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FHCPL: An Intelligent Fixed-Horizon
Constrained Policy Learning System
for Risk-Sensitive Industrial Scenario
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Shiyu Chen , and Xindong Wu , Fellow, IEEE

Abstract—In many industrial scenarios, safety is a
crucial factor to consider. In this article, we focus on the
safe reinforcement learning problem that maximizes total
rewards while enabling agents to avoid risks. We propose
an intelligent fixed-horizon constrained policy learning
(FHCPL) system, which allows agents to obtain high returns
while maintaining risk avoidance behaviors. For discrete
cases, a two-stage policy iteration algorithm, named
fixed-horizon constrained policy iteration, is proposed, in
which the safety of the learned policy is guaranteed. In
the first stage, a policy that satisfies the safety constraint
is obtained. In the second stage, a final learned policy
that can get high returns while satisfying the safety
constraint is reached. For continuous cases, we present the
fixed-horizon constrained policy optimization algorithm.
Empirical results demonstrate that, with the advantage of
the fixed-horizon risk, the FHCPL achieves superior perfor-
mance in terms of reward maximization and risk avoidance.

Index Terms—Fixed-horizon constraint, policy learning,
reinforcement learning (RL), risk-sensitive industrial sce-
nario, safe RL.

NOMENCLATURE

Symbols Notations

π, πθ Policy and a policy parameterized with θ.
C Cost threshold in CMDP.
h Safe threshold.
M Markov decision process.
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s,a State and an action.
S,A State space and action space in an MDP.
P (· | s,a) State transition probability under s,a.
Pπ(s) Probability of s under π.
r, c Reward function and cost function.
γ, γ̄ Discount factors for reward and cost.
N Value of the fixed-horizon.
V π,Vπ

N State and risk state value function under π.
Qπ State-action value function under π.
Qπ

N Risk state-action value function under π.
V γ̄π
N ,Qγ̄π

N Risk value function with discount factor γ̄.
Vπ
∞,Qπ

∞ Risk value function with infinite horizon.
Ss,Su Safe state set and unsafe state set.
φ(·) Distribution about safe state set.
X Transient state set.
Xs,Xu Safe & unsafe transient state set.
Aπ,Aπ

N Reward & risk advantage function under π.
J(π), Jc(π) Expected total reward and total cost of π.

I. INTRODUCTION

R EINFORCEMENT learning (RL) has achieved remark-
able success in many decision-making problems, such as

Go [1], robotic control [2], [3], games [4], [5], recommender sys-
tems [6], [7], and resource scheduling [8], [9], in which the goal
of an agent is to maximize the cumulative reward. Moreover, in
the field of control theory, adaptive dynamic programming [10]
is also proposed to handle such related problems. For instance,
Yu et al. [11] proposed an adaptive optimal time-varying for-
mation tracking protocol for disturbed high-order multi-agent
systems. Wei et al. [12] proposed the finite approximation errors
to tackle the optimal control problems with infinite horizon
nonlinear systems. However, many industrial scenarios are risk-
sensitive, such as the oil and gas industry, coal and metal mining
industry, and aviation and aerospace industry, in which agents
must avoid all environmental risks while maximizing returns.

Safe RL is usually used to deal with such risk-sensitive
decision-making problems, the aim of which is to get a policy
π that can satisfy some safety constraints (e.g., collaborative
robots do not harm workers) while maximizing the cumulative
rewards (e.g., robots successfully assemble parts). With the
intelligent policy, an agent can perform a series of actions, and
finally safely achieve some decision-making goals in a specific
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Fig. 1. In typical safe RL, the cumulative cost of the entire trajectory is
considered. Since the trajectory in the figure enters the unsafe states in
the last few steps, this trajectory will be considered a bad trajectory, and
the probability of occurrence of such trajectories will become smaller.
However, the fixed-horizon constraint only considers the first N steps
from the current time step. Therefore, the proposed constraint is not
influenced by unsafe behaviors in the distant future. Thus, the constraint
is actually relaxed, and it can make the agent explore with less conser-
vativeness while keeping a sense of risk avoidance. Then, higher returns
become easier to achieve.

industrial scenario. A comprehensive overview of safe RL can
be found in [13]. For safe RL algorithms, to make the agent
avoid risks, one common approach is to incorporate constraints
into the existing policy optimization algorithms, e.g., policy
gradient [14], trust region policy optimization [15], and proximal
policy optimization (PPO) [16]. Then, constrained optimization
techniques can be applied to tackle this type of problem, such as
the Karush–Kuhn–Tucker (KKT) condition [17] or Lagrangian
relaxation [18], [19]. In addition, there are also Lyapunov-
based [20] and model-based [21] methods to tackle the safe RL
problem.

In the methods described above, the constrained Markov
decision process (CMDP) [22], [23] is considered, where the
constraint is formulated as the total cost, which must be less than
a certain threshold C. However, limited by extra constraints in
the CMDP, the agent’s exploration becomes conservative, which
prevents the agent from getting a satisfactory return [24]. This
is because such constraints consider the cumulative cost of the
entire horizon. Thus, unsafe behavior in the remote future can
affect the agent’s current decisions, as illustrated in Fig. 1. In
addition, modifying the discount factor in the cost can alleviate
this problem to a certain extent. However, the degree of the
constraint is sensitive to the adjustment of the discount factor,
especially when the horizon is long [25]. Nevertheless, typical
RL methods without constraints can achieve high returns in
risk-sensitive environments, but the agent is not equipped with
risk avoidance behavior. Therefore, how to reduce an agent’s
conservativeness in exploration and make a tradeoff between
obtaining high returns and avoiding risks becomes an urgent
problem.

In this article, we address the safe RL issue from the per-
spective of improving constraints. We propose a fixed-horizon
constraint on risk occurrence probability, which is defined as the
probability of entering unsafe states within a fixed-horizon being
less than a thresholdh. Note that different from the finite-horizon
in RL, fixed-horizon RL is a recently proposed concept, which
only considers the cumulative reward over the next N steps
from the current time step [26]. Our constraint is featured by
greater leniency and the ability to allow agents to explore in
environments more aggressively while keeping a sense of risk
avoidance, as shown in Fig. 1.

The main contributions of this work are summarized as
follows.

1) We propose a fixed-horizon constraint that can alleviate
the problem of conservativeness in general cumulative
cost constraints in typical safe RL. Thus, the agent be-
comes more likely to receive higher returns.

2) For discrete state space and action space problems, we
give a two-stage fixed-horizon constrained policy itera-
tion (FHCPI) algorithm. Starting from an arbitrary policy,
our algorithm can eventually converge to a local optimal
policy whose safety is guaranteed.

3) For a special case when the safe threshold is 0, being
global optimal under the safety constraint is guaranteed by
the proposed two-stage FHCPI algorithm. The excellent
performance of FHCPI has also been demonstrated in a
discrete grid world experiment.

4) For continuous situations, we give an approximate per-
formance difference lemma for our constraint and pro-
pose the fixed-horizon constrained policy optimization
(FHCPO) algorithm. Extensive experiments show that our
algorithm achieves superior performance to the existing
typical safe RL methods in terms of total reward and
collision rate (unsafe state ratio).

II. BACKGROUND AND RELATED WORK

A. Constrained Markov Decision Process

Safe RL problems are usually modeled as a CMDP [23]. A
CMDP can be represented by a tuple M = (S,A, P, r, c, γ),
where S and A denote the state and action space, respectively.
P (s′|s,a) represents the probability of the next state s′ ∈ S
given the current state s ∈ S and action a ∈ A. In addition,
r : S ×A× S → R and c : S ×A× S → R are the reward
and the cost given by the environment on each transition, respec-
tively. γ ∈ [0, 1) is a discount factor. A standard CMDP aims to
find a policy π that can maximize the expected sum of rewards
while satisfying constraints to make agents have risk-sensitive
behavior. A CMDP problem is formally defined as

max
π

Eπ

[ ∞∑
t=0

γtr(st,at, st+1)

]

s.t. Eπ

[ ∞∑
t=0

γtc(st,at, st+1)

]
≤ C (1)

whereC is the cost threshold. Moreover, the state value function
V π(s) and the state-action value function Qπ(s,a) are intro-
duced to evaluate the performance of the policy. Specifically,
they are defined as the discounted total reward under the policy
π given the initial state and action. From the definition, the
following equations hold [27]:

V π(s) =
∑
a

π(a|s)
∑
s′

P (s′|s,a) [r + γV π(s′)] (2)

Qπ(s,a) =
∑
s′

P (s′|s,a) [r + γV π(s′)] . (3)
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B. Policy Optimization With Constraint

For deep RL with constraints, a series of algorithms are pro-
posed by employing constrained optimization methods. Primal-
dual policy optimization (PDO) [28] employs the Lagrangian
relaxation technique to derive the hybrid gradient with respect
to the objective function and the cost to optimize the policy.
Constrained policy optimization (CPO) [17] approximates the
original problem by Taylor expansion and utilizes the trust re-
gion optimization method to ensure that the next new policy sat-
isfies constraints. Interior-point policy optimization (IPO) [29]
adopts a logarithmic barrier function as a penalty to constrain
the update of the policy. In projection-based constrained policy
optimization (PCPO) [30], a projection step is performed to
project πk onto the feasible domain to get the next policy πk+1,
which meets the constraints. Other policy optimization methods
for safe RL include [18], [31]. However, similar to the CMDP,
the constraint form in these methods is discounted cumulative
cost of the entire horizon, shown in (1), which may make the
agent conservative in exploration, as illustrated in Fig. 1. In
this article, we propose a fixed-horizon constraint to reduce the
agent’s conservativeness while making the agent satisfy safety
constraints, which can be used for both discrete and continuous
cases.

III. PROBLEM STATEMENT AND DEFINITION

A. Risk Definition and Evaluation

In this article, we denote sets associated with the state as: X
indicates a transient state set andXs denotes a safe transient state
set.Ss andSu indicate a safe and an unsafe state set, respectively.

Definition 1: The risk state value function Vπ
N (s) is defined

as the probability of entering unsafe states when starting from s
and following π within N transitions. In addition, Qπ

N (s,a) is
defined as the probability of entering unsafe states when starting
from s, taking action a, and following π within N transitions.
They can be written as

Vπ
N (s) = Pπ(st+1 or · · · or st+N ∈ Su | st = s)

Qπ
N (s,a) = Pπ

(
st+1 or · · · or st+N ∈ Su

∣∣∣∣st = s
at = a

)
.

(4)

By definition of Vπ
N (s) andQπ

N (s,a), if we set c(s,a, s′) =
1, s′ ∈ Su, c(s,a, s′) = 0, s′ /∈ Su, then we have Vπ

N (s) =

Eπ[
∑min(N−1,τπ(st))

k=0 c(st+k,at+k)|st = s], where τπ(st) is
the first time step (starting from st) that the agent meets an
unsafe state under the policy π, and we can get the following
recursive formulas:

Vπ
N (s) = Eπ[c(s,a, s

′) + Vπ
N−1(s

′)] ∀s ∈ Ss (5)

Qπ
N (s,a) = Es′∼P (·|s,a)[c(s,a, s′) + Vπ

N−1(s
′)] ∀s ∈ Ss.

(6)

By letting Vπ
0 (s) ≡ Qπ

0 (s,a) ≡ 0, ∀s ∈ S, ∀a ∈ A and ini-
tializing Vπ

k (s) = 0, ∀s ∈ S, k = 1, . . . , N , we can apply (5)
iteratively to evaluate the proposed risk for safe states to get
Vπ
k (s), s ∈ Ss. Then, for unsafe states, we set Vπ

k (s) ≡ 1 after

iteration. Moreover, we define the discounted version of Vπ
N (s)

and Qπ
N (s,a), which can be written as, V γ̄π

N (s) = Eπ[c+
γ̄V γ̄π

N−1(s
′)|s], Qγ̄π

N (s,a) = Es′∼P (·|s,a)[c+ γ̄V γ̄π
N−1(s

′)|s,a],
where γ̄ ∈ [0, 1). In fact, when we evaluate Vπ

N (s) by sampling,
we can just regard unsafe states as terminal states, then we can
rewrite the risk state value function as

Vπ
N (s) = Eπ

[
N−1∑
k=0

c(st+k,at+k, st+k+1)

∣∣∣∣st = s

]
. (7)

Remark 1: Intuitively, the risk of a policy π is defined as the
probability that the policy π will enter unsafe states within the
nextN time steps in the future. A higher probability value means
a greater risk. Moreover, unsafe states should be predefined in
the unsafe state set Su. For example, in mobile robot scenarios,
unsafe states can be defined as collisions between robots and ob-
stacles. In electrical grid scenarios, unsafe states can be defined
as excessive current on electric wires or the power transmitted
on wires that cannot meet the demand of consumers.

B. Objective Function

To maximize the cumulative reward and make the agent avoid
risks, we consider the following CMDP problem:

min
π
−Eπ

[ ∞∑
t=0

γtr(st,at)

]
, s.t.Es∼φ(·) [Vπ

N (s)] ≤ h (8)

where h ∈ [0, 1) is a fixed threshold, and φ is a distribution
w.r.t. safe state set Ss. This constraint means that the probability
of entering unsafe states within N steps is less than h. In
those methods that build problems based on the CMDP, such
as PDO, CPO, IPO, and PCPO, the constraint is defined as
E[
∑∞

t γtc(st,at)] ≤ C, which considers infinite horizon of
risks. This way of defining constraints may make the agent
conservative in the training process, as illustrated in Fig. 1.
However, the proposed risk only considers the fixed-horizon
from the current step, which makes the agent more aggressive in
exploration. Therefore, N is a parameter that allows the agent to
trade off between risks and rewards. If the value of N becomes
larger, the agent tends to be more conservative and cares more
about safety. On the contrary, it is more aggressive and more
inclined to get higher returns.

IV. PROPOSED FHCPL SYSTEM

The overall illustration of the proposed FHCPL system for
risk-sensitive industrial scenarios is shown in Fig. 2. Note
that many risk-sensitive decision-making problems in industrial
scenarios can be transformed into constrained policy learning
problems. As a consequence, we proposed the FHCPI to tackle
the problem with discrete state and action space, and we also
proposed the FHCPO to deal with problems with continuous
situations. Note that problems with continuous situations can be
solved using iteration-based methods by discretizing states and
actions. Also, problems with discrete situations can be solved
using gradient-based approaches by interpolating discrete states
and actions. However, such transformations will result in a
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Fig. 2. Overall illustration of the proposed FHCPL system for risk-sensitive industrial scenarios.

Algorithm 1: Safe Policy Iteration (PI).
Input: A risk horizon N . A cost discount factor γ̄. A
threshold h. A set K = {0, . . ., N − 1}. π(s), V γ̄π

∞ (s),
Vπ
N−t(s), t ∈ K, ∀s ∈ S .

Procedure:
1: repeat
2: Set V γ̄π

∞ (s) = 0, Vπ
N−t(s) = 0, t ∈ K, ∀s ∈ S .

3: repeat {Policy evaluation}
4: for s in Xs do
5: V γ̄π

∞ (s)←∑
a π(a|s)∑s′ P (s′|s,a)

[c+ γ̄V γ̄π
∞ (s′)].

6: Vπ
N−t(s)← Eπ[c+ Vπ

N−t−1(s
′)], t ∈ K.

7: end for
8: until V γ̄π

∞ (s) and Vπ
N (s), ∀s ∈ Xs converge.

9: Set V γ̄π
∞ (s) = 1, s ∈ Su. Get Qγ̄π

∞ (s,a) by V γ̄π
∞ (s).

10: for s in X do {Policy improvement}
11: π(s)← argminãQγ̄π

∞ (s, ã).
12: end for
13: until Vπ

N (s) ≤ h,∀s ∈ Ss.
Output: π.

loss of optimality. Thus, it is crucial to propose two different
algorithms for discrete and continuous cases, respectively.

A. FHCPL for Discrete Situation

Assumption 1: We assume, ∀π, the agent will eventually
transfer to the terminal states in T steps.

Assumption 2 (Exist a safe policy): There exists a policy π
that satisfies, Vπ

∞(s) < h, ∀s ∈ Ss, where we denote Vπ
∞(s) =

limN→∞ Vπ
N (s).

For the problem presented in (8) with discrete situations, we
present a two-stage FHCPI method. In the first stage, named safe
PI, given an initial policy, we aim to obtain a safe policy π† that
satisfies the constraint. In the second stage, named constrained
PI, given an initial safe policy π†, we aim to obtain a high-return
policy π∗, which still meets the constraint.

1) Safe PI: In this stage, we aim to find a policy π† that
can satisfy the safety constraint, i.e., Vπ†

N (s) ≤ h, ∀s ∈ Ss. To
theoretically guarantee that such a policy can be obtained by
a specific form of policy improvement, we introduce the dis-
counted version of risk state value function and make the risk
horizon infinite, i.e., V γ̄π

∞ and Qγ̄π
∞ . Then, we update the policy

by

π′(s) = argmin
ã
Qγ̄π
∞ (s, ã) ∀s ∈ X . (9)

Lemma 1: Given an arbitrary initial policy, iterative applica-
tion of (9) for policy update will eventually result in a policy π∗s
that satisfies V γ̄π∗s∞ (s) ≤ V γ̄π

∞ (s), ∀s ∈ S, ∀π, ∀γ̄ ∈ [0, 1).
Proof: See Appendix A of the Supplementary Material. �
Proposition 1: For π ∈ {π | V γ̄π

∞ (s) < h, ∀s ∈ Ss, ∀γ̄ ∈
[0, 1)}, define ε = infs,γ̄{h− V γ̄π

∞ (s)} where ε ∈ (0, 1]. When
γ̄ ≥ (1− ε)1/(T−1), then we have Vπ

∞(s) ≤ h.
Proof: See Appendix B of the Supplementary Material. �
Lemma 2: Given an initial policy π0

s and γ̄ ≥ (1− ε)1/(T−1),
in the obtained policy sequence {π0

s, π
1
s, . . ., π

∗
s} by applying (9)

iteratively, exist a policy π† that satisfies Vπ†
N (s) ≤ h, ∀s ∈ Ss.

Proof: See Appendix C of the Supplementary Material. �
According to Lemma 2, as long as we make the value of γ̄

close enough to 1, we can apply (9) iteratively to find a safe
policy π† that can satisfy the constraint Vπ†

N (s) ≤ h, ∀s ∈ Ss.
We summarize the process as Algorithm 1.

2) Constrained PI: In the second stage of PI, we set π† as
the initial safe policy and aim to find a high-return policy that
also meets the safety constraint. Thus, we focus on solving the
following problem:

max
π

Eπ

[ ∞∑
t=0

γtr(st,at)

]
, s.t.Vπ

N (s) ≤ Vπ†
N (s) ∀s ∈ Ss.

(10)
In the policy improvement step, in order to make the new policy
get a higher return while satisfying the safety constraint, we
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Algorithm 2: Constrained PI.
Input: A risk horizon N . A reward discount factor γ. A set
K = {0, . . ., N − 1}. π(s), V π(s),
Vπ
N−t(s), t ∈ K, ∀s ∈ S . An initial safe policy π†.

Procedure:
1: Let π ← π†.
2: repeat
3: Set V π(s) = 0,Vπ

N−t(s) = 0, t ∈ K, ∀s ∈ S .
4: repeat {Policy evaluation}
5: for s in Xs do
6: V π(s)←∑

a π(a|s)∑s′ P (s′|s,a)[r + γV π(s′)].
7: Vπ

N−t(s)← Eπ[c+ Vπ
N−t−1(s

′)], t ∈ K.
8: end for
9: until V π(s) and Vπ

N (s), ∀s ∈ Xs converge.
10: Set Vπ

N−t(s) = 1, s ∈ Su, t ∈ K.
11: Get Qπ(s,a), Qπ

N (s,a) by V π(s), Vπ
N (s).

12: for s in X do {Constrained Policy Improvement}
13: I = {ã | Qπ

N−t(s, ã) ≤ Vπ
N−t(s), t ∈ K}.

14: π(s)← argmaxã∈I Qπ(s, ã).
15: end for
16: until π converge.
Output: π.

Algorithm 3: Fixed-horizon Constrained Policy Iteration
(FHCPI).

Input: An initial policy π.
Procedure:
1: From π, get the initial safe policy π† by Algorithm 1.
2: From π†, get the final policy π∗ by Algorithm 2.
Output: π∗.

update the policy by the following form:

π′(s) = argmax
ã

Qπ(s, ã) ∀s ∈ X

s.t. Qπ
N−t(s, ã) ≤ Vπ

N−t(s), t = 0, . . ., N − 1. (11)

Note that the above optimization problem has at least one
feasible solution, which is π†. The updated form can lead to
an improved policy in terms of V π(s), which means V π(s) ≤
V π′(s), ∀s ∈ S .

Lemma 3 (Constrained policy improvement): If a new policy
π′ is the optimal feasible solution of the maximization problem
defined in (11). Then, we have V π(s) ≤ V π′(s), ∀s ∈ S .

Proof: See Appendix D of the Supplementary Material. �
Lemma 4 (Safety guarantee): If a new policy π′ is the optimal

feasible solution of the maximization problem defined in (11).
Then, we have Vπ

N (s) ≥ Vπ′
N (s), ∀s ∈ S .

Proof: See Appendix E of the Supplementary Material. �
Thus, by updating the policy using (11) iteratively, the result-

ing policy will also satisfy the safety constraint (i.e., Vπ′
N (s) ≤

Vπ†
N (s) ≤ h,∀s ∈ S), and the cumulative reward of the new

policy will be greater than or equal to that of the old policy.
We summarize the constrained PI process as Algorithm 2. If

Algorithm 4: Fixed-horizon Constrained Policy Optimiza-
tion (FHCPO).

Input: Initialize parameters θ of the policy network πθ.
Initialize parameters ϕ1,ϕ2,ϕ3 of three critic networks
V̂ϕ1 , V̂ϕ2 , V̂ϕ3 , respectively. Initialize a data buffer D.

Procedure:
1: for each epoch do
2: Collect a series of trajectories under policy πθ.
3: Store the trajectories in D.
4: Compute Aπθ with V̂ϕ1 and data in D.
5: Compute Aπθ

N with V̂ϕ2 , V̂ϕ3 and data in D.
6: Estimate KL divergence

KL = Es[D(πk(·|s)||πθ(·|s))] with data in D.
7: Estimate g, b, H with Aπθ ,Aπθ

N and KL.
8: Update θ by solving the problem defined in (17).
9: Update ϕ1,ϕ2,ϕ3 by gradient descent by MSE loss

on reward-to-go and cost-to-go.
10: Clear buffer D.
11: end for
Output: πθ.

we combine Algorithms 1 and 2, we can get the final two-stage
FHCPI algorithm, shown in Algorithm 3. Moreover, we can get
the following theorem.

Theorem 1: Starting from an arbitrary policyπ0, the proposed
FHCPI algorithm can eventually make the policy converge to a
local optimal policy whose safety is guaranteed.

Proof: See Appendix F of the Supplementary Material. �
It should be noted that Algorithm 3 will converge to only

a local optimal policy of the problem presented in (8), which
means the learned policy does not necessarily equal to an optimal
policy π∗ which satisfies

V π∗(s) ≥ V π(s) ∀s ∈ S
∀π ∈ {π | Vπ

N (s) ≤ h ∀s ∈ Ss} . (12)

However, when we set h = 0, the proposed two-stage FHCPI
algorithm can guarantee the global optimal and the safety of
the learned policy. We summarize this content in Appendix
G of the Supplementary Material. In addition, the two-stage
FHCPI algorithm is also suitable for model-free situations.
Instead of the policy evaluation step by iteration, the Monte
Carlo method or the temporal-difference method can be utilized
to estimate all value functions [27], i.e., V π,Vπ

N−t, Q
π and

Qπ
N−t, t = 0, . . . , N .

B. FHCPL for Continuous Situation

For the continuous state and action space, a function or a
neural network, parameterized by θ, can be used to approximate
the policy π. Then, for the problem presented in (11), the value
functions can be approximated by neural networks, and the
policy can be updated using normal constrained optimization
methods. However, it is usually intractable to optimize the
neural network with N constraints in (11) efficiently. Therefore,
for the continuous situation with the fixed-horizon constraint,
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we propose the FHCPO algorithm. To enable the proposed
fixed-horizon constraint to be used in direct policy optimization
methods, we first give the approximate performance difference
lemma w.r.t. the risk state value function.

Lemma 5 (Approximate performance difference): If we
let Es[D(π′(·|s)||π(·|s))] ≤ δ, where δ is a small posi-
tive real number that is close to 0, then we can have
that Vπ′

N (s)− Vπ
N (s) ≈ Eπ′ [

∑N−1
k=0 Aπ

N (st+k,at+k)
∣∣st = s],

where Aπ
N (s,a) = Qπ

N (s,a)− Vπ
N (s), and D(·||·) is some

kind of distance metric.
Proof: See Appendix H of the Supplementary Material. �
Then, we denote Es∼φ(·)[Vπ

N (s)] as Jc(π). According to
Lemma 5, we have

Jc(π
′)− Jc(π) = Es∼φ(·)

[
Vπ′
N (s)− Vπ

N (s)
]

≈ Es∼φ(·)

[
Eπ′

[
N−1∑
k=0

Aπ
N (st+k,at+k)

∣∣∣∣st = s

]]

= Es∼φ(·)

[
Eπ

[
N−1∑
k=0

ρπ
′

π Aπ
N (st+k,at+k)

∣∣∣∣st = s

]]
(13)

where ρπ
′

π =
∏N−1

k=0
π′(at+k|st+k)
π(at+k |st+k)

. Then, we also denote J(π) =

Eπ[
∑∞

t=0 γ
tr(st,at)]. Thus, the problem presented in (8) can

be written as

max
π

J(π), s.t. Jc(π) ≤ h. (14)

To solve the problem defined in (14), the trust region op-
timization approach is introduced. Specifically, in each step of
the policy optimization, we aim to tackle the following problem:

πk+1 = argmax
π

J(π)− J(πk)

s.t. Jc(π) ≤ h

D(π, πk) ≤ δ (15)

where D is some kind of distance metric. In addition, by [32],
we have, J(π)− J(πk) ≈ 1/(1− γ)Es∼dπk ,a∼π[Aπk(s,a)],
where dπ(s) = (1− γ)

∑
t γ

tPπ(st = s). By introducing
Kullback–Leibler (KL) divergence, we can approximate the
above optimization problem as follows:

πk+1 ≈ argmax
π

1
1− γ

Es∼dπk ,a∼π[Aπk(s,a)]

s.t. Jc(πk) + E
s∼dπk
a∼πk

[
N−1∑
k=0

ρππk
Aπk

N (st+k,at+k)

∣∣∣∣st = s

]
≤ h

Es[D(πk(·|s)||π(·|s))] ≤ δ (16)

where Aπk(s,a) is the advantage function in terms of reward,
and ρππk

=
∏N−1

k=0
π(at+k |st+k)
πk(at+k |st+k)

.
According to Taylor’s expansions on the objective function

and constraint function of the above problem, the final approxi-
mate optimization problem can be written as

θk+1 ≈ argmax
θ

gT (θ − θk) (17a)

s.t. Jc(πk)− h+ bT (θ − θk) ≤ 0 (17b)

1
2
(θ − θk)

TH(θ − θk) ≤ δ (17c)

where θk is the current parameters of the policy net. g is the
gradient of the objective function at θk, and b is the gradient
of the constraint function. H denotes the Hessian matrix of the
KL-divergence.

In addition, the problem in (17) is a convex optimization
problem whose analytical solution can be obtained directly
through the KKT condition. Therefore, we can solve the problem
defined in (14) by iteratively updating θ using (17). Notably,
compared with the constrained optimization problem in the case
of infinite horizons, (17b) has a more relaxed constraint. This is
because, when we apply the infinite horizon constraint, the final
optimization problem shown in (17b) will be rewritten as

Jc,∞(πk)− h+ bT (θ − θk) ≤ 0 (18)

where Jc,∞(πk) is defined as Es∼φ(·)[Vπk∞ (s)]. From the defini-
tions of Jc and Jc,∞, we have Jc(πk) ≤ Jc,∞(πk). Therefore, in
the fixed-horizon setting, the constraint becomes more lenient,
and the agent has a greater possibility of getting higher returns.

In the practical algorithm, according to the definition of Aπθ

andAπθ

N , we can get Aπθ (s,a) andAπθ

N (s,a) by the following
formulas:

Aπθ (s,a) = r(s,a) + γV πθ (s′)− V πθ (s) (19)

Aπθ

N (s,a) = c(s,a) + Vπθ

N−1(s
′)− Vπθ

N (s) (20)

where V πθ and Vπθ

N can be obtained by

V πθ (s) = Eπθ

[ ∞∑
k=0

γkrt+k+1

∣∣∣∣s
]
≈ 1

M

M∑
i=1

∞∑
k=0

γtrt+k+1

Vπθ

N (s) = Eπθ

[
N−1∑
k=0

ct+k+1

∣∣∣∣s
]
≈ 1

M

M∑
i=1

N−1∑
k=0

ct+k+1 (21)

where M is the number of occurrences of s in the sampled data
buffer D.

Therefore, in order to estimate the advantage functions, we
can use three critic neural networks V̂ϕ1 , V̂ϕ2 , and V̂ϕ3 to ap-
proximate V πθ ,Vπθ

N , and Vπθ

N−1, respectively. We denote the

reward-to-go
∑∞

k=0 γ
trt+k+1 as R̂t. We also denote the cost-to-

go
∑N−1

k=0 ct+k+1 and
∑N−2

k=0 ct+k+1 as ĈN
t , ĈN−1

t , respectively.
Then, the loss functions of these three critic networks can be
defined as the mean square error (MSE) on the reward-to-go R̂t

or the corresponding cost-to-go ĈN
t , ĈN−1

t . We summarize the
FHCPO in Algorithm 4.

V. EXPERIMENTS

In this section, we evaluate the proposed FHCPI algorithm
in a discrete grid world environment. In addition, we conduct
extensive experiments on several risk-sensitive environments
to evaluate our FHCPO algorithm in continuous situations.
We compare FHCPO with three widely cited and state-of-the-
art constrained RL algorithms, i.e., CPO [17], IPO [29], and
PCPO [30], and one classic deep RL algorithm, i.e., PPO [16].
We aim to investigate the following research questions.
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Fig. 3. Experimental results of FHCPI in the discrete grid world environment. Three images represent (a) the random initialized policy, (b) the safe
policy π† via safe PI (stage 1), and (c) the final learned policy π∗ by the constrained PI (stage 2), respectively.

1) RQ1: Can the proposed two-stage FHCPI algorithm ef-
fectively encourage the agent to avoid risks and get high
returns for the discrete case?

2) RQ2: For continuous cases, can the proposed FHCPO
algorithm attain better performance w.r.t. total reward and
risk avoidance than existing constrained RL algorithms
and normal deep RL algorithms?

3) RQ3: How does the fixed-horizon N affect the perfor-
mance of the proposed FHCPO algorithm?

4) RQ4: When we change the threshold C and the cost
discount γ̄ in the typical cost constraint in existing con-
strained RL algorithms (e.g., CPO), can we achieve sim-
ilar performances to that in our FHCPO methods?

A. Evaluation Metrics and Platform Configuration

To compare different algorithms in both discrete and con-
tinuous cases, we adopt the following evaluation metrics:
1) Total reward, Eπ[

∑
t r(st,at)]; 2) average collision rate,

Eπ[
∑

t c(st,at)/l], where l is the length of each trajectory.
In addition to maximizing the total reward like in typical RL,
we also aim to make average collision rate (unsafe state ratio)
within certain thresholds. All experiments were conducted on a
PC equipped with an Intel Core i7-9700 CPU, NVIDIA RTX
3060 GPU, and 32 GB RAM. The machine learning framework
PyTorch was employed to facilitate the training of neural net-
works [33].

B. Discrete Grid World Experiment

1) Description of the Grid World Environment: In our risk-
sensitive discrete grid world environment, shown in Fig. 3(a),
the agent is aimed at reaching the target state without going
through unsafe states. The agent will receive a positive reward
(+5) when it enters the target terminal state (gold square). In
addition, there is an interference terminal state (blue square) in
the environment, which is unsafe, but the agent will receive a
reward (+5) when it enters this state. This sort of interference

TABLE I
TOTAL REWARD, AND COLLISION RATE COMPARISON IN DISCRETE

ENVIRONMENT

state often occurs in environments where rewards are not per-
fectly designed [34]. An unsafe transient state (red square) also
occurs in this environment.

2) Experimental Results: Fig. 3 represents the learned poli-
cies in the course of the proposed two-stage FHCPI method.
Fig. 3(a) shows a random initialized policy, and Fig. 3(b) rep-
resents the safe policy π† obtained by the safe PI algorithm,
in which the agent does not enter any unsafe state, but it does
not achieve high returns either. Fig. 3(c) represents the final
learned policy π∗ by the constrained PI algorithm, where the
risks are fully considered, and the agent also reaches the target.
In addition, we compare the FHCPI with normal PI in RL [27],
the discrete version of PPO (Discrete-PPO) [16], and the discrete
version of the CPO (Discrete-CPO) [17]. In addition, we set h =
0.01 in each experiment. The corresponding experiment result
is given in Table I. It can be observed that the proposed FHCPI
algorithm achieves the optimal solution in this environment. PI
and Discrete-PPO obtained similar performance. They can get
high returns but high collision rates. However, Discrete-CPO
can achieve low collision rates in this environment, but it can
hardly achieve high returns, which demonstrates that the policy
obtained by Discrete-CPO is conservative. Therefore, for RQ1,
we can conclude that the proposed two-stage FHCPI algorithm
can encourage the agent to avoid risks and get high returns in
discrete environments.

C. Continuous Experiments

To answer RQ2, we compared the proposed FHCPO algorithm
with three state-of-the-art safe RL algorithms, i.e., CPO, IPO,
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Fig. 4. Total reward, and collision rate, along with policy updates of PPO, CPO, IPO, PCPO, and the proposed FHCPO in circle, gather, safe-push,
and safe-reach environments. Each curve is the average of the results under ten random seeds.

and PCPO, and a deep RL algorithm, i.e., PPO, in four risk-
sensitive environments, which are illustrated in Appendix I of
the Supplementary Material.

1) Experimental Results: Fig. 4 shows the experimental re-
sults of the comparison between the proposed FHCPO algorithm
and the typical constrained RL methods with metrics of total re-
ward, and collision rate in four risk-sensitive environments. The
details parameters of the experiment are shown in Appendix J of
the Supplementary Material. Circle: Compared with the CPO,
IPO, and PCPO, the proposed FHCPO algorithm achieves a
higher total reward and a more efficient training process while
maintaining a low or comparable collision rate. In addition, the
proposed FHCPO and the other two counterparts (CPO and
PCPO) satisfy the safety constraints. On the other hand, since
PPO does not consider safety in the environment, it achieves
the highest return, but it also obtains the highest collision
rate. Gather: The learned policies of all algorithms satisfy the
safety constraints. However, our proposed FHCPO algorithm
achieves the highest return, and fastest converge speed. It is
worth noting that PPO can also satisfy the safety constraints in
this environment. This is because the rewards in this environment
penalize the agent’s unsafe behavior. Safe-Push: Due to a lack
of consideration for safety, PPO achieves almost optimal total
reward but also has the highest collision rate. IPO has achieved
a nearly 0 collision rate, but it cannot achieve a relatively high
total reward. However, our FHCPO method can still achieve
high returns while satisfying the constraints. Safe-Reach: In this
environment, the collision rate of these methods is gradually
increasing. This is because unsafe regions surround the target
point, and the agent risks rushing to the goal. All methods fail
to satisfy the constraints, but our FHCPO algorithm maintains a
relatively low level of collision rate. In addition, in terms of total
reward, our FHCPO can still achieve a faster convergence speed
than its counterparts. These observations suggest that, with the
advantage of the fixed-horizon risk, the proposed FHCPO meth-
ods can attain better returns while meeting the safety constraints.

Fig. 5. (a) Total reward (b) and collision rate of different fixed-horizon
N in safe-push environment with the proposed FHCPO.

D. FHCPO With Different Fixed-Horizon N

To answer the RQ3, we also conducted an additional exper-
iment to explore how the fixed-horizon N affects the agent
performance in our FHCPO algorithm. The result is shown in
Fig. 5. Except for the difference in the fixed-horizon N , other
parameters are the same as in the part of continuous experiments.
From Fig. 5, we can observe that asN becomes larger, the return
becomes lower, and the collision rate correspondingly becomes
smaller. This is because when the fixed-horizon becomes larger,
the agent will consider risks in further future, causing it to be
more conservative. Conversely, as N gets smaller, the return
becomes higher and the collision rate increases accordingly.
However, the collision rate does not change drastically and
remains around 0.12. Thus, the agent still maintains the risk-
sensitive behavior. Therefore, by adjusting the value of the
fixed-horizon N , the proposed FHCPO algorithm can trade off
between high rewards and low risks.

E. Sensitivity Analysis of CPO

Considering the fact that typical safe RL methods, such as
CPO, can also adjust the value of the discount γ̄ or the cost
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Fig. 6. Comparison between FHCPO and CPO in terms of total reward
and collision rate on different (a) C and (b) γ̄ in Safe-Push environment.

threshold C of the constraint to make a tradeoff between high
rewards and low risks. To verify whether the CPO can achieve an
equivalent performance to the proposed FHCPO, we performed
a series of experiments in the safe-push environment using CPO
by changing the cost threshold C and cost discount factor γ̄.
Fig. 6 shows the experimental result in different settings. It can
be observed in Fig. 6 that as the cost threshold increases, the
total reward also increases, but the collision rate will increase
accordingly. When the value of C is small (C = 6), the agent
will hardly enter unsafe areas, e.g., the collision rate is 0.01. But
the return will be low due to being too conservative. However,
in our FHCPO method, the agent can get a high return while
maintaining a low collision rate. A similar situation also happens
when we adjust γ̄. In CPO, the algorithm is sensitive to the
change of γ̄. When γ̄ = 0.96, the agent ignores any risks and
seeks to maximize the total reward. Thus, for normal safe RL
methods, it is difficult to reach the performance of our FHCPO
method by modifying C or γ̄.

F. Industrial Applications

Safety is a critical concern in many industrial applications,
and RL algorithms must be designed to ensure that each agent
behaves in a safe and reliable manner. Thus, safe RL is important
for such industrial applications. In the field of intelligent trans-
portation, safe RL can be used to train self-driving cars or traffic
signal control systems to help agents make decisions in complex
traffic environments, which can maximize traffic efficiency with-
out causing car accidents. In addition, in manufacturing, safe RL
can be used to train industrial collaborative robots to perform
assembly tasks in complex scenarios while avoiding damaging
equipment or harming workers. Even in the field of energy
management, such as a smart grid, safe RL can be used for power
dispatching of the grid, and the trained agent needs to maximize
the energy utilization efficiency of an area while ensuring that
the current on the wire does not exceed the load. In addition,
the proposed FHCPL can also be applied to other risk-sensitive
industrial scenarios [35], [36], [37], [38], [39], [40], such as the
field of Big Data and IoT systems, in which it is often necessary
to ensure stable communication between devices. Therefore, the
proposed FHCPL framework will effectively empower many
risk-sensitive industrial scenarios and be applied to enhance

efficiencies while ensuring the safety of industrial systems, as
shown in Fig. 2. To better apply the FHCPL to different industrial
scenarios, some tips are as follows.

1) Select a suitable fixed-horizon N according to the indus-
trial scenario. In general, for problems with long-delayed
or sparse costs, the value of N should be larger. On the
contrary, it should be smaller.

2) Design appropriate reward and cost functions. They
should preferably be designed to be dense and reflect the
good or bad of the current state-action pair. This means
an agent can get an accurate response from the reward
and cost after taking an action.

3) Design a suitable state space so that a state can provide
enough information for the agent to make decisions.

VI. CONCLUSION AND THE FUTURE WORK

In this article, for risk-sensitive industrial scenarios, we pro-
posed the FHCPL system, in which a fixed-horizon constraint
was presented that relaxes existing infinite horizon constraints
and makes the agent’s exploration more efficient. Meanwhile, a
sense of risk avoidance in exploration is also maintained. Thus,
better performance can be achieved by better exploration. For
discrete cases, a two-stage FHCPI algorithm was given, in which
the safety is guaranteed. A grid world experiment demonstrates
that the FHCPI algorithm can help the agent avoid risks while
obtaining high returns. For continuous cases, we proposed the
FHCPO algorithm, which achieves superior performance to the
typical safe RL methods in terms of total reward and collision
rate in extensive empirical experiments. Nevertheless, we only
considered the case where the horizon N is a fixed value. In
the future, we will cogitate about making the fixed-horizon a
dynamically adjustable value, which may enable the agent to
explore better.

APPENDIX

The appendix is in the supplementary materials and also in a
URL https://github.com/SChrisLin/FHCPL-APPENDIX/blob/
main/Appendix.pdf.
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