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Abstract: Path planning is a fundamental research issue for enabling autonomous flight in unmanned
aerial vehicles (UAVs). An effective path planning algorithm can greatly improve the operational
efficiency of UAVs in complex environments like urban and mountainous areas, thus offering more
extensive coverage for various tasks. However, existing path planning algorithms often encounter
problems such as high computational costs and a tendency to become trapped in local optima in
complex 3D environments with multiple constraints. To tackle these problems, this paper introduces
a hybrid multi-strategy artificial rabbits optimization (HARO) for efficient and stable UAV path
planning in complex environments. To realistically simulate complex scenarios, we introduce spher-
ical and cylindrical obstacle models. The HARO algorithm balances exploration and exploitation
phases using a dual exploration switching strategy and a population migration memory mecha-
nism, enhancing search performance and avoiding local optima. Additionally, a key point retention
trajectory optimization strategy is proposed to reduce redundant path points, thus lowering flight
costs. Experimental results confirm the HARO algorithm’s superior search performance, planning
more efficient and stable paths in complex environments. The key point retention strategy effectively
reduces flight costs during trajectory optimization, thereby enhancing adaptability.

Keywords: UAV path planning; unmanned aerial vehicle; artificial rabbits optimization; hybrid
algorithm; trajectory optimization

1. Introduction

During the last ten years, unmanned aerial vehicles (UAVs) have shown substantial
potential in diverse domains, including military applications [1,2], agricultural produc-
tion [3], food delivery services [4,5], and urban environmental monitoring [6], owing to
their high autonomy, flexibility, and adaptability. Path planning, a central research topic in
UAV autonomous flight, seeks to determine the optimal trajectory from the origin to the
destination to fulfill specific mission objectives. Additionally, trajectory optimization is a
crucial component of path planning aimed at further improving flight paths. Effective UAV
path planning must account for obstacles, energy consumption, flight altitude, and attitude
parameters [7], making the computation of an ideal trajectory a highly complex Non-
deterministic Polynomial-time hard (NP-hard) optimization problem [8,9]. Developing
solutions to this challenge remains a focal point in current research on UAV path planning.

Traditional path planning algorithms, such as Dijkstra’s algorithm [10], A* [11], the
Probabilistic Roadmap Method (PRM) [12], and the Rapidly-exploring Random Tree
(RRT) [13] encounter significant challenges, including high computational costs, slow
convergence rates, and susceptibility to local optima when applied to complex, multi-
constraint scenarios (NP-hard problems) [14]. Consequently, researchers have reformulated
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UAV path planning as a multi-constrained optimization task. Metaheuristic algorithms, as
intelligent optimization methods based on biomimicry and evolutionary theories, show sig-
nificant advantages across various domains [15–19]. Widely recognized classic metaheuris-
tic algorithms include the Genetic algorithm [20], Whale algorithm [21,22], Differential
Evolution (DE) algorithm [23] (evolutionary-based), Particle Swarm Optimization (PSO)
algorithm [24] and Ant Colony Optimization (ACO) algorithm [25] (swarm intelligence-
based). These have been successfully applied in the field of UAV path planning [26–29].

In UAV path planning, optimization algorithms typically encode population individ-
uals as a series of spherical vector coordinates [30], incorporating position and attitude
information to represent the complete flight trajectory. However, as dimensionality rises
with an increasing number of path nodes, the optimization task becomes exponentially
more complex, making the pursuit of a globally stable optimal solution exceptionally
challenging. To address this, the metaheuristic-based artificial rabbits optimization (ARO)
algorithm [31] has attracted attention for its stable search performance in low- to high-
dimensional optimization tasks. The algorithm emulates the survival strategies adopted
by rabbit species, featuring a simple and easily implementable structure, and has been
widely applied in fields such as prediction [32,33], photovoltaics [34], and natural language
processing [35]. However, the ARO algorithm faces challenges, including a propensity
towards becoming trapped in local optima, a relatively slow convergence speed, limited
strategies, and insufficient information exchange within the population [36]. Therefore,
applying the ARO algorithm for UAV path planning in complex scenarios holds significant
potential but requires further optimization of algorithm performance.

Additionally, preliminary feasible paths generated by optimization algorithms are
often smoothed and optimized using methods such as cubic B-spline interpolation [37] and
Thin-plate spline (TPS) [38]. TPS, widely used in non-rigid point set registration, offers
high flexibility [39]. However, these methods do not support differentiated optimization
based on obstacle density in various regions. We aim to retain more key path points in
densely populated obstacle areas to ensure flight safety. In contrast, in relatively sparse
obstacle areas, reducing the number of path points appropriately achieves smoother flight
trajectories and effectively reduces flight costs. The Douglas–Peucker (DP) algorithm [40],
commonly employed for two-dimensional curve simplification, reduces the number of
sample points while roughly preserving the trajectory shape. However, applying the DP
algorithm directly to UAV path planning presents two challenges: first, the scarcity of
specialized schemes tailored for UAV paths; second, its reliance on judgment thresholds,
where excessive simplification could lead to the loss of crucial points in obstacle-dense
areas, jeopardizing obstacle avoidance and flight safety.

To address these limitations, we propose an enhanced artificial rabbits optimization
algorithm (HARO) that uses a hybrid multi-strategy approach, encoding population indi-
viduals as spherical vector coordinates for UAV path planning in complex environments.
Firstly, we introduce a dual-exploration strategy switching mechanism to address the origi-
nal algorithm’s limitations with single exploration and exploitation strategies. Additionally,
to tackle the algorithm’s slow convergence, we introduce an elite-guided strategy. Further-
more, to enhance intra-population information exchange and strengthen the algorithm’s
ability to avoid local optima, we propose a population migration memory mechanism in
conjunction with the algorithm [41]. Moreover, previous research often used cylindrical
models to simulate environmental obstacles that fail to capture the actual characteristics
of obstacles in complex scenarios fully [42,43]. Therefore, we introduce a novel spher-
ical obstacle model in three-dimensional environments, as depicted in Figure 1. While
cylindrical models represent buildings and trees in real scenes, spherical obstacle models
emulate objects like radar towers, rocks, and certain types of vegetation, providing a more
accurate simulation of real-world scenarios. Furthermore, to overcome the shortcomings of
existing methods in dealing with varying obstacle density regions, we propose an enhanced
algorithm, HARO+. By preserving key points in dense areas and moderately simplifying
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paths in sparse regions, HARO+ balances the requirements of safety and smoothness when
generating flight trajectories.
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Figure 1. Schematic diagram of the 3D environment simulation for UAVs.

The main contributions of this work are as follows:

• Considering more complex and realistic scenarios, we introduce a spherical obstacle
model to better replicate scene characteristics. Subsequently, we propose a hybrid
multi-strategy artificial rabbits optimization (HARO+) that utilizes spherical vector
coordinates to enhance the efficiency of UAV path planning in intricate environments.

• To enhance early exploration capabilities and flexibility while ensuring better candi-
date solutions for the development phase, we propose a dual-exploration strategy
switching mechanism, balancing exploration and exploitation stages. Additionally,
we introduce a population migration memory mechanism to maintain population
diversity during iterations, enhancing the ability to avoid falling into local optima.

• Considering the differential treatment of preliminary paths generated by HARO based
on obstacle density, we propose the key point retention trajectory optimization strategy,
HARO+. This approach effectively generates safe, smooth, and cost-effective UAV
flight paths in complex 2D and 3D environments.

• HARO’s superior search performance is validated through comparisons with other
methods using the CEC2017 test functions and various complex 2D/3D UAV flight
scenarios. Additionally, the incorporation of the key point retention trajectory opti-
mization strategy significantly reduces the fitness cost for both HARO+ and other
methods (up to 4.5%), with a path point compression rate of approximately 50–80%,
further validating the adaptability and compatibility of this optimization strategy in
complex environments.

The remainder of this article is organized as follows. Section 2 discusses related work,
Section 3 describes the relevant problem definitions, and Section 4 elaborates on the HARO+
algorithm. The numerical experiments and results analysis are provided in Section 5, with
conclusions and discussions summarized in Section 6.

2. Related Work

This section reviews key developments in UAV path planning and the artificial rabbits
optimization algorithm (ARO), highlighting existing challenges and advancements. We
aim to address these limitations by proposing a hybrid multi-strategy algorithm tailored
for complex UAV path planning scenarios.

2.1. UAV Path Planning

To improve the efficiency and performance of UAV path planning, researchers have
been developing diverse methods to address this complex challenge. Traditional cost-
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based path planning algorithms, such as the A* algorithm [11], search for the optimal path
by evaluating cost functions but are limited by environmental complexity and heuristic
function selection. Sampling-based methods like PRM [12] and RRT algorithms [13] search
by randomly generating path points and connecting grids. However, they require numerous
samples in high-dimensional space, leading to computational inefficiency. The artificial
potential field method [44] guides navigation by simulating physical field effects but suffers
from local minima issues. With the rapid development of metaheuristic algorithms, they
have found wide applications in path planning and other fields. These algorithms possess
strong global search capabilities and adaptability to complex environments, effectively
addressing multi-criteria challenges in UAV path planning. Integrating optimization
algorithms with reinforcement learning methods [45,46] has provided new optimization
approaches for addressing path planning challenges. Accordingly, Qu et al. [14] attempted
to generate feasible flight paths in a complex search space by combining reinforcement
learning with an improved Grey Wolf algorithm. This method partially improved path
planning performance, but due to the inherent complexity of the search space there is still
room for further optimization of the generated paths. To address this, Phung et al. [30]
proposed the Spherical Coordinate Vector Encoding Particle Swarm Optimization (SPSO)
algorithm, which effectively integrates UAV dynamic constraints to transform the search
space into configuration space. Although it satisfies multiple constraints and generates high-
quality paths, it fails to effectively search solution spaces in high-dimensional environments
with an increasing number of path points. Huang et al. [37] pointed out that an increase in
waypoints degrades the optimization performance. Consequently, there is an urgent need
to develop more robust and effective algorithms capable of rapidly generating safe and
smooth UAV flight paths in high-dimensional environments (i.e., with many path points),
and providing reliable solutions for UAV autonomous navigation in complex environments.

Additionally, the Douglas–Peucker (DP) algorithm [40], known for handling large
numbers of redundant data points, has been recently used for compressing ship trajectories.
Bai et al. [47] proposed an adaptive threshold fast DBSCAN algorithm to preserve trajectory
feature points for ship trajectory clustering. Tang et al. [48] proposed an AIS trajectory
data compression method based on the adaptive threshold DP algorithm. However, this
simplification strategy is rarely used in UAV path planning. To address this gap and
improve upon current shortcomings, our work focuses on providing a more efficient
algorithm and proposes differentiated key point retention strategies for both 2D and 3D
scenarios. These strategies can effectively simplify path points and retain key points in areas
with varying obstacle complexity, reducing fitness costs and flight energy consumption
while ensuring UAV flight safety.

2.2. Artificial Rabbits Optimization Algorithm

The artificial rabbits optimization algorithm [31] represents a newly introduced, bio-
logically inspired metaheuristic algorithm that draws inspiration from the foraging and
random hiding strategies observed in rabbits in nature. Because of its straightforward archi-
tecture, simplicity of deployment, and robust global search functions in high-dimensional
challenges, ARO has been extensively utilized in numerous areas. However, ARO exhibits
certain limitations, including the absence of diverse search tactics in the exploration and
exploitation phases, restricted communication among the population, poor convergence
ability, and susceptibility to local optima. Some research has introduced different enhance-
ment methods to mitigate these shortcomings, generally classified into two groups. One
group focuses on strategy improvement, which enhances the algorithm’s optimization
ability by adjusting control parameters or borrowing strategies from other algorithms.
In [49], the authors incorporated methods like Levy flights and opposition-based learning
into the binary ARO, enhancing population diversity and optimizing the balance between
global exploration and local exploitation. They applied these improvements to the medical
diagnosis field. However, opportunities for enhancing performance in complex optimiza-
tion challenges remain. Cao et al. [36] introduced an approach that adaptively adjusts
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the inertia weight based on the existing population distribution, enhancing ARO’s perfor-
mance in support vector machine optimization tasks but still encountering the issue of
local optima. Another enhancement method is algorithm fusion, which enhances overall
performance by integrating strengths from various algorithms or strategies. Researchers
recognize that balancing exploration and exploitation capabilities is crucial in algorithm
design. Luo et al. [50] incorporated reinforcement learning strategies into ARO, improv-
ing its capability to balance exploration and exploitation, and successfully utilized it for
medical image registration. In addition, the improved artificial rabbits optimization (IARO)
algorithm proposed by Hu et al. [51], which combines various development strategies
of the Orca predation algorithm [52], improves ARO’s performance in optimizing the
multi-level reduction of spherical NURBS curves. In [32], the White Shark Optimizer [53]
is combined with ARO for extracting parameters related to photovoltaic batteries, further
demonstrating the advantages of hybrid algorithms.

Overall, these enhancement methods have somewhat improved the ARO algorithm’s
performance. However, in complex high-dimensional optimization problems, existing
versions of the ARO algorithm and its improvements still suffer from limited exploration
capabilities, insufficient population diversity, and susceptibility to local optima. Therefore,
we introduce a hybrid multi-strategy enhanced ARO algorithm (HARO) to tackle the UAV
path planning challenges in intricate environments.

3. Preliminaries

This section formalizes the issues related to UAV path planning and provides an overview
of relevant fundamentals to facilitate a better grasp of the proposed approach algorithms.

3.1. Definition of the UAV Path Planning Problem

In intricate UAV path planning scenarios, the crucial task is to find safe, efficient, and
logical flight routes through complex terrain and various obstacles. Thus, we represent
this issue as a multi-constraint optimization problem, primarily encompassing energy
consumption, safety, and flight posture constraints. To holistically address the mentioned
constraints, we formulate a total cost function to delineate the optimization objective. The
mathematical formulation of the aggregate cost function for the i-th path P is presented as
follows [54]:

C(Pi) =
4

∑
k=1

λkCk(Pi), (1)

where C1 denotes energy cost, C2 denotes altitude cost, C3 denotes obstacle cost, and C4
denotes flight angle cost, with λ1∼4 being the weighting coefficients for the corresponding
cost factors. Minimizing this overall cost function, C, enables the identification of the
optimal UAV flight path while adhering to various constraints. Typically, the flight path of
a UAV consists of a starting point, Ws, a target point, Wt, and n path points, represented as
follows:

P = {Ws, W1, W2, ..., Wn, Wt}. (2)

Each path point Wj =
(
xj, yj, zj

)
corresponds to a coordinate point in three-dimensional

space. For two-dimensional plane path planning, the path points can be simplified to plane
coordinates Wj =

(
xj, yj

)
. However, using the spherical coordinate system is more intuitive

for representing points in three-dimensional space than the Cartesian coordinate system,
making it advantageous for path planning and optimization. The spherical coordinate sys-
tem, with parameters of radius r, inclination angle θ, and azimuth angle φ, better describes
the position and attitude changes of the UAV in three-dimensional space. Therefore, we
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transform the coordinates of the trajectory points from Cartesian to spherical coordinates
using the following formulas:

xj = xj−1 + rj sin θj cos ϕj

yj = yj−1 + rj sin θj sin ϕj

zj = zj−1 + rj cos θj

→


rj ∈

(
0, 2

n · |WsWt|
)

θj ∈
(
−π

4 , π
4
)

ϕj ∈
(
α − π

4 , α + π
4
)
,

(3)

where, n represents the total count of trajectory points, and |WsWt| indicates the direct
distance between the starting and target points. We define α as the azimuth angle, which
measures the directional deviation between the target and the UAV’s starting point on
the horizontal plane. This approach encodes the i-th path into a vector composed of three
components (radial distance, polar angle, azimuth angle) for each of the n trajectory points,
as follows:

Ωi = (ri1, ri2, ..., rin; θi1, θi2, ..., θin; ϕi1, ϕi2, ..., ϕin). (4)

By optimizing the positions of these path points, we can obtain the optimal flight path
that satisfies all specified constraints. The specific definitions of the above cost factors are
detailed as follows.

3.1.1. Energy Constraint

The overall distance of the UAV’s flight route must be minimized to reduce energy
consumption and flight time. The distance between adjacent path points is measured using
the Euclidean distance metric. Therefore, the path length constraint is represented by the
following mathematical equation:

C1(Pi) =
n

∑
j=0

∥−−−−−→WijWi,j+1 ∥

=
n

∑
j=0

√(
xi,j+1 − xi,j

)2
+

(
yi,j+1 − yi,j

)2
+

(
zi,j+1 − zij

)2
(5)

where, when j = 0, Wij represents the starting point, Ws, and, when j = n, Wi,j+1 represents
the target point, Wt. For 2D path planning problems, the z-coordinate term in the equation
can be omitted.

3.1.2. Safety Constraint

To ensure a safe UAV flight, its path must smoothly circumvent obstacles. This paper
considers two types of obstacles in 3D environments, cylinders and spheres, to simulate
diverse obstacle scenarios in real-world situations. Assume there are K obstacles of this
type, each with a radius denoted as Rk. Project the path and a particular obstacle onto the
xy-plane, as depicted in Figure 2. If the obstacle is cylindrical, dk denotes the perpendicular
distance from the obstacle’s center, Ck, to the projection segment of adjacent trajectory
points. C represents the UAV’s diameter, and Dk denotes the diameter of the danger zone.
The cost associated with avoiding obstacles is described by the following formula:

C3(Pi) =
n

∑
j=0

K

∑
k=1

Tk

(−−−−−→
WijWi,j+1

)
, (6)

Tk

(−−−−−→
WijWi,j+1

)
=


0, dk > Rk + C + Dk

(Rk + C + Dk)− dk, Rk + C < dk ≤ Rk + C + Dk

+∞, dk ≤ Rk + C.

(7)
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If the obstacle is a sphere with center coordinates (xk, yk, zk), then dk is calculated by
determining the Euclidean distance from each trajectory point to the sphere’s center, Ck,
using the following formula:

dk =
n

∑
j=1

K

∑
k=1

√(
xij − xk

)2
+

(
yij − yk

)2
+

(
zij − zk

)2. (8)

Dangerous Area

Collision Area

Figure 2. Obstacle hazard area schematic.

3.1.3. Height Constraint

Height constraint is crucial for UAV mission execution and safety. Flying too high
increases energy consumption, possibly resulting in mission failure, while flying too low
risks colliding with terrain obstacles. To balance these effects, we introduce two constraints:
the maximum allowable height, hmax, and the minimum allowable height, hmin. The height
constraint cost is computed by interpolating the current path point, hij, within the allowable
height range as follows:

C2(Pi) =
n

∑
j=1

Hi,j, (9)

Hij =

{ ∣∣∣hij − (hmax+hmin)
2

∣∣∣, hmin ≤ hij ≤ hmax

+∞ , else.
(10)

3.1.4. Attitude Angle Constraints

In this section, to ensure a safe and stable UAV flight, we primarily consider dynamic
constraints, including bank angle and pitch angle constraints. By calculating the angle
between the projections of line segments formed by adjacent path points on the xy-plane,
we can determine the yaw angle:

φij = arctan

∥
−−−−−→
W

′
ijW

′
i,j+1 ×

−−−−−−−→
W

′
i,j+1W

′
i,j+2 ∥

−−−−−→
W

′
ijW

′
i,j+1

−−−−−−−→
W

′
i,j+1W

′
i,j+2

, (11)
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where φij denotes the bank angle of the j-th path. Calculating the vertical change in the
relative height of path points allows us to determine the pitch angle of the UAV at the j-th
path point ψij as follows:

ψij = arctan

 zi,j+1 − zij

∥
−−−−−→
W

′
ijW

′
i,j+1 ∥

. (12)

The cost of angle constraints for the unmanned aerial vehicle can then be obtained as:

C4(Pi) = a1

n−2

∑
j=1

φj + a2

n−1

∑
j=1

|ψij − ψi,j−1 |, (13)

where a1and a2 are the weighting coefficients assigned to the UAV’s horizontal bank angle
and pitch angle, respectively. Note that in a two-dimensional environment only the bank
angle constraint needs to be considered.

3.2. ARO Algorithm

The ARO algorithm [31] draws inspiration from the natural survival strategies of
rabbits and primarily comprises two phases: the exploration phase (foraging detour) and
the exploitation phase (random hiding). The algorithm dynamically switches between these
two stages by adjusting the energy budget. Each stage has a unique updating mechanism,
detailed as below.

3.2.1. Population Initialization

Like most algorithms, the ARO algorithm requires initialization of the initial popula-
tion. Setting the population size as n, the initial position of the i-th rabbit is determined
as follows:

xi = low + rand(0, 1)(up − low), i = 1, 2, ..., n (14)

where xi represents the position of the i-th rabbit, and low and up, respectively, indicate the
lower and upper bounds of the search area.

3.2.2. Detour Foraging (Exploration)

To avoid their burrows being detected by predators, rabbits adopt a detour strategy,
foraging randomly in the grasslands near each other’s burrows. This strategy can be seen as
the exploration behavior of rabbits under a wide field of view, represented by the following
mathematical model:

x⃗c(t + 1) = x⃗j(t) + R
(

x⃗i(t)− x⃗j(t)
)
+ round(0.5(0.05 + r1))n1,

i, j = 1, ..., n and j ̸= i,
(15)

R = L · c, (16)

L =

(
e − e(

t−1
T )

2
)

sin(2πr2), (17)

c(k) =


1, k == randperm(dim, l)

0, else
l = 1, ..., ⌈r3 · dim⌉. (18)

In Equation (15), x⃗c(t + 1) denotes the candidate position of the i-th rabbit at time
t + 1, and R functions as the run operator to simulate the rabbits’ running behavior. In
Equation (17), T denotes the set maximum number of iterations, and L signifies the step
length, indicating the moving speed of rabbits during foraging detours. A longer step
length benefits exploration in the algorithm’s early phases, whereas it dynamically shortens
in later phases to enhance exploitation. In Equation (18), k ∈ {1, . . . , dim}. And n1 is a
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random variable that follows the standard normal distribution, while r1, r2, and r3 are three
random numbers in the range (0, 1).

3.2.3. Random Hiding (Exploitation)

To protect themselves from predators, rabbits use a random hiding strategy to ran-
domly choose burrows for hiding, thereby reducing the risk of capture. The method for
generating the j-th burrow of the i-th rabbit is described as follows:

b⃗i,j(t) = x⃗i(t) + H · g · x⃗i(t), j = 1, ..., dim, (19)

H =
T − t + 1

T
· r4, (20)

g(k) =

{
1, k = j
0, else,

(21)

where r4 is a random number between (0,1), and H is a hiding parameter. As the iteration
count, t, increases, the hiding parameter, H, dynamically decreases, facilitating better
utilization of the discovered optimal solution during the latter stages.

The generation method of the burrow is given in the above equation. To evade pursuit,
rabbits will randomly select a burrow for hiding, and their position update strategy is
detailed as follows:

x⃗c(t + 1) = x⃗i(t) + R
(

r4⃗bi,r(t)− x⃗i(t)
)

, (22)

gr(k) =


1 k == ⌈r5d⌉

0 else,
(23)

b⃗i,r(t) = x⃗i(t) + Hgr x⃗i(t). (24)

In Equation (22), b⃗i,r represents the burrow randomly selected from d burrows, and
it should be noted that the quantity of burrows is consistent with the dimension of the
problem. Therefore, the i-th rabbit can randomly select one of the d available burrows as its
candidate position. Also, r4 and r5 are random numbers between (0,1). After selecting one
of the strategies, either detouring for food or random hiding, the position update formula
for the rabbit is outlined as follows:

x⃗i(t + 1) =


x⃗i(t) f (x⃗i(t)) ≤ f (x⃗c(t + 1))

x⃗c(t + 1) f (x⃗i(t)) > f (x⃗c(t + 1)),

(25)

this equation describes that if the fitness of the i-th rabbit’s candidate position surpasses its
current position, the rabbit will adjust its position to the candidate position; otherwise, it
will retain its current position.

3.2.4. Energy Shrink

The rabbits are influenced by dynamic energy factors when selecting strategies. Ini-
tially, rabbits tend to adopt the detouring foraging strategy, which is beneficial for extensive
exploration. As iterations progress, the energy factor dynamically changes, prompting rab-
bits to gradually shift towards the random hiding strategy, simulating the natural transition
from exploration to exploitation.

A(t) = 4
(

1 − t
T

)
ln

1
r6

, (26)
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where T denotes the maximum number of iterations, and r6 is a random number uniformly
distributed between 0 and 1. As the iterations, t, increase, the energy factor, A, gradually
diminishes and tends toward zero.

3.3. Douglas–Peucker Algorithm

The Douglas–Peucker algorithm [55] is commonly employed for simplifying curves
and reducing a large number of sample points. This algorithm iteratively simplifies com-
plex geometric objects into approximate representations with fewer points, significantly
reducing data storage and processing overheads while preserving the fundamental char-
acteristics of the original shape. The fundamental concept of the algorithm is outlined
below.

First, set an appropriate distance threshold, D, based on the actual situation. Next,
choose the starting point, P1, and the ending point, P10, of the geometric object as the initial
simplified line segment, depicted in Figure 3a.

Subsequently, determine the perpendicular distance from all intermediate points to
this line segment, as illustrated in Figure 3b. If the perpendicular distance of all points
is less than the preset threshold, D, then the line segment is the final simplified result.
Otherwise, find the point corresponding to the maximum perpendicular distance as the
new splitting point, divide the original geometric object into two segments, and recursively
apply the Douglas–Peucker algorithm to these two segments until all sub-segments meet
the simplification conditions.
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Figure 3. DP algorithm process. (a) Initial path representation from points P1 to P10. (b) Calculation
of vertical distances D1 to D8 between the initial path points P1 to P10 and the baseline, with the
red dotted line indicating the maximum distance Dmax that exceeds the set distance threshold D. (c)
Simplified path after applying the DP algorithm, with the blue line representing the optimized path.

A geometric shape approximation with fewer key points is finally obtained through
continuous iteration of this process, as illustrated in Figure 3c. The blue line segment
represents the final simplified sample path.
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4. The Proposed Methods

This section introduces the HARO+ algorithm for solving UAV path planning prob-
lems in complex environments. HARO+ consists of two parts. Firstly, it improves the
basic ARO algorithm, introducing the HARO algorithm. HARO aims to enhance ARO’s
exploration capability, increase population diversity, and prevent local optima. It includes
three improvement strategies: elite-guided exploration, dual exploration switching, and
population migration memory. The second part, HARO+’s trajectory optimization, opti-
mizes the initial path from HARO based on varying obstacle density to reduce redundancy
and flight cost. The following sections will provide detailed descriptions of these two
key components.

4.1. The Proposed HARO
4.1.1. Elite-Guided Exploration Strategy

In the exploration phase of the ARO algorithm, a foraging strategy is adopted, where
individuals in the population explore the vicinity of each other’s burrows randomly. How-
ever, excessively random strategies lack effective individual guidance, leading to slower
algorithm convergence and potentially reducing inter-individual communication within
the population, affecting overall algorithm performance. To further optimize the foraging
strategy, enhance algorithm convergence, and strengthen intra-population information
exchange, we adjust the candidate position update strategy for rabbits as follows:

x⃗c(t + 1) = x⃗j(t) + R(x⃗b(t)− x⃗i(t)) + round(0.5(0.05 + r1))n1, i, j = 1, ..., n and j ̸= i, (27)

where x⃗b(t) represents the present optimal position of the population at the t-th iteration.
To expedite the foraging speed of rabbits, we introduce an elite-guided strategy, where elite
individuals guide others towards the current optimal position of the population, thereby
enhancing overall optimization speed. Essentially, the candidate position update method of
the population involves generating new individuals near the optimal individual. In other
words, the other members of the population are directed towards the optimal region by
the current optimal individual. Additionally, this updating strategy maintains the original
algorithm’s randomness, safeguarding it against local optima.

4.1.2. Dual Exploration Strategy

The strategy in the exploration phase is crucial for optimizing the entire algorithm.
Finding higher-quality solutions in the exploration phase not only benefits subsequent
development stages but also provides a variety of options for this phase, ensuring that
the algorithm maintains good local development capabilities during subsequent iterations.
However, the exploration strategy of the original ARO algorithm is relatively singular,
hindering comprehensive exploration across the complete solution space. Inspired by
the Crested Porcupine Optimizer [56], we introduce a second exploration strategy in the
HARO algorithm. Building on the second defense mechanism of the CPO algorithm,
we integrate elite-guided exploration and adjust the original candidate position update
formula, proposing the following update scheme:

y⃗i(t) =
x⃗i(t) + x⃗j(t) + x⃗b(t)

3
, i, j = 1, ..., n, (28)

x⃗c(t + 1) = Ur x⃗i(t) + (1 − Ur)
(
y⃗i(t) + rand

(
x⃗j1(t)− x⃗j2(t)

))
, j1 ̸= j2, (29)

Ur(k) =


1, τ1 > τ2

0, else
k = 1, ..., dim, (30)
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In Equation (29), Ur is a binary vector that controls whether the original solution is retained
or a new exploration strategy is applied during the update process. Each element of the
vector, Ur(k), corresponds to the binary value at the k-th dimension and determines the
update at that specific dimension. The update rule for Ur(k) is defined in Equation (30),
where τ1 and τ2 are independently sampled random numbers from the interval (0, 1). These
values dictate whether Ur(k) is assigned a value of 1. By adding this exploration strategy,
individuals have more methods to explore the solution space, facilitating the exploration of
more promising areas.

4.1.3. Population Migration Memory Mechanism

The memory mechanism [57], validated in the Marine Predators algorithm [41], in-
spired us to propose a population migration memory mechanism. This mechanism can be
understood as rabbits migrating with changes in the surrounding food and habitat. As
time progresses, each individual in the population will attempt to randomly locate the next
candidate position within the nearby area. Using their memory characteristics, they will
evaluate whether this candidate’s position is better than the current best position. If the
candidate’s position proves to be superior, the individual will opt to migrate; otherwise, it
will remain in its original position. Additionally, we introduce a mutation operation [58],
which helps maintain population diversity and improves the algorithm’s capacity to avoid
local optima. The mathematical expression is as follows:

x⃗i(t + 1) =


x⃗i(t) + F

[
x⃗j1(t)− x⃗j2(t)

]
r ≤ 0.2

x⃗i(t) + [0.2(1 − r) + r]
(
x⃗j1(t)− x⃗j2(t)

)
else,

(31)

F(t) =
1
2

(
1 − t

T

)( 2t
T )

, (32)

where r represents a random number between 0 and 1. As illustrated in Figure 4, F
represents a proportion factor that progressively decreases from 0.5 to 0 as the iterations
advance. It decreases slowly in the early iterations, expanding the algorithm’s search
space, and decreases rapidly in the later iterations, effectively enhancing the algorithm’s
convergence speed.
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Figure 4. Behavior of H during 1000 iterations.
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4.1.4. The Algorithmic Process and Computational Complexity Analysis of HARO

By incorporating the three improvements above into the original ARO algorithm, we
introduce the HARO algorithm. Algorithm 1 provides the pseudocode for HARO.

The computational complexity of the HARO algorithm can be determined from its
pseudocode, which is divided into the initialization and iteration stages. Its overall compu-
tational complexity is:

O(HARO) = O(initialization) + O(evaluation)

+ O(detour f oraging)

+ O(population migration)

+ O(random hiding).

(33)

The computational complexity during the initialization stage is O(n × d), where n
represents the population size and d the problem dimension. The iteration stage can be
divided into four parts: detour foraging, random hiding, population migration, and fitness
function evaluation. The computational complexity of the detour foraging and random
hiding stages is O( 1

2 Tnd), and that of the population migration stage is O(Tnd), where
T represents the maximum number of iterations, n denotes the population size, and d
indicates the problem dimension.

Algorithm 1 Pseudocode of the HARO algorithm

Input: The maximum iteration count T, the rabbit population size N, and the problem
dimensionality D, and some other basic parameters.

Output: The best position Xbest of the rabbit and its corresponding fitness value Fb
1: Initialize the positions of the rabbits Xi using Equation (14).
2: while t ≤ T do
3: Determine the positions and fitness values of all individuals, and implement the

memory storage mechanism. Compute the energy factor F as Equation (32).
4: for i = 1 to N do
5: Calculate the factor A by using Equation (26);
6: if A > 1 then
7: Select a rabbit at random from other individuals;
8: if rand < rand then
9: Perform detour foraging by using Equations (15)–(18).

10: else
11: Perform other exploration strategy by using Equations (28)–(30).
12: end if
13: else
14: Create d burrows and randomly select one for hiding by using Equation (24);
15: Execute random hiding in accordance with Equation (22).
16: end if
17: Update the position of the individual by using Equation (25)
18: end for
19: Accomplish memory saving, and perform the population migration mechanism by

using Equations (31)–(32).
20: end while.

4.2. HARO+ Trajectory Optimization

It is essential to highlight that selecting the appropriate threshold is crucial when
applying the DP algorithm to UAV trajectory optimization. However, relying solely on
the threshold to simplify spatial sample points in the path may lead to neglecting critical
points near obstacles, thus posing a risk of collision with obstacles in the simplified path.
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As illustrated in Figure 5a, when applying the DP algorithm to simplify the original
path in a two-dimensional environment, the threshold strategy cannot account for key
points near obstacles, resulting in the planned red path colliding with obstacles. It is also
necessary to consider critical points near obstacles in a three-dimensional environment, as
shown in Figure 5b. Ensuring safety allows both the maintenance of the original path’s
characteristics and the reduction of redundant path points, thereby reducing the UAV’s
energy consumption.

X

Y

Start Point

Target Point

Key points

Threat 1

Threat 4

Threat 3
Threat 5

Threat 2 Simplified path

Original path

Z

Y

X

Threat center Simplified path

Original path

Start Point

Target Point

Key points

(a)2D Scene (b)3D Scene

Figure 5. Limitations of the DP algorithm in UAV trajectory optimization ((a) 2D environment; (b) 3D
environment).

Therefore, the method we propose follows these steps:

(1) Considering the UAV safety constraints mentioned earlier, we define path points
within the danger zone as key points. Based on the actual obstacle environment, set
an appropriate threshold value, D.

(2) Determine the Euclidean distance, dt, from each point in the flight path, P, to the
centers of the obstacles it passes through. If dt is less than the preset danger zone
radius, the path point belongs to a key point and needs to be retained; otherwise, path
points outside this area can be ignored. According to the order in which the flight
path passes through obstacles, these key points are sequentially stored in set K, and
the number of key points is denoted as n,

K = {k1, k2, ..., kn}. (34)

(3) Utilize the DP algorithm to obtain the simplified set of path points Sp = {s1, s2, . . . , sn}.
Then, traverse the key point set K, adding the key point to set S in order if it is not
already present; otherwise, leave it unchanged. Set S represents the final collection of
simplified route points containing key points.

Through the aforementioned strategy of retaining key points, we can derive a simpli-
fied path that includes these key points. It is worth noting that the approach to computing
the distance from a point to a line segment using the DP algorithm varies between two-
dimensional and three-dimensional environments. Specifically, we present the computa-
tional process for calculating this distance in three-dimensional environments using the DP
algorithm, as illustrated in the pseudocode of Algorithm 2.
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Algorithm 2 Calculate the distance between a point to a line segment in 3D space using the
Douglas–Peucker algorithm

Input: The point p, the starting point a of the line segment, and the ending point b of the
line segment.

Output: The distance di from the point to the line segment.
1: Compute the vector of the line segment v = b − a
2: Compute the vector from point p to the starting point a of the line segment u = p − a
3: Calculate the proportion of the point to the line segment projection t = u·v

∥v∥2

4: if t ≤ 0 then
5: // Point p lies in front of the line segment.
6: // The shortest distance from p to the starting point a of the line segment is calculated.

7: di = ∥p − a∥
8: else if t ≥ 1 then
9: // Point p lies beyond the line segment.

10: // The shortest distance from p to the ending point b of the line segment is calculated.

11: di = ∥p − b∥
12: else
13: // Point p falls onto the line segment.
14: // The coordinates of the projection point p′ onto the line segment are calculated.
15: Calculate the coordinates of the projection point
16: p′ = a + tv
17: // The shortest distance from p to the projection point p′ is calculated.
18: di = ∥p − p′∥
19: end if

5. Simulation Experiments and Result Analysis

This section validates the performance improvements of the proposed HARO al-
gorithm through extensive numerical experiments and simulation analyses. Section 5.1
focuses on the numerical results obtained from the CEC2017 benchmark functions, ana-
lyzing the improvements in terms of convergence, exploration–exploitation balance, and
stability. Section 5.2 applies the HARO algorithm and comparative algorithms to various
2D and 3D UAV path planning scenarios, demonstrating and evaluating its capability
to solve complex optimization problems under multiple constraints. Additionally, the
effectiveness of the enhanced trajectory optimization strategy, HARO+, is further validated.

5.1. Numerical Experiments and Analysis

To thoroughly assess the performance of the HARO algorithm, this section initially
conducts comparative numerical experiments on the classic CEC2017 test function set [59],
which includes unimodal, multimodal, hybrid, and composite functions, totaling 29. The
comparison is made with various classical, new, and improved optimization algorithms to
validate the exceptional performance of HARO in balancing exploration and exploitation ca-
pabilities, maintaining population diversity, and optimizing convergence. The comparative
algorithms include Particle Swarm Optimization (PSO) [24], Whale Optimization algorithm
(WOA) [60], Grey Wolf Optimizer (GWO) [61], African Vultures Optimization algorithm
(AVOA) [62], Sparrow Search algorithm (SSA) [63], Dung Beetle Optimizer (DBO) [64],
Harris Hawk Optimization algorithm (HHO) [65], Marine Predators algorithm (MPA) [41],
artificial rabbits optimization (ARO) [31], and an improved artificial rabbits optimization
(IARO) [51].

Furthermore, an analysis of HARO’s exploration and exploitation mechanisms is con-
ducted to verify its exceptional ability to balance global exploration and local exploitation.
And we employ two non-parametric statistical tests, Wilcoxon’s rank-sum test and Fried-
man’s test, to assess the statistical significance of the differences between HARO and other
comparison algorithms. These methods are employed to assess the significant performance
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disparities of HARO relative to other algorithms from various perspectives, ensuring the
credibility and persuasiveness of the results. Finally, through an ablation study of the
different improvement strategies introduced in HARO, we confirm the positive impact of
these strategies on the performance of the original ARO algorithm.

5.1.1. Operating Environment Setup

To guarantee fair comparative numerical experiments between HARO and other al-
gorithms, we established identical parameters for all participating algorithms: maximum
iteration times Tmax = 1000, population size N = 100, and dimension dim = 30. Each
algorithm independently conducted 30 trials on each benchmark function to minimize the
influence of randomness. Furthermore, the parameters for each algorithm were configured
according to the recommended values in the original literature. However, the number of
subpopulations in the DBO algorithm was set according to a certain proportion of subpopu-
lations relative to the total population size, as stated in the original literature. All numerical
experiments and simulations were conducted in the “Windows 11 64-bit operating system,
Intel i7-12700H 2.30GHz CPU, 16GB memory, Matlab 2021b” environment.

5.1.2. Results and Analysis of CEC2017 Benchmark Functions

To comprehensively evaluate the algorithm’s performance, we introduced four eval-
uation metrics: mean, standard deviation, best value, and ranking. The ranking was
obtained by sorting the average values of each algorithm on each function. These indicators
quantify and compare the algorithms’ optimization ability, convergence, and stability from
different perspectives. Table 1 displays the test results of HARO and other comparative
algorithms on 30-dimensional CEC2017 benchmark functions. By examining each algo-
rithm’s mean, standard deviation, and best value, it is evident that HARO outperforms
ARO in all 29 benchmark functions. Specifically, HARO achieves the minimum mean and
ranks first in 19 functions; HARO’s mean ranks second in the remaining 10 functions. This
fully demonstrates that HARO possesses greater competitiveness and superior stability
relative to other algorithms.

Table 1. Comparison of results obtained by 11 algorithms on the CEC2017 test suite with 30 dimensions.

Fi Index AVOA DBO GWO HHO MPA PSO SSA WOA ARO IARO HARO

F1

Mean 3.99 × 103 2.42 × 106 9.86 × 108 1.26 × 107 4.76 × 103 2.40 × 1010 2.18 × 103 7.60 × 107 3.84 × 103 1.00 × 102 1.00 × 102

Std 5.54 × 103 5.78 × 106 9.65 × 108 2.46 × 106 3.18 × 103 6.16 × 109 2.26 × 103 6.75 × 107 2.86 × 103 9.27 × 10−7 5.21 × 10−4

Best 1.16 × 102 7.48 × 102 8.69 × 107 8.84 × 106 9.86 × 102 1.52 × 1010 1.23 × 102 2.02 × 107 2.49 × 102 1.00 × 102 1.00 × 102

Rank 5 7 10 8 6 11 3 9 4 1 2

F3

Mean 7.26 × 103 6.57 × 104 3.28 × 104 1.17 × 104 3.00 × 102 5.19 × 104 2.61 × 104 2.12 × 105 2.32 × 104 3.00 × 102 3.00 × 102

Std 2.67 × 103 1.90 × 104 1.14 × 104 4.82 × 103 5.85 × 10−1 9.16 × 103 5.10 × 103 5.93 × 104 4.98 × 103 2.60 × 10−8 3.57 × 10−3

Best 2.49 × 103 2.91 × 104 9.13 × 103 4.06 × 103 3.00 × 102 3.59 × 104 1.89 × 104 9.60 × 104 1.68 × 104 3.00 × 102 3.00 × 102

Rank 4 10 8 5 3 9 7 11 6 1 2

F4

Mean 5.08 × 102 5.24 × 102 5.61 × 102 5.33 × 102 4.88 × 102 4.41 × 103 4.95 × 102 5.93 × 102 5.01 × 102 4.15 × 102 4.15 × 102

Std 2.52 × 101 3.67 × 101 4.11 × 101 3.22 × 101 1.64 × 100 1.63 × 103 2.93 × 101 5.89 × 101 2.51 × 101 2.44 × 101 2.68 × 101

Best 4.68 × 102 4.74 × 102 4.95 × 102 4.81 × 102 4.85 × 102 1.62 × 103 4.01 × 102 5.15 × 102 4.35 × 102 4.00 × 102 4.00 × 102

Rank 6 7 9 8 3 11 4 10 5 1 2

F5

Mean 7.00 × 102 6.87 × 102 5.94 × 102 7.31 × 102 5.71 × 102 8.46 × 102 7.39 × 102 7.90 × 102 5.75 × 102 5.80 × 102 5.46 × 102

Std 4.41 × 101 4.31 × 101 1.85 × 101 2.06 × 101 1.33 × 101 3.00 × 101 4.71 × 101 3.94 × 101 2.01 × 101 1.62 × 101 1.05 × 101

Best 6.35 × 102 5.92 × 102 5.56 × 102 6.85 × 102 5.39 × 102 7.87 × 102 6.52 × 102 7.20 × 102 5.39 × 102 5.43 × 102 5.30 × 102

Rank 7 6 5 8 2 11 9 10 3 4 1

F6

Mean 6.42 × 102 6.23 × 102 6.05 × 102 6.60 × 102 6.02 × 102 6.75 × 102 6.45 × 102 6.71 × 102 6.00 × 102 6.00 × 102 6.00 × 102

Std 8.67 × 100 1.14 × 101 2.80 × 100 5.58 × 100 1.13 × 100 3.84 × 100 1.07 × 101 9.99 × 100 2.79 × 10−1 3.53 × 10−1 1.44 × 10−3

Best 6.23 × 102 6.04 × 102 6.02 × 102 6.43 × 102 6.00 × 102 6.67 × 102 6.26 × 102 6.47 × 102 6.00 × 102 6.00 × 102 6.00 × 102

Rank 7 6 5 9 4 11 8 10 2 3 1

F7

Mean 1.11 × 103 8.99 × 102 8.46 × 102 1.23 × 103 8.09 × 102 1.30 × 103 1.24 × 103 1.26 × 103 8.15 × 102 8.20 × 102 7.77 × 102

Std 9.28 × 101 5.80 × 101 4.38 × 101 7.65 × 101 1.80 × 101 6.35 × 101 1.06 × 102 1.15 × 102 1.65 × 101 2.21 × 101 1.23 × 101

Best 9.32 × 102 7.95 × 102 7.81 × 102 1.06 × 103 7.69 × 102 1.12 × 103 9.62 × 102 1.02 × 103 7.80 × 102 7.83 × 102 7.48 × 102

Rank 7 6 5 8 2 11 9 10 3 4 1

F8

Mean 9.63 × 102 9.96 × 102 8.78 × 102 9.67 × 102 8.74 × 102 1.04 × 103 9.83 × 102 1.02 × 103 8.79 × 102 8.74 × 102 8.49 × 102

Std 2.88 × 101 5.25 × 101 1.54 × 101 2.39 × 101 1.20 × 101 2.00 × 101 2.21 × 101 5.50 × 101 1.92 × 101 1.35 × 101 1.06 × 101

Best 9.12 × 102 8.77 × 102 8.45 × 102 9.13 × 102 8.57 × 102 1.00 × 103 9.33 × 102 9.31 × 102 8.50 × 102 8.48 × 102 8.30 × 102

Rank 6 9 4 7 2 11 8 10 5 3 1
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Table 1. Cont.

Fi Index AVOA DBO GWO HHO MPA PSO SSA WOA ARO IARO HARO

F9

Mean 5.25 × 103 6.06 × 103 1.48 × 103 6.44 × 103 9.83 × 102 6.47 × 103 5.35 × 103 7.96 × 103 1.11 × 103 1.16 × 103 9.02 × 102

Std 8.68 × 102 2.01 × 103 3.23 × 102 7.19 × 102 5.48 × 101 5.29 × 102 1.34 × 102 2.65 × 103 1.95 × 102 2.28 × 102 2.56 × 100

Best 3.33 × 103 2.23 × 103 1.04 × 103 5.25 × 103 9.14 × 102 5.62 × 103 5.02 × 103 4.08 × 103 9.10 × 102 9.16 × 102 9.00 × 102

Rank 6 8 5 9 2 10 7 11 3 4 1

F10

Mean 5.10 × 103 5.33 × 103 4.01 × 103 5.45 × 103 3.70 × 103 6.73 × 103 5.40 × 103 6.36 × 103 4.03 × 103 3.75 × 103 3.27 × 103

Std 6.44 × 102 6.62 × 102 5.16 × 102 7.20 × 102 4.33 × 102 6.59 × 102 7.90 × 102 8.19 × 102 5.47 × 102 5.83 × 102 4.64 × 102

Best 3.98 × 103 4.23 × 103 2.54 × 103 4.02 × 103 3.01 × 103 5.06 × 103 3.86 × 103 4.53 × 103 2.29 × 103 2.48 × 103 2.31 × 103

Rank 6 7 4 9 2 11 8 10 5 3 1

F11

Mean 1.24 × 103 1.50 × 103 1.48 × 103 1.26 × 103 1.15 × 103 3.57 × 103 1.25 × 103 3.10 × 103 1.18 × 103 1.20 × 103 1.14 × 103

Std 5.01 × 101 1.28 × 102 5.25 × 102 4.06 × 101 2.12 × 101 1.18 × 103 4.07 × 101 1.46 × 103 3.77 × 101 4.57 × 101 1.56 × 101

Best 1.16 × 103 1.27 × 103 1.24 × 103 1.20 × 103 1.12 × 103 2.12 × 103 1.19 × 103 1.55 × 103 1.13 × 103 1.12 × 103 1.11 × 103

Rank 5 9 8 7 2 11 6 10 3 4 1

F12

Mean 2.28 × 106 2.10 × 107 4.27 × 107 1.12 × 107 1.17 × 104 2.75 × 109 7.72 × 105 7.42 × 107 5.00 × 105 1.37 × 104 9.02 × 103

Std 1.33 × 106 3.97 × 107 6.84 × 107 1.03 × 107 5.83 × 103 1.75 × 109 6.41 × 105 5.76 × 107 3.73 × 105 9.21 × 103 5.79 × 103

Best 6.12 × 105 3.34 × 105 2.29 × 106 2.80 × 106 3.70 × 103 6.07 × 108 1.52 × 105 1.22 × 107 8.90 × 104 1.51 × 103 2.31 × 103

Rank 6 8 9 7 2 11 5 10 4 3 1

F13

Mean 6.99 × 104 1.65 × 106 1.91 × 107 4.70 × 105 1.55 × 103 9.51 × 107 1.97 × 104 2.09 × 105 1.44 × 104 1.61 × 103 1.35 × 103

Std 3.92 × 104 3.16 × 106 6.91 × 107 5.59 × 105 4.81 × 101 1.69 × 108 1.88 × 104 1.93 × 105 1.08 × 104 1.92 × 102 3.14 × 101

Best 1.21 × 104 1.31 × 104 3.62 × 104 1.14 × 105 1.47 × 103 8.83 × 104 1.53 × 103 6.55 × 104 1.46 × 103 1.39 × 103 1.32 × 103

Rank 6 9 10 8 2 11 5 7 4 3 1

F14

Mean 3.59 × 104 7.10 × 104 2.79 × 105 8.30 × 104 1.44 × 103 6.37 × 103 3.56 × 104 1.89 × 106 3.51 × 103 1.50 × 103 1.42 × 103

Std 3.21 × 104 1.02 × 105 3.81 × 105 7.76 × 104 6.61 × 100 5.36 × 103 2.63 × 104 1.64 × 106 2.55 × 103 3.57 × 101 1.01 × 101

Best 2.50 × 103 2.98 × 103 1.97 × 103 1.23 × 104 1.43 × 103 1.70 × 103 2.31 × 103 3.50 × 104 1.49 × 103 1.44 × 103 1.41 × 103

Rank 7 8 10 9 2 5 6 11 4 3 1

F15

Mean 1.69 × 104 7.14 × 104 1.25 × 105 6.94 × 104 1.55 × 103 1.30 × 104 1.12 × 104 1.10 × 105 5.31 × 103 1.67 × 103 1.51 × 103

Std 1.07 × 104 6.79 × 104 2.47 × 105 4.89 × 104 1.05 × 101 5.05 × 103 1.22 × 104 9.64 × 104 4.44 × 103 2.86 × 102 5.12 × 100

Best 5.08 × 103 9.78 × 103 1.13 × 104 2.49 × 104 1.53 × 103 3.00 × 103 1.61 × 103 2.21 × 104 1.59 × 103 1.53 × 103 1.50 × 103

Rank 7 9 11 8 2 6 5 10 4 3 1

F16

Mean 2.84 × 103 2.90 × 103 2.39 × 103 3.35 × 103 2.13 × 103 4.43 × 103 2.98 × 103 3.55 × 103 2.45 × 103 2.33 × 103 2.19 × 103

Std 3.55 × 102 3.53 × 102 2.60 × 102 3.92 × 102 1.73 × 102 5.78 × 102 3.10 × 102 4.55 × 102 2.48 × 102 2.48 × 102 1.70 × 102

Best 2.31 × 103 2.22 × 103 1.80 × 103 2.63 × 103 1.88 × 103 3.62 × 103 2.35 × 103 2.82 × 103 2.03 × 103 1.91 × 103 1.74 × 103

Rank 6 7 4 9 1 11 8 10 5 3 2

F17

Mean 2.39 × 103 2.38 × 103 1.95 × 103 2.61 × 103 1.80 × 103 2.99 × 103 2.38 × 103 2.54 × 103 1.95 × 103 1.93 × 103 1.75 × 103

Std 2.47 × 102 2.64 × 102 1.13 × 102 3.35 × 102 4.23 × 101 2.87 × 102 2.28 × 102 2.58 × 102 1.57 × 102 1.17 × 102 5.23 × 101

Best 1.94 × 103 1.90 × 103 1.77 × 103 2.03 × 103 1.75 × 103 2.33 × 103 1.87 × 103 1.94 × 103 1.74 × 103 1.75 × 103 1.70 × 103

Rank 8 6 4 10 2 11 7 9 5 3 1

F18

Mean 9.02 × 105 1.72 × 106 6.32 × 105 1.15 × 106 1.85 × 103 1.99 × 105 3.84 × 105 3.96 × 106 9.69 × 104 3.57 × 103 1.83 × 103

Std 8.62 × 105 4.41 × 106 5.65 × 105 1.32 × 106 8.75 × 100 2.96 × 105 3.51 × 105 3.50 × 106 7.48 × 104 1.48 × 103 6.50 × 100

Best 1.17 × 105 2.02 × 104 7.70 × 104 1.07 × 105 1.84 × 103 2.50 × 104 3.19 × 104 1.44 × 105 3.26 × 104 2.04 × 103 1.81 × 103

Rank 8 10 7 9 2 5 6 11 4 3 1

F19

Mean 1.71 × 104 3.83 × 105 8.14 × 105 3.95 × 105 1.93 × 103 2.75 × 105 8.63 × 103 5.87 × 106 6.52 × 103 1.94 × 103 1.91 × 103

Std 1.50 × 104 7.72 × 105 1.29 × 106 2.87 × 105 4.70 × 100 3.70 × 105 8.96 × 103 4.75 × 106 4.52 × 103 1.91 × 101 3.12 × 100

Best 2.48 × 103 2.17 × 103 2.27 × 104 4.23 × 104 1.92 × 103 4.48 × 103 1.96 × 103 2.16 × 104 2.06 × 103 1.92 × 103 1.90 × 103

Rank 6 8 10 9 2 7 5 11 4 3 1

F20

Mean 2.64 × 103 2.59 × 103 2.36 × 103 2.73 × 103 2.17 × 103 3.04 × 103 2.68 × 103 2.85 × 103 2.30 × 103 2.23 × 103 2.11 × 103

Std 2.10 × 102 1.81 × 102 1.30 × 102 2.03 × 102 6.97 × 101 3.14 × 102 1.73 × 102 2.08 × 102 1.73 × 102 1.18 × 102 8.96 × 101

Best 2.19 × 103 2.18 × 103 2.13 × 103 2.34 × 103 2.06 × 103 2.30 × 103 2.38 × 103 2.29 × 103 2.04 × 103 2.04 × 103 2.01 × 103

Rank 7 6 5 9 2 11 8 10 4 3 1

F21

Mean 2.49 × 103 2.49 × 103 2.37 × 103 2.54 × 103 2.29 × 103 2.68 × 103 2.50 × 103 2.57 × 103 2.37 × 103 2.37 × 103 2.34 × 103

Std 4.78 × 101 3.46 × 101 2.59 × 101 3.82 × 101 7.95 × 101 6.97 × 101 4.46 × 101 4.67 × 101 2.21 × 101 1.89 × 101 1.07 × 101

Best 2.43 × 103 2.43 × 103 2.33 × 103 2.46 × 103 2.20 × 103 2.56 × 103 2.43 × 103 2.49 × 103 2.33 × 103 2.34 × 103 2.32 × 103

Rank 6 7 5 9 1 11 8 10 4 3 2

F22

Mean 5.08 × 103 5.23 × 103 4.31 × 103 5.84 × 103 2.30 × 103 8.63 × 103 5.15 × 103 6.57 × 103 2.30 × 103 2.30 × 103 2.30 × 103

Std 2.23 × 103 2.04 × 103 1.83 × 103 2.23 × 103 1.88 × 100 4.83 × 102 2.42 × 103 2.41 × 103 1.21 × 100 1.68 × 100 9.50 × 10−1

Best 2.30 × 103 2.30 × 103 2.36 × 103 2.32 × 103 2.30 × 103 7.00 × 103 2.30 × 103 2.33 × 103 2.30 × 103 2.30 × 103 2.30 × 103

Rank 6 8 5 9 4 11 7 10 2 3 1

F23

Mean 2.92 × 103 2.87 × 103 2.74 × 103 3.11 × 103 2.69 × 103 4.56 × 103 2.91 × 103 3.06 × 103 2.73 × 103 2.74 × 103 2.70 × 103

Std 7.86 × 101 6.24 × 101 4.35 × 101 1.07 × 102 4.94 × 101 8.03 × 102 8.44 × 101 7.09 × 101 2.19 × 101 2.61 × 101 1.46 × 101

Best 2.81 × 103 2.78 × 103 2.68 × 103 2.91 × 103 2.46 × 103 3.30 × 103 2.78 × 103 2.92 × 103 2.70 × 103 2.69 × 103 2.67 × 103

Rank 8 6 5 10 1 11 7 9 3 4 2

F24

Mean 3.12 × 103 3.04 × 103 2.91 × 103 3.38 × 103 2.86 × 103 3.54 × 103 3.12 × 103 3.20 × 103 2.89 × 103 2.92 × 103 2.86 × 103

Std 1.00 × 102 5.34 × 101 4.84 × 101 1.29 × 102 8.71 × 101 1.37 × 102 1.04 × 102 9.84 × 101 1.93 × 101 4.19 × 101 1.46 × 101

Best 2.92 × 103 2.92 × 103 2.86 × 103 3.17 × 103 2.50 × 103 3.32 × 103 2.95 × 103 2.99 × 103 2.86 × 103 2.86 × 103 2.82 × 103

Rank 8 6 4 10 2 11 7 9 3 5 1
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Table 1. Cont.

Fi Index AVOA DBO GWO HHO MPA PSO SSA WOA ARO IARO HARO

F25

Mean 2.90 × 103 2.93 × 103 2.96 × 103 2.92 × 103 2.89 × 103 3.72 × 103 2.89 × 103 3.00 × 103 2.91 × 103 2.89 × 103 2.89 × 103

Std 2.19 × 101 3.79 × 101 2.82 × 101 1.78 × 101 1.76 × 100 3.18 × 102 1.19 × 101 3.95 × 101 1.97 × 101 9.48 × 100 1.61 × 100

Best 2.88 × 103 2.89 × 103 2.92 × 103 2.89 × 103 2.88 × 103 3.22 × 103 2.88 × 103 2.92 × 103 2.88 × 103 2.88 × 103 2.88 × 103

Rank 5 8 9 7 1 11 4 10 6 3 2

F26

Mean 6.24 × 103 5.97 × 103 4.44 × 103 7.00 × 103 2.90 × 103 9.26 × 103 6.35 × 103 7.25 × 103 4.34 × 103 4.66 × 103 3.81 × 103

Std 1.33 × 103 7.60 × 102 2.84 × 102 1.46 × 103 7.53 × 10−2 9.25 × 102 1.29 × 103 1.33 × 103 9.32 × 102 9.27 × 102 5.87 × 102

Best 2.80 × 103 3.77 × 103 4.06 × 103 2.95 × 103 2.90 × 103 7.25 × 103 2.80 × 103 2.96 × 103 2.80 × 103 2.80 × 103 2.80 × 103

Rank 7 6 4 9 1 11 8 10 3 5 2

F27

Mean 3.26 × 103 3.26 × 103 3.24 × 103 3.38 × 103 3.20 × 103 5.07 × 103 3.27 × 103 3.40 × 103 3.23 × 103 3.25 × 103 3.21 × 103

Std 2.92 × 101 2.94 × 101 1.80 × 101 1.08 × 102 6.77 × 100 1.62 × 103 3.71 × 101 9.43 × 101 1.36 × 101 2.60 × 101 8.77 × 100

Best 3.22 × 103 3.21 × 103 3.21 × 103 3.25 × 103 3.19 × 103 3.20 × 103 3.22 × 103 3.26 × 103 3.21 × 103 3.21 × 103 3.20 × 103

Rank 7 6 4 9 1 11 8 10 3 5 2

F28

Mean 3.22 × 103 3.35 × 103 3.37 × 103 3.27 × 103 3.20 × 103 4.74 × 103 3.22 × 103 3.37 × 103 3.25 × 103 3.12 × 103 3.13 × 103

Std 2.03 × 101 8.09 × 101 5.79 × 101 2.37 × 101 1.15 × 101 3.85 × 102 3.29 × 101 4.56 × 101 2.57 × 101 4.42 × 101 4.95 × 101

Best 3.20 × 103 3.22 × 103 3.26 × 103 3.21 × 103 3.18 × 103 4.11 × 103 3.19 × 103 3.31 × 103 3.21 × 103 3.10 × 103 3.10 × 103

Rank 5 8 9 7 3 11 4 10 6 1 2

F29

Mean 4.14 × 103 3.98 × 103 3.74 × 103 4.45 × 103 3.50 × 103 6.58 × 103 4.16 × 103 5.00 × 103 3.62 × 103 3.60 × 103 3.40 × 103

Std 2.50 × 102 2.62 × 102 1.17 × 102 4.04 × 102 8.05 × 101 9.61 × 102 2.52 × 102 4.27 × 102 1.57 × 102 1.48 × 102 6.86 × 101

Best 3.60 × 103 3.55 × 103 3.52 × 103 3.75 × 103 3.31 × 103 4.51 × 103 3.62 × 103 4.22 × 103 3.38 × 103 3.42 × 103 3.34 × 103

Rank 7 6 5 9 2 11 8 10 4 3 1

F30

Mean 8.20 × 104 6.94 × 105 7.09 × 106 1.88 × 106 6.59 × 103 2.65 × 107 1.28 × 104 1.52 × 107 9.05 × 103 6.73 × 103 5.29 × 103

Std 5.28 × 104 1.41 × 106 5.84 × 106 1.16 × 106 8.42 × 102 3.62 × 107 5.68 × 103 1.20 × 107 1.98 × 103 1.66 × 103 1.60 × 102

Best 2.09 × 104 1.86 × 104 1.07 × 106 6.10 × 105 5.62 × 103 1.35 × 106 5.74 × 103 2.43 × 106 6.32 × 103 5.37 × 103 5.06 × 103

Rank 6 7 9 8 2 11 5 10 4 3 1

Furthermore, to visually demonstrate the excellent performance of the HARO algo-
rithm, Figure 6 shows the convergence curves of each algorithm on the CEC2017 test
functions. The red curve in the figure represents HARO. On most benchmark functions,
HARO’s fitness value rapidly converges as the number of iterations increases, reaching a
lower fitness value at the maximum number of iterations and demonstrating a significantly
better convergence effect than other comparative algorithms. The above data analysis and
visualization results consistently confirm the superior performance of the HARO algorithm.
By leveraging the advantages of mixing multiple strategies, HARO performs excellently in
global search ability and fully explores local development space, ultimately achieving ex-
cellent optimality and convergence speed on a wide range of test functions, demonstrating
its enormous potential as a new optimization algorithm.
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Figure 6. Cont.
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Figure 6. Convergence graphs attained by 11 algorithms on CEC2017 benchmark problems with
30 dim.

5.1.3. Exploration–Exploitation Analysis

The effectiveness of optimization algorithms relies not only on finding the optimal
solution but also on sustaining adequate exploration and exploitation abilities throughout
the optimization process. Assessing the mean, optimal value, and standard deviation of
solutions does not entirely capture the population’s search behavior. Therefore, this section
employs a method of measuring dimensionality diversity [66] to more clearly observe
the HARO algorithm’s exploration and exploitation abilities during iterative cycles. The
corresponding formula is as follows:
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Diversityj =
1
N

N

∑
i=1

median
(

xj
)
− xj

i , (35)

Diversity =
1
D

D

∑
j=1

Diversityj, (36)

where N represents the population size, median
(
xj) represents the median of all individuals

in the population for the j-th dimensional variable, xj
i represents the value of individual

i in dimension j of the population, and D represents the variable dimension. By calcu-
lating the average Diversityj of all individuals in the population and then computing the
average diversity of each dimension to obtain Diversity, the proportion of exploration and
exploitation stages of the population in each iteration can be determined as follows:

Exploration% =
Diversity

Diversitymax
(37)

Exploitation% =
| Diversity − Diversitymax |

Diversitymax
(38)

We selected a subset of unimodal, multimodal, hybrid, and composite functions from
the CEC2017 test function set to analyze exploration and exploitation. Figure 7 illustrates
the curves showing the variation in Exploration% and Exploitation% over iterations. We
observe that the transition points between the exploration and exploitation stages are
inconsistent across different test functions. However, they generally exhibit a clear trend.
During the initial iterations, the algorithm emphasizes the exploration phase, conducting a
broad global search to help the search agent navigate the solution space quickly and identify
potential high-quality solution areas. As iterations advance, the algorithm gradually
shifts from the exploration to the exploitation stage, relocating the search focus from
global to local regions near suitable solution areas. Within these regions, it conducts local
development, continually optimizing and refining the current optimal solution, aiming to
discover superior solutions. This transition process demonstrates the algorithm’s dynamic
equilibrium between global exploration and local exploitation, enabling it to balance
breadth and depth search throughout the optimization process. It effectively discovers and
utilizes promising solution areas in the solution space, ultimately achieving high-quality
optimal solutions. This behavior aligns with the general strategy of efficient optimization
algorithms and further validates the rationality and superiority of our algorithm design.

5.1.4. Non-Parametric Statistical Analysis

To objectively assess the performance differences between the proposed HARO algo-
rithm and other algorithms on the 30-dimensional CEC2017 test function set, two widely
used non-parametric statistical test methods are employed: the Wilcoxon rank-sum test [67]
and the Friedman test [68].

The Wilcoxon rank-sum test assesses whether there is a significant difference between
the HARO algorithm and the comparison algorithm based on the p-value at a confidence
level of 0.05. If p ≥ 0.05, the null hypothesis is accepted, indicating no significant differ-
ence between the two; otherwise, the null hypothesis is rejected, indicating a significant
difference between them. Table 2 displays the p-value differences of each algorithm under
the CEC2017 test functions at a confidence level of 0.05. The results indicate that the
Wilcoxon test results for the HARO algorithm on most benchmark functions are less than
0.05, demonstrating significant differences compared with other algorithms.
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Figure 7. Exploration% and Exploitation% Curves of HARO on CEC2017 benchmark functions.

Table 2. Wilcoxon rank-sum test results of HARO and 10 comparison algorithms on 30-dimensional
CEC2017 functions.

Function AVOA DBO GWO HHO A, M.P. PSO SSA WOA ARO IARO

F1 3.02 × 10−11 3.02 × 10−11 3.02 × 10−11 3.02 × 10−11 3.02 × 10−11 3.02 × 10−11 3.02 × 10−11 3.02 × 10−11 3.02 × 10−11 4.08 × 10−11

F3 3.02 × 10−11 3.02 × 10−11 3.02 × 10−11 3.02 × 10−11 3.02 × 10−11 3.02 × 10−11 3.02 × 10−11 3.02 × 10−11 3.02 × 10−11 3.02 × 10−11

F4 7.39 × 10−11 3.34 × 10−11 3.02 × 10−11 3.69 × 10−11 1.96 × 10−10 3.02 × 10−11 1.07 × 10−9 3.02 × 10−11 1.46 × 10−10 7.51 × 10−1

F5 3.02 × 10−11 3.02 × 10−11 6.07 × 10−11 3.02 × 10−11 5.46 × 10−9 3.02 × 10−11 3.02 × 10−11 3.02 × 10−11 8.35 × 10−8 3.82 × 10−10

F6 3.02 × 10−11 3.02 × 10−11 3.02 × 10−11 3.02 × 10−11 3.02 × 10−11 3.02 × 10−11 3.02 × 10−11 3.02 × 10−11 3.02 × 10−11 3.02 × 10−11

F7 3.02 × 10−11 3.69 × 10−11 1.09 × 10−10 3.02 × 10−11 2.60 × 10−8 3.02 × 10−11 3.02 × 10−11 3.02 × 10−11 3.47 × 10−10 4.20 × 10−10

F8 3.02 × 10−11 3.02 × 10−11 1.10 × 10−8 3.02 × 10−11 2.67 × 10−9 3.02 × 10−11 3.02 × 10−11 3.02 × 10−11 4.18 × 10−9 7.77 × 10−9

F9 3.00 × 10−11 3.00 × 10−11 3.00 × 10−11 3.00 × 10−11 3.00 × 10−11 3.00 × 10−11 3.00 × 10−11 3.00 × 10−11 3.31 × 10−11 3.00 × 10−11

F10 3.69 × 10−11 3.02 × 10−11 2.49 × 10−6 3.69 × 10−11 1.77 × 10−3 3.02 × 10−11 3.69 × 10−11 3.02 × 10−11 8.20 × 10−7 1.77 × 10−3

F11 6.07 × 10−11 3.02 × 10−11 3.02 × 10−11 3.02 × 10−11 4.36 × 10−2 3.02 × 10−11 3.02 × 10−11 3.02 × 10−11 8.20 × 10−7 2.39 × 10−8

F12 3.02 × 10−11 3.02 × 10−11 3.02 × 10−11 3.02 × 10−11 4.21 × 10−2 3.02 × 10−11 3.02 × 10−11 3.02 × 10−11 3.02 × 10−11 3.51 × 10−2

F13 3.02 × 10−11 3.02 × 10−11 3.02 × 10−11 3.02 × 10−11 3.02 × 10−11 3.02 × 10−11 3.02 × 10−11 3.02 × 10−11 3.02 × 10−11 6.70 × 10−11

F14 3.02 × 10−11 3.02 × 10−11 3.02 × 10−11 3.02 × 10−11 4.44 × 10−7 3.02 × 10−11 3.02 × 10−11 3.02 × 10−11 3.02 × 10−11 3.02 × 10−11

F15 3.02 × 10−11 3.02 × 10−11 3.02 × 10−11 3.02 × 10−11 3.02 × 10−11 3.02 × 10−11 3.02 × 10−11 3.02 × 10−11 3.02 × 10−11 3.02 × 10−11

F16 6.72 × 10−10 2.61 × 10−10 6.20 × 10−4 3.02 × 10−11 1.81 × 10−1 3.02 × 10−11 9.92 × 10−11 3.02 × 10−11 2.13 × 10−5 3.15 × 10−2

F17 3.34 × 10−11 3.34 × 10−11 6.12 × 10−10 3.02 × 10−11 1.73 × 10−7 3.02 × 10−11 3.69 × 10−11 3.34 × 10−11 9.26 × 10−9 1.69 × 10−9

F18 3.02 × 10−11 3.02 × 10−11 3.02 × 10−11 3.02 × 10−11 3.02 × 10−11 3.02 × 10−11 3.02 × 10−11 3.02 × 10−11 3.02 × 10−11 3.02 × 10−11

F19 3.02 × 10−11 3.02 × 10−11 3.02 × 10−11 3.02 × 10−11 3.02 × 10−11 3.02 × 10−11 3.02 × 10−11 3.02 × 10−11 3.02 × 10−11 3.02 × 10−11

F20 4.50 × 10−11 4.98 × 10−11 2.23 × 10−9 3.34 × 10−11 2.76 × 10−3 3.34 × 10−11 3.02 × 10−11 3.34 × 10−11 1.61 × 10−6 2.49 × 10−6

F21 3.02 × 10−11 3.02 × 10−11 1.47 × 10−7 3.02 × 10−11 4.04 × 10−1 3.02 × 10−11 3.02 × 10−11 3.02 × 10−11 1.47 × 10−7 3.09 × 10−6

F22 4.60 × 10−10 7.36 × 10−11 3.01 × 10−11 3.01 × 10−11 2.82 × 10−8 3.01 × 10−11 7.35 × 10−10 3.01 × 10−11 4.30 × 10−8 4.59 × 10−1

F23 3.02 × 10−11 3.02 × 10−11 4.31 × 10−8 3.02 × 10−11 7.51 × 10−1 3.02 × 10−11 3.02 × 10−11 3.02 × 10−11 3.08 × 10−8 3.50 × 10−9

F24 3.02 × 10−11 3.02 × 10−11 5.97 × 10−9 3.02 × 10−11 8.15 × 10−5 3.02 × 10−11 3.02 × 10−11 3.02 × 10−11 1.56 × 10−8 1.41 × 10−9

F25 1.11 × 10−4 5.49 × 10−11 3.02 × 10−11 3.02 × 10−11 1.09 × 10−1 3.02 × 10−11 1.44 × 10−3 3.02 × 10−11 3.35 × 10−8 3.59 × 10−5

F26 3.96 × 10−8 2.61 × 10−10 1.73 × 10−7 1.43 × 10−8 1.95 × 10−3 3.02 × 10−11 3.50 × 10−9 6.72 × 10−10 1.32 × 10−4 2.96 × 10−5

F27 6.70 × 10−11 3.47 × 10−10 1.55 × 10−9 3.02 × 10−11 3.56 × 10−4 1.17 × 10−4 5.49 × 10−11 3.02 × 10−11 7.77 × 10−9 1.69 × 10−9

F28 5.97 × 10−9 3.69 × 10−11 3.02 × 10−11 4.08 × 10−11 1.73 × 10−6 3.02 × 10−11 3.08 × 10−8 3.02 × 10−11 1.61 × 10−10 4.64 × 10−5

F29 3.34 × 10−11 4.50 × 10−11 6.70 × 10−11 3.02 × 10−11 7.22 × 10−6 3.02 × 10−11 3.02 × 10−11 3.02 × 10−11 2.02 × 10−8 2.39 × 10−8

F30 3.02 × 10−11 3.02 × 10−11 3.02 × 10−11 3.02 × 10−11 5.49 × 10−11 3.02 × 10−11 3.34 × 10−11 3.02 × 10−11 3.02 × 10−11 9.76 × 10−10

The Friedman test aims to examine whether there are significant differences in the
average rankings of all algorithms across all test functions, where lower rankings indicate
better performance. It assumes that if all algorithms have the same performance, their
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average rankings across all test functions should be equal. As shown in Figure 8, it is clear
that the HARO algorithm has the lowest average ranking, around 1.34, indicating its overall
superior performance among the tested benchmark functions. Following HARO are the
IARO and ARO algorithms, with average rankings of 3.1034 and 3.9655, respectively, indi-
cating relatively good performance. However, the AVOA algorithm has the highest average
ranking, approximately 6.3793, indicating relatively poor optimization performance.
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Figure 8. Rankings of 11 algorithms based on Friedman test on 30-D CEC2017 functions.

5.1.5. Ablation Study

To validate the contribution of each improvement strategy to HARO’s overall per-
formance, we conducted ablation studies. Based on the original ARO algorithm, three
partially improved versions were constructed: EARO with the elite strategy, DEARO with
the dual exploration switching strategy, and MARO with the population memory migration
strategy. These versions were then compared with the original ARO using the CEC2017
test functions. Table 3 presents the results of the above algorithms, with each algorithm
independently tested 30 times in the same test environment.

It is clear that each improvement strategy exhibits superior performance relative to
the original algorithm. The EARO algorithm, incorporating the elite strategy, achieves
better optimal values than the original ARO in over half of the benchmark functions. This
is because elite individuals within the population can guide others towards the optimal
direction, accelerating the convergence speed of the algorithm and continuously generating
new individuals in the excellent regions of the solution space, thereby constantly improving
the overall quality of the population. The DEARO algorithm, with the introduction of a
dual exploration switching strategy, shows significant improvements over the original ARO
algorithm in functions other than F11 and F30. This indicates that the introduction of this
strategy dramatically enhances the overall exploration capability of the algorithm, enabling
it to search for optimal solutions over a broader range and avoid becoming stuck in local
optima. The MARO algorithm, with the introduction of a population memory migration
mechanism, significantly enhances the ability of the algorithm to escape from local optima
by effectively improving population diversity. Ablation study results show that MARO
significantly improves performance over the original ARO algorithm in all benchmark
functions. This improvement stems from the population memory migration mechanism,
which maintains population diversity, avoids premature convergence to suboptimal so-
lutions, and enhances the algorithm’s global search ability. Therefore, introducing these
three strategies effectively enhances ARO’s performance and optimization capabilities
on different benchmark functions, validating their positive contributions to the overall
performance of the HARO algorithm.
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Table 3. Comparison of HARO variant strategies on the CEC2017 test suite with 30 dim.

Function Index ARO EARO DEARO MARO Function Index ARO EARO DEARO MARO

F1 Mean 3.84 × 103 4.71 × 103 1.92 × 103 1.49 × 103 F17 Mean 1.95 × 103 1.92 × 103 1.89 × 103 1.86 × 103

Std 2.86 × 103 4.23 × 103 1.86 × 103 2.30 × 103 Std 1.57 × 102 1.30 × 102 1.21 × 102 1.26 × 102

Best 2.49 × 102 2.29 × 102 1.41 × 102 1.00 × 102 Best 1.74 × 103 1.72 × 103 1.73 × 103 1.73 × 103

Rank 3 4 2 1 Rank 4 3 2 1
F3 Mean 2.32 × 104 1.47 × 104 1.79 × 104 3.00 × 102 F18 Mean 9.69 × 104 3.28 × 104 3.27 × 104 1.83 × 103

Std 4.98 × 103 4.04 × 103 4.34 × 103 4.47 × 10−1 Std 7.48 × 104 2.04 × 104 1.61 × 104 5.33 × 100

Best 1.68 × 104 8.24 × 103 1.08 × 104 3.00 × 102 Best 3.26 × 104 4.34 × 103 8.73 × 103 1.81 × 103

Rank 4 2 3 1 Rank 4 3 2 1
F4 Mean 5.01 × 102 4.85 × 102 4.98 × 102 4.53 × 102 F19 Mean 6.52 × 103 3.17 × 103 2.90 × 103 1.91 × 103

Std 2.51 × 101 3.43 × 101 1.81 × 101 4.13 × 101 Std 4.52 × 103 3.03 × 103 1.54 × 103 3.71 × 100

Best 4.35 × 102 4.00 × 102 4.65 × 102 4.00 × 102 Best 2.06 × 103 1.93 × 103 1.95 × 103 1.91 × 103

Rank 4 2 3 1 Rank 4 3 2 1
F5 Mean 5.75 × 102 5.76 × 102 5.61 × 102 5.59 × 102 F20 Mean 2.30 × 103 2.28 × 103 2.24 × 103 2.24 × 103

Std 2.01 × 101 2.08 × 101 1.80 × 101 1.59 × 101 Std 1.73 × 102 1.26 × 102 1.14 × 102 9.95 × 101

Best 5.39 × 102 5.38 × 102 5.40 × 102 5.34 × 102 Best 2.04 × 103 2.07 × 103 2.04 × 103 2.13 × 103

Rank 3 4 2 1 Rank 4 3 1 2
F6 Mean 6.00 × 102 6.00 × 102 6.00 × 102 6.00 × 102 F21 Mean 2.37 × 103 2.37 × 103 2.35 × 103 2.36 × 103

Std 2.79 × 10−1 4.38 × 10−1 2.19 × 10−3 1.22 × 10−3 Std 2.21 × 101 1.78 × 101 1.58 × 101 1.69 × 101

Best 6.00 × 102 6.00 × 102 6.00 × 102 6.00 × 102 Best 2.33 × 103 2.34 × 103 2.33 × 103 2.33 × 103

Rank 3 4 2 1 Rank 4 3 1 2
F7 Mean 8.15 × 102 8.25 × 102 7.91 × 102 7.93 × 102 F22 Mean 2.30 × 103 2.30 × 103 2.30 × 103 2.30 × 103

Std 1.65 × 101 3.12 × 101 1.67 × 101 1.51 × 101 Std 1.21 × 100 1.12 × 100 9.90 × 10−1 9.44 × 10−1

Best 7.80 × 102 7.78 × 102 7.65 × 102 7.59 × 102 Best 2.30 × 103 2.30 × 103 2.30 × 103 2.30 × 103

Rank 3 4 1 2 Rank 4 3 2 1
F8 Mean 8.79 × 102 8.72 × 102 8.59 × 102 8.59 × 102 F23 Mean 2.73 × 103 2.72 × 103 2.70 × 103 2.71 × 103

Std 1.92 × 101 1.38 × 101 1.28 × 101 1.76 × 101 Std 2.19 × 101 1.70 × 101 1.68 × 101 2.10 × 101

Best 8.50 × 102 8.46 × 102 8.36 × 102 8.20 × 102 Best 2.70 × 103 2.69 × 103 2.67 × 103 2.68 × 103

Rank 4 3 2 1 Rank 4 3 1 2
F9 Mean 1.11 × 103 1.18 × 103 9.18 × 102 9.10 × 102 F24 Mean 2.89 × 103 2.89 × 103 2.88 × 103 2.87 × 103

Std 1.95 × 102 4.00 × 102 3.23 × 101 1.25 × 101 Std 1.93 × 101 1.89 × 101 1.61 × 101 1.93 × 101

Best 9.10 × 102 9.22 × 102 9.00 × 102 9.00 × 102 Best 2.86 × 103 2.86 × 103 2.85 × 103 2.85 × 103

Rank 3 4 2 1 Rank 3 4 2 1
F10 Mean 4.03 × 103 3.41 × 103 3.69 × 103 3.67 × 103 F25 Mean 2.91 × 103 2.89 × 103 2.90 × 103 2.89 × 103

Std 5.47 × 102 5.11 × 102 3.34 × 102 5.23 × 102 Std 1.97 × 101 9.81 × 100 1.77 × 101 1.87 × 100

Best 2.29 × 103 1.62 × 103 3.05 × 103 2.34 × 103 Best 2.88 × 103 2.88 × 103 2.88 × 103 2.88 × 103

Rank 4 1 3 2 Rank 4 2 3 1
F11 Mean 1.18 × 103 1.16 × 103 1.19 × 103 1.14 × 103 F26 Mean 4.34 × 103 3.95 × 103 3.62 × 103 3.75 × 103

Std 3.77 × 101 3.37 × 101 3.59 × 101 1.49 × 101 Std 9.32 × 102 8.09 × 102 7.64 × 102 7.43 × 102

Best 1.13 × 103 1.12 × 103 1.14 × 103 1.12 × 103 Best 2.80 × 103 2.80 × 103 2.80 × 103 2.80 × 103

Rank 3 2 4 1 Rank 4 3 1 2
F12 Mean 5.00 × 105 9.24 × 104 2.27 × 105 8.94 × 103 F27 Mean 3.23 × 103 3.22 × 103 3.23 × 103 3.22 × 103

Std 3.73 × 105 8.06 × 104 1.31 × 105 6.29 × 103 Std 1.36 × 101 1.25 × 101 1.08 × 101 1.37 × 101

Best 8.90 × 104 1.05 × 104 2.71 × 104 1.62 × 103 Best 3.21 × 103 3.21 × 103 3.21 × 103 3.20 × 103

Rank 4 2 3 1 Rank 4 2 3 1
F13 Mean 1.44 × 104 1.28 × 104 9.80 × 103 1.35 × 103 F28 Mean 3.25 × 103 3.22 × 103 3.25 × 103 3.16 × 103

Std 1.08 × 104 1.17 × 104 5.12 × 103 2.11 × 101 Std 2.57 × 101 1.73 × 101 2.23 × 101 5.24 × 101

Best 1.46 × 103 1.39 × 103 2.55 × 103 1.32 × 103 Best 3.21 × 103 3.19 × 103 3.21 × 103 3.10 × 103

Rank 4 3 2 1 Rank 4 2 3 1
F14 Mean 3.51 × 103 1.76 × 103 1.49 × 103 1.43 × 103 F29 Mean 3.62 × 103 3.55 × 103 3.47 × 103 3.41 × 103

Std 2.55 × 103 1.02 × 103 2.36 × 101 1.05 × 101 Std 1.57 × 102 1.27 × 102 1.00 × 102 7.97 × 101

Best 1.49 × 103 1.43 × 103 1.46 × 103 1.41 × 103 Best 3.38 × 103 3.35 × 103 3.36 × 103 3.34 × 103

Rank 4 3 2 1 Rank 4 3 2 1
F15 Mean 5.31 × 103 4.69 × 103 2.91 × 103 1.52 × 103 F30 Mean 9.05 × 103 9.69 × 103 1.01 × 104 5.57 × 103

Std 4.44 × 103 8.05 × 103 1.62 × 103 1.36 × 101 Std 1.98 × 103 3.02 × 103 4.42 × 103 4.60 × 102

Best 1.59 × 103 1.53 × 103 1.62 × 103 1.51 × 103 Best 6.32 × 103 6.19 × 103 6.60 × 103 5.13 × 103

Rank 4 3 2 1 Rank 2 3 4 1
F16 Mean 2.45 × 103 2.36 × 103 2.25 × 103 2.31 × 103

Std 2.48 × 102 2.50 × 102 1.87 × 102 2.32 × 102

Best 2.03 × 103 1.93 × 103 1.79 × 103 1.85 × 103

Rank 4 3 1 2
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5.2. Application of HARO+ in UAV Path Planning

We conducted comparative simulation tests for UAV path planning across various 2D
and 3D terrains with different levels of complexity. First, we evaluated the performance of
the HARO algorithm in addressing UAV path planning problems in complex environments,
comparing it with other algorithms. Finally, we verified the significant contribution of
incorporating the trajectory optimization strategy HARO+ in reducing flight costs, as well
as the impact of integrating this strategy into other algorithms.

5.2.1. Setting the Simulation Environment

In this simulation, the comparison algorithms include well-performing algorithms for
this problem: Spherical Particle Swarm Optimization (SPSO) [30], and widely recognized
Particle Swarm Optimization (PSO) [24], Whale Optimization algorithm (WOA) [60], and
Sparrow Search algorithm (SSA) [63]. Additionally, newly proposed algorithms in recent
years include Northern Goshawk Optimization (NGO) [69], Beluga Whale Optimization
(BWO) [70], Dung Beetle Optimizer (DBO) [64], artificial rabbits optimization (ARO) [31],
and an improved version of artificial rabbits optimization (IARO) [51].

To ensure fairness in the simulations and avoid the randomness of algorithms, we in-
dependently repeated each scenario 30 times. We introduced average, minimum, standard
deviation, and rankings based on the minimum average as evaluation metrics, derived from
the total cost calculated during the algorithm’s iterations. This total cost consists of collision
cost, distance cost, altitude cost, and turning cost, and these metrics were used to assess the
overall performance of the algorithms. All participating algorithms employed the spherical
vector-based encoding method introduced in Section 3. Specifically, UAV trajectories are
represented by vectors of radius, inclination angle, and azimuth angle, and optimized
using either the HARO algorithm or other comparative algorithms to minimize the total
cost function while satisfying all constraints. While some randomness is involved in the
search process, the final trajectories are determined through controlled optimization and
transformed into Cartesian coordinates to identify the best route. In the two-dimensional
environment, we set up complex scenarios with four different obstacle layouts to validate
HARO’s performance. Some parameter settings are as follows: the population size is
100, the maximum number of iterations is 200, the starting point position is (150, 100),
the target point position is (950, 800), and there are 20 intermediate path points. In the
three-dimensional scenario, we adopted two terrain map scenarios, one of which used
real digital elevation model (DEM) data obtained from sensors [71]. We utilized complex
scenarios with five different obstacle layouts in these two terrain maps. The population
size is 200, and the maximum number of iterations is 100. The starting point position
is (150, 100, 150), and the target point position is (950, 800, 150), with 20 intermediate
path points.

5.2.2. HARO for 2D UAV Path Planning

Four complex scenarios were constructed in the two-dimensional path planning
simulation, considering obstacles and threat areas distributed across multiple locations.
Table 4 present the comparison results between the HARO algorithm and nine other
optimization algorithms in these scenarios. The HARO algorithm is observed to successfully
find reasonable UAV routes in all scenarios. In contrast, some algorithms, such as IARO,
SSA, WOA, and ARO, fail to obtain feasible solutions in certain complex scenarios, resulting
in infinite average values. This fully demonstrates the superior stability and robustness of
the proposed HARO algorithm.

Further comparisons based on average rankings show that the HARO algorithm
ranks first in scenario 2 and second in the remaining scenarios, outperforming the PSO
algorithm, NGO algorithm, DBO algorithm, and the original ARO algorithm and its
improved version IARO. This outstanding performance is attributed to the introduction of
the population memory migration mechanism in the HARO algorithm, which can maintain
the superior positions of population individuals during iterations and continuously explore
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better solutions. Figure 9 depicts the average convergence curves of various algorithms
in four typical two-dimensional scenarios. The HARO algorithm’s convergence curve
shows a rapid downward trend in each scenario, converging to a low fitness value with
few iterations. However, other algorithms, such as IARO and WOA, fail to find suitable
path solutions in every scenario when run independently for 30 times. The average
convergence curve value of the HARO algorithm is the lowest, verifying its excellent
convergence performance and stability in various two-dimensional environments. Figure 10
visually compares the flight paths planned by the HARO algorithm with eight other
algorithms (NGO, DBO, IARO, PSO, SSA, WOA, ARO, and BWO) based on their respective
optimal solutions in four typical two-dimensional scenarios. In these diagrams, the yellow
square marks the initial point, the green pentagon denotes the target point, and the red
line represents the HARO algorithm’s path. The figure shows that the HARO algorithm
effectively avoids obstacles and minimizes flight distance in all scenarios. Especially in
scenarios 1 and 2, the HARO algorithm performs exceptionally well, successfully avoiding
all obstacles and planning relatively shorter paths. In comparison, the other algorithms
perform relatively poorly in these scenarios. For instance, in scenario 1, the BWO and
PSO algorithms produce more winding and longer paths, while, in scenario 2, the IARO
algorithm shows excessive detouring. Comparatively, the HARO algorithm’s path is more
intuitive with better obstacle avoidance, demonstrating its efficiency and reliability in path
planning. In scenarios 3 and 4, despite more complex obstacle distributions, the HARO
algorithm can still flexibly adjust the path to avoid collisions while maintaining a lower
total flight cost. Other algorithms (such as WOA and IARO) exhibit longer detours or
direct collisions with obstacles in some scenarios, highlighting their limitations in path
planning. Overall, the flight paths planned by HARO ensure precise avoidance of all
obstacles while maintaining a shorter distance and lower total cost, demonstrating the
outstanding performance of this algorithm.

Table 4. Simulation results of eight algorithms for UAV path planning in 2D environments across
four scenarios.

Scenario Algorithms Mean Best Std. Rank Scenario Algorithms Mean Best Std. Rank

1

NGO 1.15 × 103 1.09 × 103 4.54 × 101 5

2

NGO 1.29 × 103 1.13 × 103 8.75 × 101 3
DBO 1.09 × 103 1.07 × 103 4.07 × 101 1 DBO 1.27 × 103 1.10 × 103 1.51 × 102 2
IARO Inf 1.29 × 103 - 9 IARO Inf 1.27 × 103 - 8
PSO 1.26 × 103 1.15 × 103 7.67 × 101 7 PSO 1.36 × 103 1.13 × 103 1.24 × 102 7
SSA 1.13 × 103 1.07 × 103 7.14 × 101 3 SSA 1.29 × 103 1.28 × 103 1.07 × 101 4

WOA 1.27 × 103 1.08 × 103 1.28 × 102 8 WOA Inf 1.33 × 103 - 9
ARO 1.13 × 103 1.07 × 103 6.61 × 101 4 ARO 1.30 × 103 1.12 × 103 5.35 × 101 5
BWO 1.23 × 103 1.07 × 103 1.81 × 102 6 BWO 1.36 × 103 1.10 × 103 8.48 × 101 6

HARO 1.10 × 103 1.08 × 103 6.65 × 100 2 HARO 1.24 × 103 1.10 × 103 1.07 × 102 1

3

NGO 1.42 × 103 1.15 × 103 1.39 × 102 5

4

NGO 1.13 × 103 1.09 × 103 1.69 × 101 5
DBO 1.33 × 103 1.14 × 103 1.35 × 102 3 DBO 1.11 × 103 1.07 × 103 3.95 × 101 3
IARO Inf Inf - 9 IARO Inf 1.27 × 103 - 9
PSO 1.42 × 103 1.29 × 103 7.42 × 101 4 PSO 1.21 × 103 1.14 × 103 5.75 × 101 8
SSA Inf 1.15 × 103 - 7 SSA 1.09 × 103 1.07 × 103 1.91 × 101 1

WOA Inf 1.65 × 103 - 8 WOA 1.15 × 103 1.11 × 103 2.88 × 101 6
ARO Inf 1.13 × 103 - 6 ARO 1.11 × 103 1.07 × 103 2.61 × 101 4
BWO 1.22 × 103 1.17 × 103 2.01 × 101 1 BWO 1.15 × 103 1.09 × 103 3.00 × 101 7

HARO 1.28 × 103 1.16 × 103 6.74 × 101 2 HARO 1.10 × 103 1.07 × 103 2.07 × 101 2
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Figure 9. Comparison of convergence curves of multiple algorithms in four 2D terrain scenarios.
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Figure 10. Trajectory plots of multiple algorithms in four 2D terrain scenarios.

5.2.3. HARO for 3D UAV Path Planning

Table 5 display the simulation results for the three-dimensional UAV path planning
task under five different scenarios. It can be seen that the HARO algorithm performs
well in different scenarios. Based on average rankings, the HARO algorithm ranks first
in three scenarios and second or third in the remaining scenarios. This is because the
different obstacles in the scenarios lead to changes in the solution space. According to the
No Free Lunch Theorem [72], no algorithm can perform the best in all possible optimization
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problems. In other words, there is no universal optimization algorithm that can be optimal
for all kinds of problems.

Table 5. Comparative simulation results of eight algorithms for UAV path planning in 3D environ-
ments across five scenarios.

Scenario Algorithms Mean Best Std. Rank Scenario Algorithms Mean Best Std. Rank

1

NGO 6.34 × 103 5.94 × 103 1.99 × 102 4

2

NGO 7.24 × 103 6.62 × 103 3.45 × 102 4
DBO 5.93 × 103 5.77 × 103 9.81 × 101 2 DBO 7.01 × 103 6.58 × 103 3.24 × 102 3
IARO Inf 6.98 × 103 - 9 IARO Inf Inf - 9
SPSO 7.04 × 103 6.53 × 103 1.78 × 102 6 SPSO 7.46 × 103 6.87 × 103 3.28 × 102 6
SSA 7.00 × 103 5.94 × 103 6.21 × 102 5 SSA 7.62 × 103 7.23 × 103 1.26 × 102 7

WOA Inf 6.04 × 103 - 8 WOA 8.04 × 103 7.23 × 103 2.42 × 102 8
ARO 6.08 × 103 5.92 × 103 1.24 × 102 3 ARO 6.97 × 103 6.47 × 103 1.46 × 102 2
BWO 7.13 × 103 6.42 × 103 4.43 × 102 7 BWO 7.35 × 103 6.69 × 103 3.03 × 102 5

HARO 5.89 × 103 5.68 × 103 1.27 × 102 1 HARO 6.94 × 103 6.47 × 103 2.81 × 102 1

3

NGO 7.86 × 103 6.66 × 103 5.50 × 102 4

4

NGO 7.50 × 103 6.87 × 103 2.52 × 102 4
DBO 7.14 × 103 6.55 × 103 2.49 × 102 2 DBO 7.22 × 103 6.71 × 103 2.43 × 102 3
IARO Inf Inf - 9 IARO Inf 7.64 × 103 - 9
SPSO 7.93 × 103 7.25 × 103 4.09 × 102 5 SPSO 7.59 × 103 6.95 × 103 2.41 × 102 5
SSA Inf 6.45 × 103 - 6 SSA Inf 6.74 × 103 - 7

WOA Inf 7.69 × 103 - 8 WOA Inf 7.29 × 103 - 8
ARO Inf 6.88 × 103 - 7 ARO 7.19 × 103 6.92 × 103 1.33 × 102 2
BWO 6.99 × 103 6.80 × 103 7.14 × 101 1 BWO 8.65 × 103 7.38 × 103 7.17 × 102 6

HARO 7.29 × 103 6.75 × 103 2.74 × 102 3 HARO 7.17 × 103 6.87 × 103 1.14 × 102 1

5

NGO 6.47 × 103 6.15 × 103 1.59 × 102 5
DBO 5.89 × 103 5.61 × 103 1.32 × 102 1
IARO 7.75 × 103 7.14 × 103 3.36 × 102 9
SPSO 7.06 × 103 6.78 × 103 1.51 × 102 6
SSA 6.35 × 103 5.95 × 103 2.11 × 102 4

WOA 7.18 × 103 6.48 × 103 3.81 × 102 7
ARO 6.02 × 103 5.91 × 103 5.65 × 101 3
BWO 7.47 × 103 6.88 × 103 2.90 × 102 8

HARO 5.95 × 103 5.78 × 103 8.68 × 101 2

Moreover, not all algorithms can guarantee reasonable paths that satisfy multiple
constraints in every independently repeated test. For example, the rankings of IARO, SSA,
WOA, and ARO vary across different scenarios. Compared with the two-dimensional
simulation environment, the three-dimensional environment introduces height constraints,
pitch angle constraints, and more complex obstacles, significantly increasing the difficulty
for algorithms to search for candidate solutions in the solution space. However, the HARO
algorithm maintains relatively stable rankings across all scenarios. This further confirms its
strong search capability under the dual exploration strategy, allowing it to find reasonable
paths under multiple constraints in complex environments.

Figures 11 and 12 display the optimal trajectory maps generated by various algorithms
from three-dimensional and top-down perspectives across five scenarios, each containing
differently positioned black cylindrical and red spherical obstacles. In densely obstructed
environments, some algorithms, constrained by path rationality requirements and multiple
constraints, cannot fully explore the solution space. Consequently, these algorithms strug-
gle to find suitable paths in high-obstacle areas and resort to longer routes. For instance, in
scenario 2, IARO and SSA, and, in scenario 3, WOA and NGO, fail to effectively navigate
dense obstacles, significantly increasing flight costs. Conversely, the HARO algorithm
consistently finds relatively optimal paths across all five terrains, though not necessar-
ily the shortest in every case. Figure 13 illustrates the iteration curves across scenarios,
highlighting each algorithm’s optimal values. Notably, most algorithms tend toward
local optima in complex environments, with HARO achieving a relatively high perfor-
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mance, though it experiences slower convergence in certain cases. This slower convergence
stems from the larger search space in complex, obstacle-dense environments, complicating
path planning. Despite the limited iterations in this experiment, HARO demonstrates
strong adaptability.

Scene 2 Scene 3

Scene 4 Scene 5

Scene 1

Figure 11. Trajectory plots of multiple algorithms in five 3D terrain scenarios.

Scene 1 Scene 2 Scene 3

Scene 4 Scene 5

Figure 12. Top-view trajectory plots of multiple algorithms in five 3D terrain scenarios.

In conclusion, the HARO algorithm exhibits robust performance in three-dimensional
UAV path planning, consistently identifying high-quality paths that satisfy multiple con-
straints in challenging environments. This highlights HARO’s significant potential for UAV
path planning applications. However, like most algorithms, HARO-generated paths still
contain redundant waypoints. In the next section, we will use HARO+ to validate the
effectiveness of the trajectory optimization strategy in these environments.
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Figure 13. Comparison of convergence curves for multiple algorithms across five 3D terrain scenarios
based on optimal values.

5.2.4. HARO+ with Trajectory Optimization in 2D/3D

Tables 6 and 7 present the comparison results of the HARO+ algorithm with a trajectory
optimization strategy in both two-dimensional and three-dimensional environments and
some other comparative algorithms that also employ this strategy. With a uniform threshold
of 2 in the two-dimensional environment and 10 in the three-dimensional environment,
all algorithms exhibit significant reductions in flight costs. Among them, in the two-
dimensional environment scenario 2, the flight cost of the DBO algorithm is reduced by
up to 4.5%. The average fitness cost of the HARO+ algorithm ranks high among all the
comparative algorithms. In 30 independent repeated runs, the total number of path points
is 660, and the optimized total number of path points in all scenarios is greatly simplified,
with a compression rate of approximately 50–80%. Therefore, it can be seen that the
algorithm we proposed has general practicality.

Table 6. Comparative results of HARO+ and other algorithms before and after trajectory optimization
in the 2D environment. Note: “Path Points” represent the total number of path points obtained by
running each algorithm 30 times after applying the trajectory optimization strategy. “Improve” repre-
sents the reduction ratio of the total flight cost before and after applying the trajectory optimization
strategy. “CR” indicates the reduction ratio of the number of path points before and after applying
the trajectory optimization strategy.

Scenario Algorithms Mean Best Std. Algorithms Mean Best Std. Path Points Improve CR

1

NGO 1.15 × 103 1.09 × 103 4.54 × 101 NGO+ 1.14 × 103 1.09 × 103 4.73 × 101 408 0.59% 61.82%
DBO 1.09 × 103 1.07 × 103 4.07 × 101 DBO+ 1.08 × 103 1.07 × 103 4.03 × 101 316 0.11% 47.88%
ARO 1.13 × 103 1.07 × 103 6.61 × 101 ARO+ 1.13 × 103 1.07 × 103 7.07 × 101 376 0.08% 56.97%
BWO 1.23 × 103 1.07 × 103 1.81 × 102 BWO+ 1.20 × 103 1.07 × 103 1.63 × 102 386 1.76% 58.48%

HARO 1.10 × 103 1.08 × 103 6.65 × 100 HARO+ 1.10 × 103 1.08 × 103 1.85 × 101 363 0.12% 55.00%

2

DBO 1.27 × 103 1.10 × 103 1.51 × 102 DBO+ 1.21 × 103 1.10 × 103 9.91 × 101 429 4.50% 65.00%
PSO 1.36 × 103 1.13 × 103 1.24 × 102 PSO+ 1.30 × 103 1.12 × 103 1.16 × 102 444 4.47% 67.27%
ARO 1.30 × 103 1.12 × 103 5.35 × 101 ARO+ 1.29 × 103 1.15 × 103 5.59 × 101 306 0.38% 46.36%
BWO 1.36 × 103 1.10 × 103 8.48 × 101 BWO+ 1.32 × 103 1.09 × 103 1.15 × 102 361 2.48% 54.70%

HARO 1.24 × 103 1.10 × 103 1.07 × 102 HARO+ 1.20 × 103 1.09 × 103 8.62 × 101 454 3.75% 68.79%

3

NGO 1.42 × 103 1.15 × 103 1.39 × 102 NGO+ 1.38 × 103 1.14 × 103 1.43 × 102 392 2.88% 59.39%
DBO 1.33 × 103 1.14 × 103 1.35 × 102 DBO+ 1.32 × 103 1.13 × 103 1.19 × 102 414 0.65% 62.73%
PSO 1.42 × 103 1.29 × 103 7.42 × 101 PSO+ 1.40 × 103 1.25 × 103 8.98 × 101 424 1.33% 64.24%
BWO 1.22 × 103 1.17 × 103 2.01 × 101 BWO+ 1.22 × 103 1.16 × 103 1.97 × 101 135 0.11% 20.45%

HARO 1.28 × 103 1.16 × 103 6.74 × 101 HARO+ 1.28 × 103 1.15 × 103 9.03 × 101 428 0.62% 64.85%

4

DBO 1.11 × 103 1.07 × 103 3.95 × 101 DBO 1.10 × 103 1.07 × 103 3.92 × 101 310 0.23% 46.97%
SSA 1.09 × 103 1.07 × 103 1.91 × 101 SSA 1.08 × 103 1.07 × 103 1.82 × 101 287 0.33% 43.48%

BWO 1.15 × 103 1.09 × 103 3.00 × 101 BWO+ 1.14 × 103 1.08 × 103 3.37 × 101 244 0.17% 36.97%
HARO 1.10 × 103 1.07 × 103 2.07 × 101 HARO 1.09 × 103 1.07 × 103 2.00 × 101 327 0.29% 49.55%
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Table 7. Comparative results of HARO+ and other algorithms before and after trajectory optimization
in the 3D environment.

Scenario Algorithms Mean Best Std. Algorithms Mean Best Std. Path Points Improve CR

1

NGO 6.34 × 103 5.94 × 103 1.99 × 102 NGO+ 6.30 × 103 5.91 × 103 2.08 × 102 436 0.63% 66.06%
DBO 5.93 × 103 5.77 × 103 9.81 × 101 DBO+ 5.89 × 103 5.71 × 103 1.06 × 102 332 0.65% 50.30%
SPSO 7.04 × 103 6.53 × 103 1.78 × 102 SPSO+ 7.01 × 103 6.40 × 103 2.06 × 102 504 0.46% 76.36%
SSA 7.00 × 103 5.94 × 103 6.21 × 102 SSA+ 6.96 × 103 5.86 × 103 6.44 × 102 444 0.58% 67.27%
ARO 6.08 × 103 5.92 × 103 1.24 × 102 ARO+ 6.04 × 103 5.87 × 103 1.18 × 102 418 0.69% 63.33%
BWO 7.13 × 103 6.42 × 103 4.43 × 102 BWO+ 7.05 × 103 6.26 × 103 4.68 × 102 465 1.18% 70.45%

HARO 5.89 × 103 5.68 × 103 1.27 × 102 HARO+ 5.85 × 103 5.64 × 103 1.24 × 102 368 0.75% 55.76%

2

NGO 7.24 × 103 6.62 × 103 3.45 × 102 NGO+ 7.18 × 103 6.59 × 103 3.34 × 102 544 0.87% 82.42%
DBO 7.01 × 103 6.58 × 103 3.24 × 102 DBO+ 6.98 × 103 6.55 × 103 3.23 × 102 552 0.37% 83.64%
SPSO 7.46 × 103 6.87 × 103 3.28 × 102 SPSO+ 7.41 × 103 6.86 × 103 3.40 × 102 547 0.59% 82.88%
SSA 7.62 × 103 7.23 × 103 1.26 × 102 SSA+ 7.60 × 103 7.21 × 103 1.30 × 102 392 0.27% 59.39%

WOA 8.04 × 103 7.23 × 103 2.42 × 102 WOA+ 8.03 × 103 7.13 × 103 2.63 × 102 414 0.11% 62.73%
ARO 6.97 × 103 6.47 × 103 1.46 × 102 ARO+ 6.95 × 103 6.42 × 103 1.60 × 102 387 0.38% 58.64%
BWO 7.35 × 103 6.69 × 103 3.03 × 102 BWO+ 7.26 × 103 6.63 × 103 3.24 × 102 514 1.23% 77.88%

HARO 6.94 × 103 6.47 × 103 2.81 × 102 HARO+ 6.87 × 103 6.38 × 103 2.83 × 102 551 0.92% 83.48%

3

NGO 7.86 × 103 6.66 × 103 5.50 × 102 NGO+ 7.79 × 103 6.66 × 103 5.56 × 102 558 0.89% 84.55%
DBO 7.14 × 103 6.55 × 103 2.49 × 102 DBO+ 7.08 × 103 6.57 × 103 2.57 × 102 532 0.81% 80.61%
SPSO 7.93 × 103 7.25 × 103 4.09 × 102 SPSO+ 7.88 × 103 7.16 × 103 4.05 × 102 564 0.56% 85.45%
BWO 6.99 × 103 6.80 × 103 7.14 × 101 BWO+ 6.97 × 103 6.76 × 103 7.72 × 101 269 0.22% 40.76%

HARO 7.29 × 103 6.75 × 103 2.74 × 102 HARO+ 7.23 × 103 6.54 × 103 3.05 × 102 543 0.79% 82.27%

4

NGO 7.50 × 103 6.87 × 103 2.52 × 102 NGO+ 7.47 × 103 6.64 × 103 2.91 × 102 506 0.42% 76.67%
DBO 7.22 × 103 6.71 × 103 2.43 × 102 DBO+ 7.16 × 103 6.58 × 103 2.47 × 102 505 0.83% 76.52%
SPSO 7.59 × 103 6.95 × 103 2.41 × 102 SPSO+ 7.56 × 103 6.92 × 103 2.69 × 102 519 0.38% 78.64%
ARO 7.19 × 103 6.92 × 103 1.33 × 102 ARO+ 7.15 × 103 6.92 × 103 1.29 × 102 518 0.58% 78.48%
BWO 8.65 × 103 7.38 × 103 7.17 × 102 BWO+ 8.59 × 103 7.23 × 103 7.37 × 102 546 0.71% 82.73%

HARO 7.17 × 103 6.87 × 103 1.14 × 102 HARO+ 7.08 × 103 6.80 × 103 1.28 × 102 502 1.21% 76.06%

5

NGO 6.47 × 103 6.15 × 103 1.59 × 102 NGO+ 6.41 × 103 5.98 × 103 1.79 × 102 437 0.91% 66.21%
DBO 5.89 × 103 5.61 × 103 1.32 × 102 DBO+ 5.86 × 103 5.58 × 103 1.42 × 102 378 0.46% 57.27%
IARO 7.75 × 103 7.14 × 103 3.36 × 102 IARO+ 7.64 × 103 6.94 × 103 3.31 × 102 503 1.44% 76.21%
SPSO 7.06 × 103 6.78 × 103 1.51 × 102 SPSO+ 7.01 × 103 6.64 × 103 1.46 × 102 504 0.60% 76.36%
SSA 6.35 × 103 5.95 × 103 2.11 × 102 SSA+ 6.32 × 103 5.94 × 103 2.12 × 102 421 0.56% 63.79%

WOA 7.18 × 103 6.48 × 103 3.81 × 102 WOA+ 7.13 × 103 6.47 × 103 3.99 × 102 498 0.72% 75.45%
ARO 6.02 × 103 5.91 × 103 5.65 × 101 ARO+ 6.01 × 103 5.87 × 103 7.82 × 101 374 0.23% 56.67%
BWO 7.47 × 103 6.88 × 103 2.90 × 102 BWO+ 7.34 × 103 6.68 × 103 3.64 × 102 484 1.71% 73.33%

HARO 5.95 × 103 5.78 × 103 8.68 × 101 HARO+ 5.93 × 103 5.75 × 103 9.11 × 101 406 0.23% 61.52%

Figure 14 illustrates the comparison of flight trajectories before and after path simpli-
fication for HARO+ and two other algorithms in the two-dimensional environment. The
figure demonstrates that the trajectories obtained by the HARO+ algorithm can effectively
traverse obstacles while preserving key points near obstacles. The optimized paths not only
retain the overall trajectory characteristics but also feature enlarged portions in the figure,
indicating the simplified paths in some regions and resulting in smoother trajectories. Due
to the complexity of the three-dimensional environment, which is not conducive to a clear
and intuitive display of the before and after comparison, this paper only presents the
comparison results of flight costs in the three-dimensional environment. In scenario 3,
after incorporating the trajectory optimization strategy proposed in this paper, the WOA
algorithm significantly simplifies the path points near obstacle 4. This indicates that the
strategy can reduce redundant points in the flight path while ensuring flight safety and
avoiding collisions with obstacles. It also ensures that key points near densely populated
obstacle areas are well-preserved, while path points in sparsely populated obstacle areas
are reduced, achieving smoother trajectories.
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Figure 14. Comparison of paths before and after trajectory optimization in the 2D environment.

Overall, the trajectory optimization strategy achieves significant effects in both 2D and
3D environments. The performance of the HARO+ algorithm is particularly prominent
in reducing flight costs, simplifying the number of path points, and ensuring flight safety
and path smoothness. This indicates that the trajectory optimization strategy’s application
potential in UAV path planning is enormous, not only improving the efficiency of path
planning but also enhancing its practicality and reliability.

6. Conclusions and Future Work

This paper proposes a hybrid multi-strategy artificial rabbit optimization algorithm
called HARO+ to solve the multi-constraint UAV path planning problem involving nu-
merous path points in complex environments. In the algorithm design, we propose a
dual-exploration switching strategy to ensure more robust search capabilities and flexi-
bility during the exploration phase, balancing exploration and exploitation. We propose
a population migration memory mechanism to maintain population diversity and avoid
falling into local optima during iteration. We validate the excellent search performance
of HARO through comparative tests, complexity analysis, exploration and exploitation
analysis, ablation studies, and Wilcoxon and Friedman statistical tests on 29 CEC2017
test functions, compared with 12 other classical or novel algorithms. HARO effectively
preserves high-quality individuals throughout the iteration process, maintaining a balance
between exploration and exploitation. In various complex 2D and 3D UAV flight scenar-
ios, HARO provides more stable and reasonable high-quality paths than other methods,
demonstrating significant advantages in high-dimensional problems.

In terms of trajectory optimization, we propose a key point retention trajectory opti-
mization strategy called HARO+ to cope with obstacles of different densities. We retain key
points in areas with many obstacles to ensure flight safety and reduce path points in sparse
areas to generate safe, smooth, and low-cost UAV flight paths. This method can effectively
reduce the number of path points and flight costs while ensuring flight safety. Test results
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show that this universal strategy efficiently compresses redundant path points, signifi-
cantly reducing fitness costs. However, there is still room for improvement when applied
to more complex problems. In the future, refining constraints to address multi-objective
optimization problems will be essential. Additionally, smoothing three-dimensional UAV
paths remains a noteworthy challenge.
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