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A B S T R A C T

During mobile application development, developers often use various third-party libraries to
expedite the development process and enhance application functionality. Real datasets often
show significant long-tailed distribution characteristics, where a few third-party libraries are
widely adopted, while most are seldom used, leading to extreme data sparsity. This distribution
phenomenon challenges recommendation algorithms, which typically recommend widely used
third-party libraries for basic functionality, failing to meet developers’ specific feature needs.
To address these limitations, we propose HGNRec, a third-party library recommendation model
based on a homogeneous graph neural network. First, to overcome the limitations of fusing
heterogeneous node information, we decompose the heterogeneous graph network into two
homogeneous graph networks using a statistical method. Second, the two constructed GNN
models use separate aggregation and nonlinear transformation network structures for adaptive
aggregation, along with edge-level and feature-level constraint methods to optimize model
performance. In homogeneous graph networks, low-order and high-order neighbor information
of nodes are propagated and aggregated in the same knowledge space, capturing the complex
interactions among homogeneous nodes. Furthermore, we validate the superiority of HGNRec
compared to several state-of-the-art methods using real datasets. Source code will be available
at https://github.com/dacilab/HGNRec.

. Introduction

In recent years, the number of mobile applications of various types and scales has grown explosively. According to data from
PPBrain website,1 as of 2023, the number of Apps has surpassed 2.59 million. The increase in the number of Apps has led to
corresponding rise in the number of Third-Party Libraries (TPL). Third-party libraries provide various functionalities, including

ocation services, network requests, and push advertisements (Li et al., 2017). Developers can seamlessly integrate these libraries
nto their code without creating them from scratch. Reusing third-party libraries to enhance development efficiency and quality
as become increasingly popular among developers. However, as the number of third-party libraries grows, developers find it
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Fig. 1. Recommendation for software developer during App development process.

increasingly challenging to identify suitable ones to meet their requirements (Zhan et al., 2022). Therefore, it is crucial to provide
developers with reliable and efficient algorithms for recommending third-party libraries.

Collaborative filtering (Liu, Zheng, Li, Shen et al., 2022) is an effective recommendation algorithm (Liang, Zhang, Wang, & Lu,
2024; Liu, Li, Wang, Wang et al., 2024) that uses historical behavior data to learn the similarity between users (Liu, Zheng, Li,
Zhang et al., 2022) or items for recommendation. Inspired by this, LibRec (He & McAuley, 2016) combines association rule mining
with collaborative filtering methods to recommend third-party libraries. Subsequently, CrossRec (Nguyen, Di Rocco, Di Ruscio, &
Di Penta, 2020) further incorporates dependency sets from the development process to construct third-party library expressions
and complete the recommendation. To address the singularity of recommended third-party libraries, LibSeek (Hidasi, Karatzoglou,
Baltrunas, & Tikk, 2015) uses matrix factorization and adopts personalized weight mechanisms and neighborhood information.

With the development of deep learning (Zhao et al., 2024) and graph representation learning technologies (Li, Shi et al.,
2024; Li, Xia et al., 2024; Li et al., 2023; Wang et al., 2023; Wu, Li, Lin & Zhang, 2021), considering that the recommendation
process is actually a kind of graph topology, some researchers have used graph neural networks for recommendation algorithms.
NGCF (Quadrana, Karatzoglou, Hidasi, & Cremonesi, 2017) was the first to combine graph neural networks with collaborative
filtering to improve traditional collaborative filtering methods. Inspired by NGCF, GRec (Li et al., 2021) models mobile App
third-party libraries and their interactions as a heterogeneous graph, using graph neural networks to mine high-order interaction
information for recommending third-party libraries to developers. Graph-based recommendation methods can capture nonlinear
relationships in user-item behavior data and explicitly encode collaborative information as high-order connections. This fills the gap
in traditional collaborative filtering methods, where embedding functions lack explicit encoding of critical collaborative information.

However, in the context of recommending third-party libraries to mobile app developers, current graph neural network-based
algorithms overlook an essential issue: aggregating feature vectors of apps and third-party libraries. App nodes and third-party
library nodes are heterogeneous and belong to different knowledge bases. Previous work on graph networks involves heterogeneous
graph information aggregation. First, first-order adjacency information, and more generally, odd-order adjacency information, often
comes from interactions between Apps and third-party libraries (heterogeneous nodes), involving the integration of different node
feature information. This means the aggregated information may originate from two different knowledge spaces. As shown in Fig. 1,
using the video playback app YOUKU as an example, its first-order neighbors are third-party libraries, and the aggregated node
feature information includes technical-level functional characteristics, such as video services, network services, and audio services. Its
second-order neighbors are apps, and their aggregated node feature information includes usage-level functional characteristics, such
as instant messaging and short video playback. These have different practical meanings compared to the technical-level functional
information from first-order neighbor nodes.
2
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Therefore, considering these limitations, we propose a third-party library recommendation model based on homogeneous graph
eural networks (HGNRec). First, influenced by classical collaborative filtering, we split the heterogeneous information network
HIN) in traditional recommendation systems into two homogeneous information networks: the App information network and
he third-party library information network. This approach aims to overcome the shortcomings of the aforementioned general
NN recommendation algorithms. Secondly, the two constructed GNN models will use separate aggregation and non-linear

ransformation network constructions, as well as adaptive aggregation, and employ edge-level and feature-level constraint methods.
n a homogeneous graph, information from low-order and high-order neighbors of nodes propagates and aggregates in the
ame knowledge space, thereby capturing low-order and high-order interaction information of homogeneous nodes. The main
ontributions of this paper are as follows:

• We propose HGNRec, a third-party library recommendation model based on homogeneous graph neural networks. HGNRec
splits the interaction information between Apps and third-party libraries, converting heterogeneous graph information into
two homogeneous graph neural networks for Apps and third-party libraries, respectively. This approach solves the problem
of heterogeneous information aggregation, simplifies and rationalizes the modeling process, and ensures that information
propagation and aggregation occur within the same knowledge space.

• We incorporate a statistically-based edge construction method for node information aggregation. This method enables each
node to retain interaction relationships while excluding interference from popular top-tier third-party libraries. This method
efficiently updates parameters to learn structural information in the graph, thereby improving the accuracy of HGNRec
recommendations.

• We meticulously collect information and construct datasets from AppBrain. Then, we conduct experiments on datasets of real
Apps and third-party libraries of various scales, verifying that HGNRec’s recommendations achieve higher accuracy while
maintaining diversity.

The structure of this paper is as follows: The Section 2 provides an overview of related work in the research field. The Section 3
ntroduces the detailed methodology of the HGNRec algorithm. The Section 4 presents the results from experiments using the
GNRec algorithm. Finally, the Section 5 summarizes the entire paper and discusses prospects for future work.

. Related work

In this section, we review related work on existing third-party library recommendation algorithms.

.1. Recommendation based on collaborative filtering

Early third-party library (TPL) recommendation algorithms for developers primarily relied on collaborative filtering, generating
ecommendations based on the similarity and relevance between Apps and third-party libraries. For instance, Thung, Lo, and
awall (2013) introduced the LibRec algorithm, integrating rule-based linkage analysis with joint recommendation systems to
uggest applicable external libraries to project contributors. In 2019, Nguyen et al. (2020) introduced the CrossRec algorithm,
hich encodes relationships between OSS artifacts using semantic graphs and employs collaborative filtering techniques for third-
arty library recommendations. Furthermore, to alleviate popularity bias, He et al. (2022) proposed LibSeek, which incorporates
ersonalized weighting mechanisms and neighborhood information based on matrix factorization (Wu, He, Wu, Zhang, & Ye,
023; Wu, Zhong, Yao, & Ye, 2022), effectively increasing the diversity of third-party library recommendations. However, these
ethods lack consideration for app themes. Therefore, Yu, Xia, Zhao, and Qiu (2017) proposed a third-party library recommendation

lgorithm that combines collaborative filtering and topic modeling techniques, recommending libraries based on similar topic
istributions of Apps.

.2. Recommendation based on deep learning

In numerous fields, deep learning strategies are utilized (Lin, Li, Chen, Li and Wu, 2024; Lin, Li, Liu et al., 2024; Liu, Li, Wang, Li
nd Hang, 2024) to effectively integrate raw data with various sources of information, such as text data (Li, Deng et al., 2024) and
mage data (Liu, Fang et al., 2022; Zhao et al., 2024), thereby better handling sparse data (Alrubaye et al., 2020). Consequently, many
eep learning-based recommendation algorithms have been proposed. CDAE (Wu, DuBois, Zheng, & Ester, 2016) is a deep learning
odel that integrates collaborative filtering and denoising autoencoders to improve recommendation accuracy by reconstructing
ser-item interactions from corrupted versions. He et al. (2017) proposed the NCF general framework, which uses neural networks to
rocess the interaction matrix between users and items. NCF strengthens the model’s non-linear ability with multilayer perceptrons,
mproving the efficiency and effectiveness of recommendations. NCR (Chen, Shi, Li, & Zhang, 2021) combines neural collaborative
iltering with reasoning capabilities to better capture latent relationships between users and items, enhancing recommendation
uality. In third-party library recommendation, building upon the general NCF framework, Huang, Xia, Xing, Lo, and Wang (2018)
tilized the Word2Vec algorithm (Church, 2017) to score API names and descriptions, addressing the cold-start problem. Saied et al.
2018) proposed a third-party library reuse method based on pattern mining. This method categorizes and recommends third-party
ibraries by extracting usage patterns and frequencies from software development projects, thereby improving the reusability of
3

hird-party libraries and the efficiency of software development. To address the deficiency of neglecting the sequence information
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Table 1
Notations and description.

Notations Description

𝐴𝑖 , 𝐿𝑗 APP nodes and third-party library nodes
𝑍 Evaluation metric of the relationships of nodes
𝐶(𝐴𝑖 , 𝐴𝑗 ) The number of common TPLs used by node 𝐴𝑖 with 𝐴𝑗
(𝐴𝑖) The set of App nodes that have used common TPLs with node 𝐴𝑖
𝐚𝑖 , 𝐥𝑗 Vector of APP node 𝐴𝑖 and third-party library node 𝐿𝑗
𝐇 The feature vector matrices
𝑑 Vector dimensionality
∗(𝐴𝑖) The set of first order neighbor nodes at App graph nodes 𝐴𝑖
𝑟̂𝑖𝑗 The predicted score between App node 𝐴𝑖 and TPL node 𝐿𝑖
 Loss function

of third-party library invocation records, Sun, Liu, Cheng, Yang, and Che (2020) proposed Req2Lib. Req2Lib employs a sequence-
to-sequence method to extract library invocation records and semantic information from project requirement documents. It then
utilizes a pre-trained Word2Vec model for word embedding to perform third-party library recommendations. However, these deep
learning-based third-party library recommendation algorithms only utilize low-order interaction information between Apps and
third-party libraries, failing to leverage high-order interaction information effectively.

2.3. Recommendation based on graph structure

Since topological information exists in recommender system data sources, graph structures are often used to model these data
elationships. LightGCN LightGCN (He et al., 2020) simplifies graph convolution networks by focusing solely on the essential
omponents, significantly improving recommendation performance and efficiency. SGL (Wu, Wang et al., 2021) integrates self-
upervised tasks into graph-based recommendation models to leverage both supervised and self-supervised signals, improving
ecommendation accuracy. Due to the connections and relationships between nodes in the graph structure, which can be utilized to
btain high-order interaction information, some graph-based third-party library recommendation algorithms have been proposed.
he GRec algorithm, proposed by Li et al. (2021), models Apps, third-party libraries, and interactions between them as an App-third-
arty-library graph. It then utilizes a multilayer graph neural network to extract low-order and high-order interaction information
nd aggregates them to recommend potentially useful third-party libraries to developers. Building upon this, to enhance training
fficiency, Jin, Zhang, and Zhang (2023) proposed the NLA-GNN model, which employs simplified graph convolution operations for
nformation propagation, updating representations of all node types. Additionally, to address GRec’s deficiency in capturing fine-
rained information, Zhao, Zhang, Gao, Li, and Wang (2022) proposed a knowledge graph-based convolutional network approach,
hich completes third-party library recommendations at both the project and library levels. Although the above methods address the

imitation of traditional methods in capturing high-order interaction information, they overlook the specificity of third-party library
ecommendations, where third-party libraries and Apps in the graph network are two different types of nodes. These methods face
he issue of heterogeneous node information fusion; hence, how to model them accordingly for recommendations is a topic worthy
f research.

. Method

To overcome the issue of heterogeneous node information fusion, HGNRec splits the interaction records between Apps and third-
arty libraries, models them as two homogeneous interaction graphs, and inputs them into the GNN for the capture and aggregation
f homogeneous node information. As shown in Fig. 2, HGNRec consists of three main modules: The Data Preparation Module, The
nformation Aggregation Module, and The Rating Prediction Module.

First, based on the interaction records between existing Apps and TPLs in the training set, an App-third-party-library interaction
raph is generated and used as the input for the HGNRec model. To further process this bipartite graph, HGNRec splits it into
n App interaction graph and a third-party library interaction graph using statistical methods. These two graphs are isomorphic,
nd initial vectors are generated for the App nodes and third-party library nodes in these two graphs. Next, in the Information
ggregation Module, to capture the relationships and features between nodes, HGNRec inputs the App interaction graph and the

hird-party library interaction graph into GNN separately to propagate and aggregate information between homogeneous nodes. In
he Rating Prediction Module, rating prediction is performed based on the feature vectors of the generated App and TPL, combined
ith self-learned weights. The goal of this module is to recommend the top 𝑘 most useful TPLs based on given Apps, assisting

developers in making better choices.
The important notations and descriptions are listed in Table 1. These constituent modules are described in detail in the next
4

subsections to better understand the operation and advantages of the HGNRec model.
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Fig. 2. The overall network architecture of HGNRec.

3.1. Data preparation

The main functions of the data preparation module involve partitioning the graph and setting up initial embeddings on the
original data. First, the raw interaction data is represented by a heterogeneous network, specifically an App-third-party-library
interaction bipartite graph, where App nodes are denoted by 𝐴𝑖 and third-party library nodes are denoted by 𝐿𝑗 . This graph is then
split into an App interaction graph and a third-party library interaction graph using statistical methods. Subsequently, similar to
other matrix factorization-based methods, both types of nodes in the graph are embedded into a 𝑑-dimensional space, with node
features represented by a 𝑑-dimensional vector.

In real-world datasets, a pronounced long-tail distribution pattern is observed among Apps and TPLs, indicating that most Apps
utilize a minority of TPLs. In contrast, the majority of these libraries are only employed by a small number of Apps. Consequently,
when splitting the bipartite graph of App interactions and TPLs, connections are simply established between nodes with common
first-order neighbors. This leads to most nodes in the graph being interconnected, introducing global interference and reducing
information accuracy. To address this issue, when splitting the graph, HGNRec introduces a metric 𝑍𝑖𝑗 to evaluate whether the
relationship between nodes is valid based on statistical principles. This metric can help filter out more relevant node pairs, thereby
improving the accuracy of graph analysis. For example, the edge between app nodes 𝐴𝑖 and 𝐴𝑗 will only be retained when 𝑍𝑖𝑗 is 1;
otherwise, nodes 𝐴 and 𝐴 are not considered first-order neighbors.
5
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(𝐴𝑖) represents the set of App nodes that have used common TPLs with node 𝐴𝑖 and 𝐶(𝐴𝑖, 𝐴𝑗 ) represents the number of common
PLs used by node 𝐴𝑖 with 𝐴𝑗 . Thus 𝑍𝑖𝑗 can be represented as:

𝑍𝑖𝑗 =

⎧

⎪

⎨

⎪

⎩

0, 𝐶(𝐴𝑖, 𝐴𝑗 ) <
𝑠𝑢𝑚(𝐶(𝐴𝑖 ,𝐴𝑡))

(𝑝−1) , 𝑡 ∈ 𝑆(𝐴𝑖)

1, 𝐶(𝐴𝑖, 𝐴𝑗 ) ≥
𝑠𝑢𝑚(𝐶(𝐴𝑖 ,𝐴𝑡))

(𝑝−1) , 𝑡 ∈ 𝑆(𝐴𝑖)
, (1)

where 𝑠𝑢𝑚() represents the summation function for the number of 𝑝 App nodes. Similarly, for the third-party library nodes 𝐿𝑖 and
𝐿𝑗 , 𝑍𝑖𝑗 can be represented as:

𝑍𝑖𝑗 =

⎧

⎪

⎨

⎪

⎩

0, 𝐶(𝐿𝑖, 𝐿𝑗 ) <
𝑠𝑢𝑚(𝐶(𝐿𝑖 ,𝐿𝑡))

(𝑞−1) , 𝑡 ∈ 𝑆(𝐿𝑖)

1, 𝐶(𝐿𝑖, 𝐿𝑗 ) ≥
𝑠𝑢𝑚(𝐶(𝐿𝑖 ,𝐿𝑡))

(𝑞−1) , 𝑡 ∈ 𝑆(𝐿𝑖)
, (2)

where (𝐿𝑖) represents the set of third-party library nodes used by the common App with node 𝐿𝑖, 𝐶(𝐿𝑖, 𝐿𝑗 ) represents the number
f Apps that have used TPLs 𝐿𝑖 and 𝐿𝑗 , and 𝑞 is the number of TPLs.

Fig. 2 shows the steps of graph splitting performed by HGNRec. As an example, node 𝐴1 shares 2 TPLs, 𝐿3 and 𝐿6, with node
𝐴2 and 1 third-party library, 𝐿6, with node 𝐴4, while node 𝐴1 shares 1.5 TPLs with all other nodes on average. Therefore, the
dge between node 𝐴1 and node 𝐴2 is retained (i.e., 𝑍12 = 1). However, the edge between node 𝐴1 and node 𝐴4 is discarded
i.e., 𝑍14 = 0). By repeating the above calculations several times, we obtain the interaction matrix between the Apps and the TPLs.
t this point, the App and third-party library interaction bipartite graph is split into the relationship-filtered App interaction graph
nd the third-party library interaction graph.

To facilitate input to the neural network, HGNRec uses 𝑑-dimensional random vectors to represent app nodes and third-party
ibrary nodes. For example, app node 𝐴𝑖 is represented by the vector 𝐚𝑖 ∈ R𝑑 , and third-party library node 𝐿𝑗 is represented by the
ector 𝐥𝑗 ∈ R𝑑 . To increase randomness and diversity, the feature vectors are randomly initialized based on a Gaussian distribution.

.2. Information aggregation

The Information Aggregation Module receives the App interaction graph, the third-party library interaction graph, and the node
eature vectors from the Data Preparation Module as input. The module uses the App interaction graph and the third-party library
nteraction graph to train different graph neural networks separately. Through the propagation and aggregation operations of the
ultilayer neural network, it conveys and integrates the low-order and high-order interaction information between nodes.

During the training process, the embedding vectors of Apps and TPLs obtained from the Data Preparation Module are denoted
s 𝐚(0)𝑖 and 𝐥(0)𝑗 . They constitute the initial feature matrices 𝐇(0)

𝑢 and 𝐇(0)
𝑣 , and 𝐚(0)𝑖 and 𝐥(0)𝑗 are the 𝑖th and 𝑗th rows of 𝐇(0)

𝑢 and 𝐇(0)
𝑣 ,

here 𝐇(0)
𝑢 ∈ R𝑝×𝑑 , 𝐇(0)

𝑣 ∈ R𝑞×𝑑 , 𝑑 represent the dimensions of the embedding vectors, and 𝑝 and 𝑞 represent the number of Apps
nd the number of TPLs. As shown in Fig. 2, the propagation operation between single-layer networks is first elaborated and then
urther generalized to multi-layer graph neural networks. Finally, the outputs of each layer neural network are concatenated and
ultiplied by the self-learned layer weights to obtain the final feature vector matrices 𝐇̃𝑢 and 𝐇̃𝑣.

.2.1. First order propagation
In first-order propagation, the App node and the third-party library node will each extract low-order interaction messages from

ts one-hop neighbors. This process can be divided into two steps: message construction and message aggregation. In the message
onstruction step, messages from neighboring nodes are modeled. In the message aggregation step, these constructed messages from
ifferent neighbor nodes are aggregated with the node’s own features. For example, in the first-order propagation phase, App node
1 will aggregate messages from nodes 𝐴2, 𝐴3, and TPL node 𝐿1 will aggregate messages from nodes 𝐿2, 𝐿3, 𝐿4 in Fig. 2.

Firstly, take the App node as an illustration; during the process where this node consolidates information from another node, it
irst performs the message construction, and the calculation formula is as follows:

𝐦𝑖←𝑟 =
1

√

|∗(𝐴𝑖)||∗(𝐴𝑟)|

(

𝐖1 ∗ 𝐚(0)𝑟 +𝐖2 ∗
(

𝐚(0)𝑟 ⊙ 𝐚(0)𝑖

))

, (3)

where ∗(𝐴𝑖) and ∗(𝐴𝑟) denote the set of first-order neighbor nodes at App graph nodes 𝐴𝑖 and 𝐴𝑟. 𝐖1, 𝐖2 are the weight
matrices learned during the training process and they are used to control the influence of neighbor node information. 1

√

|∗(𝐴𝑖)||∗(𝐴𝑟)|

represents the Laplacian paradigm in graph convolutional networks, which is used to balance the size of the neighbor sets of different
nodes. 𝐚(0)𝑟 ⊙𝐚(0)𝑖 represents the encoding of the information about the interactions between the nodes. Here, ⊙ denotes the product of
he elements, i.e., the multiplication of the elements at the corresponding positions to capture the correlation and similarity between
he nodes.

After completing the construction of messages from all the nodes in the neighborhood, these messages are converged with the
nformation from the node itself to update the feature representation of the node. The aggregation formula is shown below:

𝐚(1)𝑖 = 𝑆𝑖𝑔𝑚𝑜𝑖𝑑(𝐖1 ∗ 𝐚(0)𝑖 +
∑

𝐦𝑖←𝑟), (4)
6
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where 𝐚(1)𝑖 denotes the feature representation obtained by node 𝐴𝑖 after the first layer of the network. 𝑆𝑖𝑔𝑚𝑜𝑖𝑑() is the activation
unction, which aims to scale and normalize the node features. 𝐖1 ∗ 𝐚(0)𝑖 denotes the node’s original feature information, and
∑

𝑟∈∗(𝐴𝑖) 𝐦𝑖←𝑟 denotes the aggregation of messages from the first-order neighboring nodes.
Next, the same technique is applied to revise the feature representations for the TPL nodes. Once the update is complete, the

embedding vectors of the App and the TPL output by the first-order network form the first-order propagation feature matrices 𝐇(1)
𝑢

and 𝐇(1)
𝑣 .

3.2.2. High order propagation
Based on first-order neighbor aggregation, more layers can be added to the network, with each layer utilizing the feature

representation of the previous layer. The higher-order connectivity of the nodes is captured through information propagation
and aggregation over many iterations so that the information of higher-order neighboring nodes is gradually fused in the feature
representation of the nodes to increase the richness of the feature representation. Assuming an 𝑛-layer graph neural network is
employed, in each layer, the feature representation of a node will gradually fuse information from neighboring nodes with up to 𝑛
hops. In this way, the final feature representation of a node will contain information from a broader range of neighboring nodes,
making the feature representation of a node more globally contextual and abundant.

Specifically, the feature 𝐚(𝑛)𝑖 of the 𝐴𝑖 node at the 𝑛th layer of the network is computed as follows:

𝐚(𝑛)𝑖 = 𝑆𝑖𝑔𝑚𝑜𝑖𝑑(𝐖(𝑛)
1 ∗ 𝐚(𝑛−1)𝑖 +

∑

𝑟∈∗(𝐴𝑖)
𝐦(𝑛)

𝑖←𝑟). (5)

The higher-order aggregated message definition in the above formulation can be obtained by extending the first-order propagated
essage definition, which can be finally illustrated as follows:

𝐦(𝑛)
𝑖←𝑟 =

1
√

|∗(𝐴𝑖)||∗(𝐴𝑟)|

(

𝐖(𝑛)
1 ∗ 𝐚(𝑛−1)𝑟 +𝐖(𝑛)

2 ∗
(

𝐚(𝑛−1)𝑟 ⊙ 𝐚(𝑛−1)𝑖

))

, (6)

here 𝐖(𝑛)
1 and 𝐖(𝑛)

2 are the self-learned weight matrices from training, and 𝐚(𝑛−1)𝑟 , 𝐚(𝑛−1)𝑖 are both the feature vectors output from
he 𝑛 − 1th layer of the network. In this way, the feature representation of node 𝐴𝑖 in the 𝑛th layer network is obtained.

Similarly, the TPL node features 𝐿𝑗 at the 𝑛th layer of the network can be computed as follows:

𝐥(𝑛)𝑗 = 𝑆𝑖𝑔𝑚𝑜𝑖𝑑(𝐖(𝑛)
1 ∗ 𝐥(𝑛−1)𝑗 +

∑

𝑟∈∗(𝐿𝑗 )
𝐦(𝑛)

𝑗←𝑟), (7)

here the definition of the higher-order aggregated message of the TPL node is aligned with the TPL node and can be denoted as:

𝐦(𝑛)
𝑗←𝑟 =

1
√

|∗(𝐿𝑗 )||∗(𝐿𝑟)|

(

𝐖(𝑛)
1 ∗ 𝐥(𝑛−1)𝑟 +𝐖(𝑛)

2 ∗
(

𝐥(𝑛−1)𝑟 ⊙ 𝐥(𝑛−1)𝑗

))

. (8)

Following the above calculations, the feature matrices from layer 2 to layer 𝑛 are obtained separately, denoted as 𝐇(2)
𝑢 ,… ,𝐇(n−1)

𝑢 ,
(n)
𝑢 and 𝐇(2)

𝑣 ,… ,𝐇(n−1)
𝑣 ,𝐇(n)

𝑣 .
Taking the TPL node 𝐿1 in Fig. 2 as an example, the third-order propagation process with path 𝐿6 → 𝐿5 → 𝐿2 → 𝐿1. Along this

ath, higher-order feature information is injected into the feature representation of node 𝐿1 through multiple message construction
nd aggregation operations.

.2.3. Aggregation
After completing the first-order and higher-order propagation operations, the primary node attributes sourced from the data

reparation process are merged with the sequential outputs of the graph neural network layers, and the final feature depiction of
ach node is formed. In an interaction graph, neighbors with closer proximity are considered to have a stronger correlation, and
he inter-node distance should also be considered when aggregating the nodes’ feature representations from each layer. Therefore,
GNRec learns a global layer weight vector 𝐰𝑙 during training, where each term is a scalar between (0,1) to evaluate how the
utput from each layer contributes to the final depiction of the nodes’ features.

The aggregation process unfolds in two phases: initially, features across layers are unified, followed by the multiplication of
hese unified vectors with their corresponding layer weights. Taking App node 𝐴𝑖 as an example, its initial vector 𝐚0𝑖 is obtained
hrough the data preparation module. Through the first-order propagation and higher-order propagation, the features 𝐚1𝑖 , 𝐚

2
𝑖 ,… , 𝐚𝑛𝑖

n the total n-layer network can be obtained. The feature representation obtained by the aggregation of node 𝐴𝑖 is denoted as 𝐚∗𝑖 ,
hich is computed as follows:

𝐚∗𝑖 =
(

𝐚0𝑖 ∥ 𝐚1𝑖 ∥ ⋯ ∥ 𝐚𝑛𝑖
)

⊗ 𝐰𝑙 , (9)

here ∥ represents the vector concatenating operation.
Similarly, the feature representation of the aggregated TPL node 𝐿𝑗 is denoted as 𝐥∗𝑗 and defined as follows:

𝐥∗𝑗 =
(

𝐥0𝑗 ∥ 𝐥1𝑗 ∥ ⋯ ∥ 𝐥𝑛𝑗
)

⊗ 𝐰𝑙 . (10)

The feature representations of each App node and TPL node are calculated for the aggregation operation, and the final App
eature matrix 𝐇̃ and TPL feature matrix 𝐇̃ can be obtained.
7
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3.3. Ratings prediction

The feature representations of App and TPL nodes are obtained through the Information Aggregation Module, which will be the
nput to the score prediction module. In the HGNRec method, the score of an App node and TPL node pair consists of the feature
epresentation product and the global offset of the node. The feature representation product measures the match between an App
ode and a TPL node by calculating the inner product of their feature vectors. To address the bias problem in recommender systems,
global offset is introduced for each App and TPL, which reflects the average tendency of Apps to use TPLs and TPLs to be used by
pps. By integrating the feature representation product and the global offset, the HGNRec method can more accurately assess the
egree of association between App nodes and TPL nodes, thus providing more precise and personalized recommendation results.
pecifically, the score between App node 𝐴𝑖 and TPL node 𝐿𝑖 can be calculated as follows:

𝑟̂𝑖𝑗 = 𝐚∗𝑖 ⋅ 𝐥
∗
𝑗 + 𝑏𝑈𝑖 + 𝑏𝑉 𝑗 , (11)

where ⋅ denotes the inner product operation of the vector, 𝐚∗𝑖 is the feature representation obtained by the aggregation of node 𝐴𝑖,
𝐥∗𝑗 is the feature representation of the aggregated TPL node 𝐿𝑗 , 𝑏𝑈𝑖 is the global offset of the App node, and 𝑏𝑉 𝑗 is the global offset
of the TPL node.

3.4. Optimization

HGNRec constructs the scoring loss to learn the model parameters using the cross-entropy loss function widely used in
recommender systems. Predicting the App and TPL association score can be interpreted as predicting the probability of whether
there is a connection between an App node and a TPL node. Specifically, the cross-entropy loss function is based on the concept
of cross-entropy in information theory, which measures the probability distribution of the model’s output against the probability
distribution of the actual score to calculate the loss. The objective function is as follows:

 = −
𝑝
∑

𝑖=0

𝑞
∑

𝑗=0
𝑟𝑖𝑗 ⋅ log

(

𝑟̂𝑖𝑗
)

+
(

1 − 𝑟𝑖𝑗
)

⋅ log
(

1 − 𝑟̂𝑖𝑗
)

+ 𝜆‖𝜃‖22, (12)

where 𝑟𝑖𝑗 is the true rating of App node 𝐴𝑖 and TPL node 𝐿𝑗 , i.e., the rating is 1 if there is an interaction between the two, and
0 vice versa. 𝜆 is the L2 regularization parameter set, and 𝜃 denotes the set of all trainable parameters in the model. The training
process of the HGNRec model is as illustrated by the algorithm 1.

Algorithm 1: The training procedure for HGNRec.
Input : The App set , the TPL set  and the heterogeneous interaction graph (,), epoch number 𝑁𝑒, batch number

𝑁𝑏
1 Calculating 𝑍𝑖𝑗 and splitting graph as Section 3.1 ;
2 Initialize App embedding 𝐀 and TPL embedding 𝐋 randomly ;
3 for 𝑖 ← 1 to 𝑁𝑒 do
4 Sample a mini batch from  and  ;
5 for 𝑗 ← 1 to 𝑁𝑏 do
6 𝐦(𝑛)

𝑖←𝑟,𝐦
(𝑛)
𝑗←𝑟 ← High Order Message Propagation // Obtain message from neighbor ;

7 𝐚(𝑛)𝑖 , 𝐥(𝑛)𝑗 ← Feature Updating after n-layer network // Introduce multi-layer message ;
8 𝐚∗𝑖 , 𝐥

∗
𝑗 ← Feature Aggregation // Combine multi-layer feature;

9 Calculate loss as Equation (12) and update model parameters ;
10 end
11 end
Output: HGNRec model

4. Experiments

To evaluate the HGNRec technique, we conducted experiments on three real-world datasets to investigate the subsequent three
esearch questions:

• RQ1: How is the effectiveness of HGNRec compared to other third-party library?
• RQ2: Does the isomorphic interaction graph construction method based on average threshold improve the performance of

HGNRec?
• RQ3: What is the effect of different hyper-parameter configurations, like embedding vector dimensions, the number of layers

in the graph network, and the activation function selection, on the effectiveness of HGNRec?
8



Information Processing and Management 61 (2024) 103831D. Li et al.

w

4.1. General settings

4.1.1. Evaluation metrics
In the experiment, to provide a comprehensive assessment of the recommended outcomes of HGNRec, we carefully selected four

idely used indicators and compared them with other related studies. The following are the selected indicators and their meanings:

• Mean Precision (MP)
In each experiment, each App will be given a list of TPL recommendations, and the precision represents the proportion of
TPLs that are truly relevant to the recommendation results. Based on the precision, MP represents the average precision of all
recommendation lists in an experiment. It can be formulated as:

𝑀𝑃@𝐾 = 1
||

∑

𝑎∈

|𝑇𝑔𝑟𝑜𝑢𝑛𝑑 ∩ 𝑇𝐾 |
𝐾

, (13)

where 𝑇𝑔𝑟𝑜𝑢𝑛𝑑 denotes the ground-truth TPLs of APP 𝑎 in the test set, 𝑇𝐾 represents the TPLs in the recommend list.
• Mean Recall (MR)

The recall represents the ratio of truly relevant TPLs in the recommendation results to all TPLs removed from the corresponding
App. Based on the recall rate, MR represents the average recall rate of all recommendation lists in one experiment. It can be
formulated as:

𝑀𝑅@𝐾 = 1
||

∑

𝑎∈

|𝑇𝑔𝑟𝑜𝑢𝑛𝑑 ∩ 𝑇𝐾 |
|𝑇𝑔𝑟𝑜𝑢𝑛𝑑 |

. (14)

• Hit Rate (HR)
HR represents the ratio of the number of Apps from TPLs in the test set that appear in the recommended list to the total
number of Apps. It can be formulated as:

𝐻𝑅@𝐾 = 1
||

∑

𝑎∈
ℎ𝑖𝑡, ℎ𝑖𝑡 =

{

0, 𝑇𝑔𝑜𝑢𝑛𝑑 ∩ 𝑇𝐾 = ∅
1, 𝑒𝑙𝑠𝑒

, (15)

where ℎ𝑖𝑡 denotes whether the recommend list contains the ground-truth TPLs.
• Normalized Discounted Cumulative Gain (NDCG)

NDCG is the Normalized Discounted Cumulative Gain, a crucial metric for evaluating the quality of recommendation result
ranking. NDCG measures the quality of the TPL recommendation results by considering the relationship between the relevance
of the recommendation results and the ranking position, and the closer the value is to 1, the higher the accuracy of the
recommendation result ranking is. It can be formulated as:

𝑁𝐷𝐶𝐺@𝐾 = 1
||

∑

𝑎∈𝐴

𝐷𝐶𝐺@𝐾
𝐼𝐷𝐶𝐺@𝐾

, (16)

𝐷𝐶𝐺@𝐾 =
𝐾
∑

𝑗=1

𝑟𝑒𝑙 (𝑗)
𝑙𝑜𝑔2 (𝑗 + 1)

, 𝑟𝑒𝑙 (𝑗) =
{

1, 𝑇 𝑃𝐿𝑗 ∈ 𝑇𝑔𝑟𝑜𝑢𝑛𝑑
0, 𝑒𝑙𝑠𝑒

, (17)

where 𝑟𝑒𝑙 (𝑗) denotes whether 𝑇𝑃𝐿𝑗 is one of the TPLs in 𝑇𝑔𝑟𝑜𝑢𝑛𝑑 , 𝐼𝐷𝐶𝐺@𝐾 is the ideal value of recommendation results where
the ground-truth TPLs rank first.

When calculating the above metrics in the experiments, the top 𝐾 TPLs with 𝐾 ∈ {5, 10} were recommended for each test App
rating ranking, respectively.

4.1.2. Datasets
We collect information about 667,233 Android mobile Apps from the AppBrain website, containing entries such as the name,

classification, and description of the App with the TPLs. AppBrain is the leading source for information about Android apps. It
maintains information about all apps on Google Play, resources for developers, and statistics about the Android ecosystem. Each App
record contains its name, category, TPLs, and other meta information. To ensure the validity of the data, we manually cleaned the
App-TPL usage records and finally obtained 572 different TPLs as well as 1,139,323,322 App-TPL usage records, and the distribution
of the usage relationship is shown in Fig. 3.

In order to effectively evaluate the HGNRec method, we divide three branch datasets based on the crawled total dataset. Firstly,
we filter out the Apps with TPL usage records, then we extract 1% and 4% of the Apps using the random sampling method to
construct App_1% and App_4% datasets and select all the Apps categorized as sports to construct the App_Sports dataset, and the
specific data of the three datasets are shown in Table 2. In the experiment, following the evaluation method of NGCF (Wang, He,
Wang, Feng, & Chua, 2019), for each dataset, we randomly allocate 80% historical interaction data of each App to the training set,
9

with the remainder used as the test set to assess effectiveness.
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Fig. 3. Distribution of App-TPL Usage Relationships.

Table 2
Statistics details of the datasets for third-party library recommendation.

Dataset Apps TPLs Interactions Density

App_1% 7565 470 129,581 0.9636
App_4% 30,258 517 516,859 0.9669
App_Sports 23,186 457 469,356 0.9557

4.2. RQ1: Performance comparison

To verify the efficacy of HGNRec’s suggestions, we chose the five benchmark methods outlined below, which contain the baseline
method with the current state-of-the-art TPL recommendation methods:

• POP: The method ranks the popularity of TPLs according to their usage history with the App, and recommends the most
popular TPLs for the test App that it does not use. We use this method as a baseline method for evaluation.

• BPR (Rendle, Freudenthaler, Gantner, & Schmidt-Thieme, 2009): The approach is based on the idea of pairwise comparison,
using matrix decomposition to obtain the features of the App and TPLs, and ranking the TPLs by Maximum Bayesian posterior
probability to produce recommendation results.

• NGCF (Wang et al., 2019): The approach uses a multilayer graph neural network to capture the cooperative signals and
higher-order connectivity information in the interaction graph to complement the node features for recommendation.NGCF is
regarded as a classic among recommendation algorithms that utilize graph-based frameworks.

• CrossRec (Nguyen et al., 2020): CrossRec is a collaborative filtering-based recommender system, utilizing the inverse document
frequency to calculate similarity among Apps.

• LibSeek (He et al., 2022): This method is an advanced algorithm designed to provide TPL recommendations for Android
Apps. LibSeek is based on matrix decomposition and incorporates a personalized weighting mechanism with neighborhood
information to recommend applicable TPLs.

• Grec (Li et al., 2021): It models the interaction between the Apps and TPLs as an interaction graph, and uses a multi-layer
graph neural network to extract higher-order domain information from the graph.

• HGNRec: The model proposed in this paper. HGNRec splits the interaction information between Apps and third-party libraries,
namely heterogeneous graph information, into two homogeneous graph neural networks for Apps and third-party libraries,
respectively. Then, the low-order and high-order neighbor information of nodes are propagated and aggregated in the same
knowledge space.

To maintain comparative fairness, the parameter settings for all methods in the experiments are aligned with those specified in
Grec. The embedding space dimension is fixed at 128, the number of graph neural network layers is 3, the Adam method is used
for optimization and the learning rate is set to 0.0002, and the batch size is fixed at 512.

Table 3 presents the experimental results of our method HGNRec with the remaining five methods on three datasets at vs. time
respectively, where the optimal results are bolded. Drawing from these results, we arrive at the following insights:

• POP performs significantly behind the other methods on all datasets, which may be because it only relies on the popularity of
TPLs to accomplish recommendations. The popular TPLs tend to be general-purpose tool libraries, which are difficult to satisfy
the targeted functionality needs of App developers in the real world during the development process.BPR outperforms POP
in all cases, proving the importance of implicit feedback features. However, there is still an obvious gap between the results
of BPR and the other four methods, indicating that the collaborative filtering algorithm is insufficient to extract the complex
invocation relationships between App and TPLs and cannot accurately portray their features.
10
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Table 3
Performance results of different methods.

Dataset Models K = 5 K = 10

MP HR MR NDCG MP HR MR NDCG

App_1%

POP 0.4254 0.8565 0.4640 0.4995 0.304 0.8875 0.6265 0.5916
BPR 0.4382 0.8183 0.4601 0.5465 0.2862 0.8427 0.5714 0.6257
LibSeek 0.5598 0.9493 0.6418 0.6812 0.3572 0.9677 0.7703 0.7561
NGCF 0.5653 0.9577 0.6506 0.7541 0.3662 0.9755 0.7919 0.7719
CrossRec 0.6140 0.9362 0.2536 0.6851 0.4611 0.9558 0.3585 0.5511
Grec 0.5859 0.9619 0.6728 0.8442 0.3743 0.9781 0.8078 0.8976
HGNRec 0.5926 0.9621 0.6783 0.8533 0.3766 0.9787 0.8094 0.9017

App_4%

POP 0.3345 0.8018 0.4899 0.4834 0.2308 0.8297 0.6100 0.5492
BPR 0.3523 0.8174 0.5122 0.5092 0.2373 0.8509 0.6327 0.5738
LibSeek 0.4004 0.8528 0.5833 0.5737 0.2567 0.9013 0.7085 0.6349
NGCF 0.4422 0.9112 0.6669 0.7034 0.2804 0.9399 0.7862 0.7261
CrossRec 0.4814 0.8220 0.2956 0.5518 0.3505 0.8378 0.3848 0.4348
Grec 0.4653 0.9208 0.6964 0.7955 0.2897 0.9458 0.8073 0.8404
HGNRec 0.4750 0.9274 0.7096 0.8182 0.2924 0.9506 0.8144 0.8584

App_Sports

POP 0.3568 0.8012 0.4514 0.4690 0.2504 0.8331 0.5758 0.5391
BPR 0.3632 0.8006 0.4565 0.5104 0.2465 0.8193 0.5614 0.5811
LibSeek 0.4722 0.9007 0.6192 0.6187 0.3145 0.9353 0.7596 0.6956
NGCF 0.5089 0.9318 0.6733 0.7525 0.3338 0.9575 0.8112 0.7687
CrossRec 0.5049 0.9094 0.3228 0.5758 0.3905 0.9227 0.4332 0.4701
Grec 0.5120 0.9325 0.6777 0.8027 0.3332 0.9567 0.8115 0.8523
HGNRec 0.5208 0.9340 0.6886 0.8216 0.3372 0.9623 0.8203 0.8673

• Compared with POP and BPR, the effect of LibSeek gains a substantial improvement. This verifies that the introduction of
an adaptive weighting mechanism based on matrix decomposition effectively alleviates the problem of popularity bias of
TPLs and improves the representation learning between App and TPLs. However, LibSeek only uses the low-order interaction
relationship between App and TPLs and ignores the high-order connectivity information, so there is still room for improvement
in representation learning.

• NGCF obtains significantly superior results to LibSeek on all datasets, which validates the importance of higher-order
connectivity information in learning App and TPL features. Further, GRec models Apps, TPLs, and their interactions as App-TPL
graphs and uses NGCF to extract both low-order and advanced neighbor data from them, thereby improving feature detection.
CrossRec only utilizes the interactions to calculate similarities among Apps. Although CrossRec can improve the MP because
it may recommend popular items, it does not perform well on other metrics.

• HGNRec achieves consistently the best performance on most metrics of all datasets. Specifically, HGNRec gains 1.9% to 44.8%,
and 2.1% to 56.3% on the MR@5 and NDCG@10 metrics on the App_4% dataset, respectively. By splitting the App-TPL
interaction graph and constructing the App-App interaction graph and the TPL-TPL interaction graph, HGNRec can extract
and converge information of the same knowledge type using a multi-layer graph neural network. It verifies the importance of
considering the type of node information when performing graph node feature aggregation. In addition, compared to Grec,
HGNRec considers the use of a weighted splicing mechanism when aggregating the layers of the graph neural network, while
Grec only directly splices the outputs of each layer to complete the aggregation. This suggests that features from different
propagation layers have different correlations with nodes. In addition to this, HGNRec incorporates global offset features from
App and TPLs. The improvement over NGCF and Grec, which also use graph neural networks, suggests that explicitly modeling
the recommendation global bias in the node features results in a better learning representation.

4.3. RQ2: Effect of homogeneous graph construction methods

As introduced in the Data Preparation module of the Methods section, in order to rationally split the App-TPL interaction graph
nto 2 isomorphic interaction graphs, HGNRec chooses a statistical method based on average thresholding to construct the interaction
elationships between App and App, and TPL. To investigate the impact of different isomorphic graph edge construction methods on
GNRec’s recommendation results, we try three other different construction methods: complete retention of all interactions, random

ampling, and weighted edge construction, and conduct experiments on the App_1% dataset with reference to the parameter settings
f RQ1, and the results of the experiments are presented in Fig. 4.

We find that the statistical method based on average thresholding obtains significantly better results than the remaining three
dge construction methods for all three metrics, MP, HR, and MR, for either K = 5 or 10. This advantage is due to the fact that the

average number of co-interacting objects between Apps and TPLs is calculated and used as a threshold for determining whether
to retain App-to-App and TPL-to-TPL interactions. In this way, we are able to exclude interference from those header generic
TPLs that are widely used, while retaining interaction objects related to specific functions. In general, these objects with stronger
function-specific relevance enable HGNRec to more accurately extract the features of Apps and TPLs, and more efficiently produce
recommendation results that satisfy the targeted functional needs of App developers.
11
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Fig. 4. Comparison of the results of the homogeneous compositional edge construction methods.

Fig. 5. Effect of embedding dimension 𝑑 on HGNRec recommendation results.

4.4. RQ3: Study of HGNRec

As shown in Fig. 2, HGNRec is composed of three modules: Data Preparation, Information Aggregation, and Rating Prediction.
For the Data Preparation Module, we have discussed the impact of different isomorphic interaction graph construction methods on
recommendation results in RQ2. In this section, we will discuss some settings, such as the choice of vector embedding dimension
and activation function, in the modules of Information Aggregation and Rating Prediction, and their effects on the recommendation
results of HGNRec.

4.4.1. Effect of embedding dimension
HGNRec embeds Apps and TPLs as low-dimensional vectors in the feature space during training to represent their features and

interactions. The embedding vector dimension is one of the key parameters affecting the recommendation results of the model. A
low embedding dimension may lead to information loss and limit the model’s representation capability, while a high embedding
dimension may lead to increased computation and storage costs, and the vector space may become too sparse, resulting in over-fitting
of the recommendation results. To investigate how varying embedding dimensions impact HGNRec’s recommendation accuracy, we
adjusted the dimension 𝑑 between 32 and 256. The experimental results are displayed in Fig. 5, with the best results for each dataset
marked accordingly.

When 𝑑 increases, the performance of HGNRec on the MP@5 metric increases in all three datasets as a consequence. However,
when considering the HR@5 metric, the performance of HGNRec takes the maximum value at 𝑑 = 128. This may be due to the fact
that the addition of the embedding dimension improves the representational power and diversity of results of HGNRec and increases
12
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Fig. 6. Effect of the number of GNN layers 𝑛 on HGNRec recommendation results.

the average accuracy of the recommendation results. However, the increase of embedding dimension may lead to the increase of
feature error of those Apps with extremely sparse interaction data with TPLs, which leads to the decrease of hit rate. Interestingly,
as far as the MR@5 metric is concerned, the effect of d varies across datasets. On the App_1% and App_4% datasets, the performance
of HGNRec is optimal at 𝑑 = 128, while on the App_Sports dataset, the performance of HGNRec is optimal at 𝑑 = 256. We analyze
that this could be attributed to the fact that Apps in the sports category have richer features and thus higher dimensions achieve
better performance, which is also in line with our previous experimental results that the MP@5 metric is optimal at 𝑑 = 256 on the
App_Sports dataset.

4.4.2. Effect of layer numbers
In order to obtain higher-order connectivity information in App-App interaction graphs and TPL-TPL interaction graphs, HGNRec

employs multi-layer GNN for graph node feature extraction. To explore the variation of HGNRec’s performance under different GNN
layers, we set the number of network layers of HGNRec within the range to carry out the experiments and keep the default parameter
settings in RQ1 in each experiment. Fig. 6 illustrates the experimental results. From the analysis of the three datasets, we make the
following deductions:

• On the App_1% dataset, all the observable metrics, that is, MP@5, HR@5, and MR@5, achieve the best results at 𝑛 = 1.
Combined with the data in Table 1, this may be due to the smaller size of App_1%, where the use of more layers of GNN
resulted in the model overfitting the training data, leading to a degradation in the performance of HGNRec on the test data.
This observation emphasizes the need for caution in choosing the number of GNN layers when using the HGNRec method
in practice, especially when the dataset size is small. To determine the optimal number of GNN layers, experiments and
adjustments need to be made based on the actual dataset.

• On the App_Sports dataset and App_4% dataset, we observe that all metrics have optimal results at 𝑛 = 4. The experimental
data indicate that adding more layers to the graph network for these datasets enhances the recommendation performance of
HGNRec. This is because the higher dimensional feature space allows HGNRec to model more features from Apps and TPLs. The
propagation and aggregation of data from more distant nodes can capture the dependencies and global information between
the App and the TPLs more effectively, thus improving the accuracy of the recommendation results.
13
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Fig. 7. Effect of activation function on HGNRec recommendation results.

.4.3. Effect of activation function
Activation functions play an important role in graph neural networks to enhance the model’s representation of nonlinear features.

o help HGNRec better capture the complex relational features of App and TPLs, we add activation functions after each layer of GNN
n the Information Aggregation module. There are several choices of mainstream activation functions, which have different features
nd transformations. To explore the impact of different feature activation functions on the HGNRec recommendation results, we
elect four activation functions, relu, sigmoid, tanh and leakrelu, and launch experiments on each of the three datasets. The default
arameter settings in RQ1 are kept in each experiment. The experimental findings are presented in Fig. 7, with triangles indicating
he superior outcomes.

By comparison experiments, we can observe that the sigmoid activation function achieves better results on all datasets, while
anh and leakyrelu obtain bad performance. This may be due to the fact that the sigmoid activation function normalizes the features
nd avoids the effect of too large or too small feature values for TPLs with extreme usage, such as those used by 95% of the Apps
ersus those used by 0.01% of the Apps.

Another notable finding is that employing various activation functions in the App_1% and App_Sports datasets markedly
nfluences the recommendation performance of HGNRec. Taking the MR@10 metric as an example, using the sigmoid function
mproves 1.60% and 0.86% relative to the relu function on the App_1% and App_Sports datasets, respectively, while it brings only
.074% improvement on the App_4% dataset. This difference may be due to the fact that the App_1% and App_Sports datasets have a
ore pronounced continuity relationship. The smoothing of the sigmoid function helps to capture this type of data with a continuity

eature, which leads to a more significant enhancement in the recommendation results.

.4.4. Effect of global bias
In the Rating Prediction module of HGNRec, for the common recommendation bias problem in recommender systems, we

ntroduce a self-learning global offset to model the average tendency of App usage and TPLs being used. To verify whether
lobal offsets alleviate the recommendation bias problem and improve the final recommendation results of HGNRec, The ablation
xperimental results are displayed in Table 4.

The experimental results show that when the global bias in App and TPL ratings is explicitly removed, the recommendation
ffect decreases significantly. This proves that HGNRec uses self-learning scalars to model the recommendation bias of Apps and
PLs, which can significantly enhance the accuracy of the recommendations. In addition, combining the results in Table 3, HGNRec
till exhibits better performance than the other compared methods even when the global offset is removed. This also empirically
hows that avoiding heterogeneous node information fusion can effectively improve recommendation results.

. Discussion

.1. Results analysis

HGNRec takes the heterogeneous App interaction information graph with third-party libraries, splits it into isomorphic graphs,
14
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Table 4
Experimental results of global offset ablation.

Dataset Bias K = 5 K = 10

MP HR MR NDCG MP HR MR NDCG

App_1% # 0.5869 0.9494 0.6565 0.9519 0.3707 0.9656 0.7888 0.9724
! 0.5926 0.9621 0.6783 0.8533 0.3766 0.9787 0.8094 0.9017

App_4% # 0.4693 0.9245 0.6944 0.8092 0.28595 0.94163 0.80628 0.84533
! 0.4750 0.9274 0.7096 0.8182 0.2924 0.9506 0.8144 0.8584

App_Sports # 0.5151 0.9390 0.6791 0.8087 0.3366 0.9596 0.8114 0.8550
! 0.5208 0.9340 0.6886 0.8216 0.3372 0.9623 0.8203 0.8673

state-of-the-art third-party library recommendation methods, the experimental results demonstrate its superiority. HGNRec better
aggregates information under the same modeling space, outperforming the baseline approach on several datasets in the overall
comparison. In RQ2, it is experimentally demonstrated that the statistically based homomorphic edge construction method is better
at excluding interference from popular head third-party libraries. In addition, with parameter tuning, HGNRec can achieve excellent
performance on datasets of various magnitudes and categories. Comparing HGNRec with the baseline method, the main advantages
of our work are: (1) By splitting the heterogeneous graph interaction information between Apps and third-party libraries into
homogeneous graphs, our method can overcome the difficulties in aggregating the node information of the heterogeneous graphs;
(2) The statistically-based edge construction method for node aggregation allows each node to preserve the interactions to exclude
the interferences from the third-party libraries of the popular headers; (3) The parameters of our method can be easily adjusted to
adapt to different sizes and types of datasets with generalization.

5.2. Theoretical and practical implications

From a theoretical perspective, our proposed HGNRec optimizes the node information aggregation based on the homomorphic
raph network to better utilize the interaction information between App and third-party libraries. First, HGNRec splits the
eterogeneous interaction information graph of the App with third-party libraries into interaction homography graphs. Subsequently,
GNRec combines the statistically-based edge construction method for node information aggregation, which effectively excludes the

nteraction interference from popular third-party libraries. In addition, the offset introduced by HGNRec can effectively characterize
he calling tendency of each different dataset. HGNRec was evaluated with state-of-the-art third-party library recommendation
ethods, and the results demonstrate its superior performance.

In the past, in traditional graph-based third-party library recommendation methods, the aggregated information may come from
he data in two nodes that are not in the same knowledge space, which leads to a decrease in the recommendation effect. Moreover,
hese methods are easily influenced by popular third-party libraries, resulting in a single recommendation result. Therefore, this
aper mainly splits heterogeneous interaction graph information into homogeneous graphs based on homogeneous graph networks,
hich makes the modeling and aggregation space unified, and uses a statistical-based method to construct the edges of homogeneous
raphs, which reduces the noise influence caused by popular third-party libraries. In this way, our method is able to achieve better
ecommendation results in real datasets.

. Conclusion

We propose HGNRec, a third-party library recommendation model based on homogeneous graph neural networks.HGNRec solves
he heterogeneous information aggregation problem by splitting the heterogeneous graph of third-party library-App interaction
nformation into two homogeneous graph neural networks for the App and the third-party library, respectively. Further, it combines a
tatistically-based edge construction method for node information aggregation, which allows each node to retain interaction relations
hat exclude interference from popular head third-party libraries. By comparing HGNRec with state-of-the-art recommendation
lgorithms, the experimental results demonstrate its superiority.

We hope that this paper will provide new ideas for modeling third-party library-App interactions. Although this paper better
ggregates node information through a homography network, it uses random initialization for node information, which does not
ffectively utilize the description information in the actual scene. Besides, introducing graph splitting brings the extra time cost,
hich can be further optimized. In subsequent work, we plan to incorporate details about Apps and external libraries to improve

he aggregation of information and the clarity of our suggestions.
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