.
Since the location distribution and resource requests of users
are random in the real world, we generated 10,000 sets of test
data for each experiment to avoid serendipity in the evalua-
tion results. Each set of test data contains a fixed number of
users, but their location distribution and resource requests are
newly generated. To obtain the final metrics, such as the user
allocation rate for each approach, we average the results of
allocation strategies for these 10,000 scenarios. For deep rein-
forcement learning approaches, we generated 100,000 sets of
data for model training.

For the comparison method GA, we set the number of chro-
mosomes to 100, with an initial crossover probability of 0.5
and a mutation probability of 0.05. The crossover and mutation
probability are uniformly increased as the number of iterations
increases, until it reaches 1. Based on our experimental results,
we set the number of iterations to 2000 to achieve good conver-
gence. Please note that due to the long running time required
by GA and Optimal, we randomly selected 100 datasets out of
10,000 for testing the performance of these two approaches.
This may have an impact on the accuracy of the test results,
so the results of GA and Optimal should be considered as a
reference only.

For the RQ1, we conducted 30 experiments (Sets #1-3) with
different independent variables to evaluate the performance of
our approach, as shown in Table II.

Moreover, we conducted five experiments (Set #4) to discuss
the settings of weight parameter y for the RQ2.
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For the RQ3, the dataset scale is the default setting; that
is, the number of users is 500, the server availability ratio
is 50% (i.e., 50% of edge servers in the simulated region
are available), and the average server resource capacity is
35. We compare the impact of different models (DSAM-
Linear-SCST and DSAM-LSTM-SCST) and different training
methods (DSAM-Transformer-EMA: EMA as the baseline of
RL training).

For the RQ4, we compared the running time of all
approaches under different numbers of users while keeping
the number of servers and the average server resource at their
default settings.

It should be noted that the length of the input sequences to
our model is not fixed. To improve performance, we trained
various models for different numbers of users. For example,
although two models trained with 800 and 100 users can both
handle an input of 790 users, the results obtained with the
model developed with 800 users are superior to those obtained
with the model trained with 100 users.

Hyperparameter settings: In all experiments with 500 users
and 50% available edge servers, we use mini-batches of 100
pieces of data; other hyperparameters are adjusted according to
GPU memory limitations. The embedding vectors are all 256-
dimensional. In the User Encoder, we use N = 3 layers and
M = 8 heads; the hidden dimension of the feed-forward layer
is 512. We use a learning rate = 1 x 10~ with a decay of
0.98 per epoch. Our code in PyTorch [24] is publicly available
on GitHub.! Each epoch with the default dataset scale takes
32 minutes with a batch size of 100 on NVIDIA GeForce RTX
3090. Each model is trained for 100 epochs.

D. Results and Analysis

In this section, we will analyze the experimental results in
terms of performance comparison, model adjustability, model
convergence, and running time.

1) Performance Comparison (RQI): We conducted three
sets of experiments to evaluate the performance of our
approach.

Experiment Set #1: In this set of experiments, the number
of edge servers was fixed at 50% of all edge servers in the
simulated region, the average server resource capacity was 35,
the weight parameter + is 0.5, and the number of users varied
from 100 to 1000 in steps of 100.

Fig. 5(a) depicts how the proportions of allocated users vary
as the number of users increases. In general, when the number
of users is small (between 100 and 400), the gap between the
various approaches is negligible. This is because the resource
capacities are sufficient, and almost all users can be easily
allocated to an edge server. However, Fig. 5(b) shows that the
percentage of servers required for GA, MCF, DSAM-DRL,
and Optimal is significantly lower than the baselines when the
number of users is small. GA performs well because when
there are fewer users, the search space for the solution is
smaller, increasing the probability that GA will find a better
solution. MCF prioritizes allocating users to active servers,
which avoids starting a new server. DSAM-DRL may have

1 https://github.com/ccjjxx99/DSAM-DRL-EUA
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TABLE II
EXPERIMENT DATASET SETTINGS

Number of users Number of edge servers

Average server resource capacity (1)  Weight parameter ~

Set #1 100, 200, ...,900, 1000 50% 35 0.5

Set #2 500 10%, 20%, ..., 90, 100% 35 0.5

Set #3 500 50% 30, 35, ..., 70, 75 0.5

Set #4 500 50% 35 0.1, 0.3, 0.5, 0.7, 0.9
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Fig. 5. Variation of each metric with the increasing number of users.

also learned this during the reinforcement learning process, as
we encode the server’s information at each time step with a
symbolic bit act; indicating whether the server is active or
not. Moreover, DSAM-DRL learns a better strategy, requiring
about 5% fewer servers than MCF (at the 100-500 user count).
However, DROEUA always activates more servers, because its
strategy is to activate new servers when there are many idle
edge servers to ensure load balancing, rather than considering
cost savings. This also reduces the resource utilization of edge
Servers.

As the number of users increases, the percentages of users
allocated show a downward trend. This is reasonable given
that the resource capacity of edge servers is limited and that
as the number of users increases, there must be an increas-
ing number of users who cannot be assigned to any server.
When the number of users is large (more than 700), all meth-
ods need almost all edge servers. However, DSAM-DRL and
MCEF have a distinct advantage over the other approaches in
terms of the proportion of users allocated because they sort
users in ascending order of resource requirements, which pri-
oritizes users with lower resource requirements. As the number
of users increases, the benefits of DSAM-DRL become more
evident due to its enhanced ability to capture server character-
istics. The performance of GA gradually becomes comparable
to the baseline approaches because with the increase of users,
the search space of the solution will exponentially expand.
The same number of iterations is no longer sufficient to
find good enough solutions. However, the performance gap
between DSAM-DRL and Optimal remains relatively small
even as the number of users increases.

Fig. 5(c) shows the correlation between server resource uti-
lization with the number of users. It has an upward trend
as the number of users grows. A possible reason is that the
more users there are, the more likely some users can fill the
remaining capacity of some edge servers, resulting in a higher
server resource utilization ratio. When the number of users is
small (between 100 and 500), GA, MCF, and DSAM-DRL per-
form better than the baselines because they initiate fewer edge

Number of users (x100)

(b) Number of users vs. Percentage of edge

6 7 8 9 10 1 5
Number of users (x100)

(c) Number of users vs. Server resource utiliza-
tion

servers, decreasing the denominator. As the number of users
increases (more than 600), MCF performs worse than other
approaches because it first allocates users with fewer resource
requirements, but these users occupy the server capacity in the
first place, causing users with greater resource requirements
to be unable to find edge servers with sufficient capacities.
Even though our DSAM-DRL does not completely prevent
this issue, it is consistently about 5% higher than MCF due
to a well-trained allocation policy. Although DSAM-DRL and
MCEF have this disadvantage, they still have a much larger
percentage of users allocated than other approaches.

Overall, DSAM-DRL can significantly reduce the percent-
age of servers required while keeping the percentage of users
allocated high enough when the number of users is small. It
can also considerably increase the percentage of users allo-
cated while keeping the percentage of required servers to a
minimum when the number of users is really high. Moreover,
in terms of resource utilization, our approach is almost always
the most efficient, with only a small gap compared to Optimal.

Experiment Set #2: In this set of experiments, we fixed the
number of users at 500, the average server resource capac-
ity at 35, and the weight parameter v at 0.5. The number of
servers varied in 10% increments from 10% to 100% of all
edge servers in the simulated region. Fig. 6 shows the variation
in the percentages of allocated users, required edge servers,
and server resource utilization. We can observe that the trends
of the curves in these figures are almost the opposite of those
in Set #1, as an increase in servers with a fixed number of users
is comparable to a reduction in users with a fixed number of
edge servers.

As the number of available edge servers grows, the num-
ber of allocated users increases proportionally, as shown in
Fig. 6(a). DSAM-DRL is indistinguishable from MCF and
Optimal but much better than the baselines when the percent-
age of edge servers is less than 50%. As the number of edge
servers increases, all methods are almost capable of allocat-
ing the majority of users (more than 90%) to the edge servers
because of the increasing available resource.
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Fig. 6. Variation of each metric with the increasing number of edge servers.

In Fig. 6(b), as the number of servers increases, the propor-
tion of servers required for DSAM-DRL and MCF decreases
rapidly. This is owing to the fact that while the total number of
servers increases greatly, the number of servers needed does
not increase significantly due to the less significant growth in
the percentage of allocated users. Our DSAM-DRL has more
apparent advantages over other approaches, even outperform-
ing Optimal. This is because Optimal prioritizes maximizing
the user allocation rate, leading to the allocation of more users
but also the activation of more edge servers, resulting in less
resource efficiency. There is a notable point at the 20% num-
ber of edge servers where DSAM-DRL reduces the required
servers significantly. A likely explanation is that DSAM is
capable of capturing the features of these edge servers and
determining that one of them is not required to maintain a
high user allocation; hence, this server is deactivated in nearly
all of the 10,000 test data. GA and Optimal may have captured
this characteristic in some of the test data, and the results have
also slightly reduced the server rental rate after averaging.

Fig. 6(c) depicts a declining trend in server resource uti-
lization. As the number of servers increases, the proportion
of required servers reduces (as shown in Fig. 6(b)), and the
number of allocated users increases (as shown in Fig. 6(a)),
resulting in an increase in the actual number of required
servers. However, newly allocated users may not utilize the full
capacity of newly activated servers, resulting in a decrease in
server resource utilization. When the number of edge servers
is low, there are some fluctuations because the capacity lim-
itations of a single server may significantly influence the
overall resource utilization percentage. In the real scenario,
the number of servers will not be so few. When the number
of available edge servers exceeds 40%, the resource utilization
performance of DSAM-DRL is comparable to that of Optimal.

Experiment Set #3: In this set of experiments, we varied
the average capacity of edge servers from 30 to 75 in step
5. The number of users was 500, the number of edge servers
was fixed at 50% of all edge servers in the simulated region,
and the weight parameter v was set to 0.5. Fig. 7 depicts the
variations in the percentage of users allocated, the percentage
of servers required, and the utilization of edge server resources.

In Fig. 7(a), there is some difference between DSAM-DRL
and Optimal, but it outperforms other methods regarding the
percentage of users allocated when the edge server capacity is
small. However, as the capacity of the edge server increases,
the percentage of allocated users rises for all methods because

Number of servers (x10%)

(b) Number of servers vs. Percentage of edge

T
6 7 8 9 10 1 2 3 4 5 6 7 8 9 10
Number of servers (x10%)

(c) Number of servers vs. Server resource uti-
lization

the resource becomes increasingly sufficient. Since practi-
cally all users can now be assigned to an edge server, the
differentiation between the various strategies is shrinking.

In Fig. 7(b), the baselines consistently utilize nearly all the
edge servers. The percentage of servers required for MCE,
DSAM-DRL and Optimal rapidly decreases as the edge server
capacity increases, because the original users can be accom-
modated with fewer servers when the resource capacity of each
edge server increases. The curve of DSAM-DRL is somewhat
upward at points 35 and 70, because during the training of
these two models, the DSAM learns to allocate more users
according to the indication of the RL reward. We can observe
that it allocates more users at the point of 70 than at the point
of 75 as the reward for doing so is larger. If we decrease the
reward weight of the percentage of users allocated, DSAM-
DRL will reduce the percentage of servers required while
slightly reducing the percentage of users allocated. This fea-
ture will be discussed in the next subsection, which answers
RQ2. Moreover, DSAM-DRL consistently outperforms MCF
by 5% to 10% and performs comparably to Optimal.

In Fig. 7(c), as the edge server capacity increases, the base-
lines decline in the server resource utilization because they use
nearly all servers with increasing capacity, but the number of
users allocated has not changed much. In contrast, MCF and
DSAM-DRL fluctuate in resource utilization but maintain an
elevated level. Again, our DSAM-DRL performs comparably
to Optimal and consistently outperforms MCF by 5% to 10%.

In summary, in all experiments, DRoEUA did not perform
well in this scenario because it focuses more on load balanc-
ing than cost savings, which lowers the resource utilization of
edge servers; GA can almost find the optimal solution when
the solution space is small, but with an increase in the number
of users, fewer iterations are not enough to find good solutions
when the solution space becomes larger; the MCF algorithm
designed for the EUA problem performs better than other algo-
rithms; however, due to the use of the Attention mechanism
in DSAM and the reinforcement learning training of better
policies, DSAM-DRL performs the best in nearly all met-
rics, especially in terms of cost savings. Compared to MCF,
it reduces the number of required servers by 5% to 10% and
increases resource utilization by 5% to 10%, approaching the
performance of Optimal.

Statistical Tests: When the distribution of users is differ-
ent, even if the number of users, the number of servers, and
the server resources are the same, the results obtained by the
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Fig. 8.  Significance of the difference between the percentage of users
allocated for DSAM-DRL and MCF.

same approach will be different. For this reason, we tested each
approach with 10,000 independent user distributions for each
dataset setting, and the results for each indicator approximately
conformed to a normal distribution. Because the difference
in the percentage of users allocated between DSAM-DRL
and MCF is not readily apparent in the figure, we applied
the Bonferroni Correction to analyze the difference between
these two approaches at different data scales. Fig. 8 shows the
results of the percentage of users allocated for varying num-
bers of users. The horizontal axis denotes the number of users
and the two approaches for each user number.

As shown in Fig. 8, the results are similar in different num-
bers of edge servers and edge server capacities. The p-value
of the Bonferroni Correction indicates the probability that the
approach does not affect the experimental results. All p-values
are less than 0.001, demonstrating the significance of the effect
of different approaches on the percentage of users allocated,
which means that our approach has an almost 100% probabil-
ity of being superior to MCF. Because the number of test data
is 10,000, which is large enough to get a representative aver-
age value that avoids occasionality, the differences between
the two approaches in Figs. 5, 6 and 7 are all statistically sig-
nificant, even if the differences are small. As for the other
two metrics, DSAM-DRL has an advantage of much greater
significance.

2) Model Adjustability (RQ2): In addition to performance,
we are also concerned about the adjustability of the proposed
DSAM-DRL. Consequently, we conducted Experiment Set #4
by fixing the number of users, the number of servers, and

Edge server capacity

(b) Edge server capacity vs. Percentage of edge
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80

(c) Edge server capacity vs. Server resource
utilization

TABLE III
RESULTS OF EXPERIMENT SET#4

Percentage  Percentage  Edge server

Approach of users of servers resource

allocated required utilization

Random 78.83% 99.36% 57.35%
Greedy 81.61% 99.98% 58.99%

MCF 82.51% 89.14% 59.54%
DRoEUA 80.92% 95.94% 60.86%

GA 82.51% 94.62% 62.57%

Optimal 88.33% 87.35% 68.26%
DSAM-DRL, v = 0.1 86.31% 97.710% 59.12%
DSAM-DRL, v = 0.3 85.74% 92.33% 61.87%
DSAM-DRL, v = 0.5 84.48% 86.81% 64.32%
DSAM-DRL, v = 0.7 83.32% 83.67% 65.39%
DSAM-DRL, v = 0.9 82.56% 81.48% 65.83%

the average resource capacity. We varied parameter -y, the
weight of the edge server’s resource utilization in the RL
reward.Table III shows the results.

When v is small, DSAM-DRL activates almost all edge
servers, and the percentage of allocated users reaches a high
level due to the small weight given to server resource uti-
lization. However, at this point, DSAM-DRL performs worse
than other approaches in terms of the percentage of required
servers. If we raise <y, the percentage of allocated users
will decrease slightly, but the percentage of servers required
and server resource utilization will improve considerably.
Moreover, when v is between 0.5 and 0.9, our DSAM-
DRL completely outperforms other methods. Because of the
flexibility of our solution, the model users, including infras-
tructure providers and service providers, can fine-tune the
model parameters to determine whether to enable more servers
to accommodate more users or sacrifice the experience of a few
users to significantly reduce the percentage of servers needed.
This also explains why there are special points in the previous
set of experiments, such as the 35 and 70 points in Fig. 7(b),
because at these points, the model can activate a few more
servers to allow a higher percentage of user allocated and thus
maximize the reward.

3) Model Convergence (RQ3): Four experiments were con-
ducted to answer RQ3. The number of users was fixed at 500,
the number of edge servers was fixed at 50% of all edge servers
in the simulated region, the average server resource capac-
ity was 35, and the weight parameter v was set as 0.5. Our
Transformer user encoder and SCST were compared to three
approaches with different network architectures and training
methods on the convergence. The comparison network model
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Fig. 9. Convergence curves of different models and training methods.

employs a linear user encoder and an LSTM user encoder. The
comparative training method is REINFORCE with an EMA
baseline. The baseline is used to evaluate the difficulty of the
problem instance. The accuracy of the evaluation affects the
effectiveness of the training model. Although both training
methods are based on REINFORCE, different baselines can
lead to different results. We trained each model for 100 epochs.
Fig. 9 shows the convergence curve of the models.

From the results, we can see that all methods are in the
rapid improvement phase at epochs 0 to 40. At epochs 40 to
80, all curves gradually converge and stabilize. After epoch
80, all methods are almost no longer improved. With the
same training method, DSAM with the Transformer-based
user encoder performs better than the LSTM one because the
Transformer’s embedding is not affected by the sequence’s
input order. It also outperforms linear one because its embed-
ding contains information from other users, resulting in more
comprehensive decisions. With the same model architecture,
SCST outperforms the REINFORCE with an EMA baseline.
SCST converges faster, is more stable, and yields better results,
due to its more accurate and stable baseline.

4) Running Time (RQ4): Table IV illustrates the running
time of various methods on the Intel Core i7-11700 CPU. GA
requires the longest time. Even though the Optimal approach
can find optimal solutions, it cannot be deployed in practical
applications due to real-time requirements. The running time
of the remaining methods also increases linearly with the num-
ber of users because all methods allocate users one by one,
which requires a certain amount of computation for each user’s
allocation. Random, Greedy, and MCF are the fastest, taking
an average of 0.04 s to allocate every 100 users, while DSAM-
DRL and DRoEUA require 0.11 s and 0.14 s, respectively.
Although DSAM-DRL’s running speed is slower than that of
MCE, its real-time performance is still within an acceptable
range. DSAM-DRL sacrifices only a small amount of speed
for a better allocation strategy.

E. Threats to Validity

Threats to Internal Validity: A threat to the internal validity
of our approach is whether the results are biased by parame-
ter settings. We performed a set of experiments (Set #4) to
discuss the effect of parameter settings on the experimen-
tal results. Experiments indicate that our model is effective
regardless of input parameters, and different results can be
obtained according to user preference, such as allocating more
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TABLE IV
RUNNING TIME (SECONDS) OF ALL APPROACHES
WITH DIFFERENT NUMBERS OF USERS

gt“l‘:i’i Random Greedy MCF DRoEUA GA  Optimal DSAM-DRL
100 0.04 004 004 0.5 23000 0.6 0.11
200 0.08 008 008 0.29 516.55 351 0.24
300 0.12 013 0.2 043 631.68 8.36 0.32
400 0.16 017  0.16 0.58 83040 1454 0.44
500 0.20 020 020 0.72 101151 18.06 0.55
600 0.24 025 025 0.88 117036 26.87 0.64
700 0.28 029 029 1.01 137523 4572 0.73
800 032 032 033 1.14 150246 39.57 0.88
900 0.36 037 037 1.29 162791 59.50 0.99
1000 0.40 040 041 143 178192 77.04 L12

users or saving more servers. As for the parameter settings of
the dataset, we conducted multiple sets of experiments with
different parameters, including the number of users, the num-
ber of edge servers, and the server capacity. Moreover, in
the testing phase of all experiments, 10,000 user distributions
were randomly sampled to reduce the bias of experimental
results. In addition, statistical tests were conducted to show
the significance of the results.

Threats to External Validity: A threat to external validity is
whether our approach can be generalized to different scenarios.
To mitigate this threat, we used a real-world dataset on edge
servers, which avoids the possible idiosyncrasies of simulated
edge server locations. As for the edge user dataset, in the
training phase, we simulated 100,000 distributions to enhance
the model’s generalization ability. We also simulated 10,000
distributions in the testing phase to avoid the contingency of
the results. Moreover, we performed experiments with varying
numbers of users, edge servers, and server resource capacities,
and the results show that our approach is effective in various
scenarios.

Threats to Construct Validity: To mitigate the threats to con-
struct validity, we compared our approach to several baseline
and state-of-the-art methods and two variants of our model.
Moreover, extensive experiments with different independent
variables are conducted to evaluate the performance at dif-
ferent data scales. Therefore, we can validly evaluate our
approach against different approaches at different data scales.

VI. RELATED WORK

We discuss the related work from three aspects. In the
first aspect, we introduce the work related to the frontiers of
computation offloading in MEC and explain the differences
between edge user allocation and computation offloading. In
the second aspect, we focus on the scenario we are working
on, namely, edge user allocation. In the third aspect, we cover
deep reinforcement learning for combinatorial optimization
problems, the algorithm adopted in this paper.

A. Computation Offloading in MEC

Computation offloading is a crucial technique in MEC that
enables users to transfer computational tasks from mobile
and IoT devices to edge servers. In recent years, there has
been significant research on computation offloading, some of
which combine other scenarios, such as mobile prediction
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and wireless energy transfer. For example, Zaman et al. [25]
proposed the LiMPO framework that solves computation
offloading combined with mobile prediction. They use a
trained lightweight artificial neural network to predict user
locations and a multi-objective genetic algorithm to determine
the optimal server based on energy consumption, resource
utilization, and latency. Zaman et al. [26] also consider
user direction, using an LSTM-based model for prediction.
Mustafa et al. [27] combined wireless power transfer (WPT)
and task offloading in MEC. They provide an overview of
recent work on offloading methods to end nodes in MEC
and WPT, and they formulate a taxonomy of joint WPT and
offloading in MEC. In addition, Tang et al. [28] addressed
scenarios where the computational workload exceeds the
capacity of the MEC system. To address this challenge, they
proposed two offloading algorithms. The first algorithm lever-
ages K-means clustering and genetic algorithms for scenarios
with sufficient resources. The other one addresses the multi-
knapsack problem for task-overflowed situations. The two
algorithms jointly optimize the time and energy of the tasks
and penalize the overflowed computations to reduce the task
pressure in the next workflow.

Many studies adopt deep reinforcement learning meth-
ods in the field of computation offloading. Xiong et al. [2]
investigated resource allocation strategies in a single-server,
multi-user scenario. They used an improved deep Q-learning
(DQN) algorithm to minimize the long-term weighted sum of
job completion time and the number of requested resources.
Chen et al. [3] allowed for partial task offloading and opti-
mized the same objective using the temporal attentional
deterministic policy gradient (TADPG) method, deploying
the DRL agent on the device. Wang et al. [4] consid-
ered a scenario with multiple edge servers and used DRL
to optimize the average service time as well as load bal-
ancing of edge server resources and network data links.
Dai et al. [5] considered a three-tier architecture consisting of
device-edge server-cloud server and used DRL to minimize the
energy consumption of the entire system during computation.
Qu et al. [29] proposed a Deep Meta Reinforcement learning-
based Offloading (DMRO) algorithm to address the issue
of poor neural network portability. This framework enables
the rapid and flexible learning of optimal edge offloading
strategies from dynamic environments.

Despite the relevance of these studies to edge user alloca-
tion, there are some differences between computation offload-
ing and our work on edge user allocation. Computation
offloading is primarily optimized from the perspective of
devices or edge infrastructure providers, considering factors
such as task completion time, energy consumption, and chan-
nel or link selection. On the other hand, edge user allocation
seeks to serve more users with fewer servers, from the per-
spective of service providers. Due to the different scenarios,
the methods in the field of computation offloading cannot be
used to solve the problem of edge user allocation.

B. Edge User Allocation

The EUA problem is an essential issue in edge computing.
Lai et al. [6] modeled it as a variable-sized vector bin packing

problem, which can be solved by the Lexicographic Goal
Programming technique. The approach can get the optimal
solution but costs too much time. Lai et al. [7] considered the
dynamic QoS of app users and presented a heuristic method to
quickly yield a sub-optimal solution. He et al. [8] formulated
the EUA problem as a potential game and proposed a game-
theoretic decentralized approach to solve the EUA problem.
Lai et al. [1] proposed a cost-effective heuristic approach
named Most Capacity First (MCF) to solve the EUA problem,
effectively reducing the number of edge servers required. The
above works are methodological improvements to the original
EUA problem.

Some works focus on the expansion of the scenario.
Peng et al. [30] considered the high mobility of edge users and
focused on the reallocation among different edge servers. They
designed a mobility-aware and migration-enabled algorithm
to allocate edge users in real time. Lai et al. [31] investi-
gated the EUA problem in a multi-cell multi-channel downlink
power-domain non-orthogonal multiple access (NOMA) -
based mobile edge computing system (MEC) and proposed
a decentralized game-theoretic approach. Lai et al. [32] and
Wau et al. [23] investigate the online EUA problem of random
user arrivals and departures over time. The former proposed
an online Lyapunov optimization-based algorithm, and the
latter proposed a decentralized reactive approach to allocate
users in real time by employing a fuzzy control mechanism.
Zou et al. [33] investigated the spatio-temporal edge user
allocation (ST-EUA) that considered the decomposability of
an edge user’s request and the impact of the spatial dis-
tance and the temporal dynamics of requests. They proposed
a genetic algorithm-based heuristic approach to solve the
ST-EUA problem. Panda et al. [34] pointed out that the rela-
tionship between resources utilized on an edge server with the
number of service requests is usually highly non-linear. They
proposed a DRL framework to predict the resource utilization
of requests. They can estimate the number of users that an
edge server can accommodate for a given latency threshold.

The classical EUA issue is the focus of our work. Although
numerous studies have been conducted on this topic in the
past, some methods require too much time to execute in large-
scale scenarios to meet the real-time requirement; others have
attempted to address it by employing heuristic algorithms with
a short running time, but the performance of these methods
remains unsatisfactory. We utilized its ability to rapidly iden-
tify a solution’s quality and developed a DRL strategy that
performs effectively in a short amount of time.

C. Reinforcement Learning for Combinatorial
Optimization Problems

Research on combinatorial optimization problems with
deep reinforcement learning has recently been popular.
Vinyals et al. [18] first solved TSP with deep learning. They
proposed a new neural architecture named Pointer Networks.
The input of pointer networks is a variable-length sequence,
and the output is the conditional probability of a sequence with
elements that are discrete tokens corresponding to positions in
the input sequence. They use two RNNs as the encoder and
decoder and a simplified Attention Mechanism to calculate the
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relativities between the decoder state and every encoder state.
However, to train the pointer networks with supervised learn-
ing, we need optimal labels that are very costly because of the
NP-hardness of TSP. Bello et al. [35] train the pointer networks
with DRL. They use negative tour length as the reward signal
to optimize the parameters of the pointer networks with a pol-
icy gradient method and get better results. Nazari et al. [36]
investigate DRL for solving the Vehicle Routing Problem
(VRP). The VRP is more complicated than the TSP because
TSP is a sequence of static nodes, but VRP is a sequence
of nodes with dynamic resource requirements. Therefore, they
proposed a new architecture that can dynamically update the
nodes’ resources. They also used the policy gradient method
to train the model. Kool et al. [15] proposed a model based
on attention layers instead of RNNs in pointer networks. The
architecture is similar to the Transformer [14], which can be
parallelized. They trained the model using REINFORCE with
a simple baseline based on a deterministic greedy rollout,
which is more efficient than a value function.

The EUA problem has two sequence inputs, namely edge
servers and edge users, in contrast to the previous prob-
lems that had only a single sequence input (for instance, a
sequence of cities in TSP and locations in VRP). Therefore,
the neural networks for these basic sequential decision
issues are inapplicable to solving the EUA problem, neces-
sitating the development of a new model. Consequently,
we propose DSAM, capable of receiving inputs from two
sequences.

VII. CONCLUSION AND FUTURE WORK

In this paper, we approach computation offloading from
the perspective of service providers and employ deep rein-
forcement learning (DRL) to solve the EUA problem. We
propose a dual-sequence attention model (DSAM) as the
DRL agent, which encodes users using self-attention mecha-
nisms and directly outputs the probability of matching between
users and servers using an attention-based pointer mechanism.
Moreover, we train the model using a policy gradient algorithm
with a self-produced baseline. Our approach can produce a
good enough solution in real time with a trained model. We
evaluated our approach with a real-world dataset and found
that DSAM-DRL increases the percentage of users allocated,
decreases the percentage of servers required, and significantly
increases the resource utilization of the servers against the
baseline approaches.

However, there are also some issues that need further con-
sideration. This paper assumes that the edge infrastructure
provider can provide edge servers with low enough latency
for users within their coverage area, so users have equal
weights in terms of latency when selecting an edge server.
However, in reality, users can obtain lower latency and higher
bandwidth when connecting to servers closer to them. In the
future, we will incorporate latency optimization into consider-
ation. In addition, we studied the quasi-static EUA scenario,
where users are [oT devices with fixed positions such as smart
speakers and traffic cameras. In the future, we will investigate
scenarios where users can move among different edge servers,
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and more factors may need to be incorporated into the state
modeling of DRL.
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