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A B S T R A C T

Unsupervised Time Series Domain Adaptation (UTSDA) is a method for transferring information
from a labeled source domain to an unlabeled target domain. The majority of existing UTSDA
approaches focus on learning a domain-invariant feature space by reducing the gap between
domains. However, the single-task representation learning methods have limited expressive
capability, while ignoring the distinctive season-related and trend-related domain-invariant
mechanisms across different domains. To address this, we introduce a novel approach, distinct
from existing methods, through a theoretical analysis of UTSDA from the perspective of causal
inference. This analysis establishes a solid theoretical foundation for identifying and modeling
such consistent domain-invariant mechanisms, which is a significant advancement in the field.
As a solution, we introduce MDLR, a multi-task disentangled learning framework designed for
UTSDA. MDLR utilizes a dual-tower architecture with a trend feature extractor (TFE) and a
season feature extractor (SFE) to extract trend-related and season-related information. This
approach ensures that domain-invariant features at different scales can be better represented.
Additionally, MDLR is designed with two tasks: a label classifier and a domain classifier,
enabling iterative training of the entire model. The experiments conducted on three datasets,
namely UCIHAR, WISDM, and HHAR_SA, along with visualization results, have shown the
effectiveness of the proposed approach. The source code for our MDLR model is available to
the public at https://github.com/MoranCoder95/MDLR/.

. Introduction

Unsupervised domain adaptation (UDA) is a method in machine learning where a model trained on labeled data from one
omain is adapted to work well on an unlabeled different domain (Alqahtani, Al-Twairesh, & Alsanad, 2023; He, Xia, et al., 2023;
ang, Ding, Zheng, Xu, & Li, 2023). The essence of UDA is to utilize the knowledge from the source domain to improve the
erformance in the target domain, despite the distinct distributions between the two domains. Due to its ability to reduce the
osts of model development and training in practice, the strategy of UDA is extensively used in fields such as computer vision (Oza,
indagi, Sharmini, & Patel, 2023) and text categorization (Trung, Van, & Nguyen, 2022). Given the ubiquity of time series data
cross numerous applications and the intricate complexities inherent within it, investigating the unsupervised time series domain
daptation (UTSDA) has become a meaningful task (Ozyurt, Feuerriegel, & Zhang, 2023). Time series data can vary significantly due
o differences in data collection methods among different domains. This variation often results in distinct data distributions, making
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Fig. 1. Illustration of the invariant mechanism in the process of adapting from the source domain to the target domain. The uppercase bold letters represent
wind speed (W), humidity (H), and PM2.5 concentration (P), respectively. In the short-term time series, there is a very clear relationship where an increase in
‘‘wind speed’’ and ‘‘humidity’’ leads to a decrease in "PM2.5 concentration. The colored blocks represent the dynamic nature of these variables, indicating that
they are constantly changing. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)

model generalization a challenging endeavor. For example, in medical time series data, the differences in data collection methods
among different clinical sites (domains) result in distinct data distributions (He, Queen, et al., 2023). Consequently, a model trained
on data from one clinic may perform poorly when tested on data from another clinic.

The main idea of UTSDA is to learn the invariant information across domains, where invariant mechanisms represent the
underlying patterns and relationships that directly govern the behavior of time series data (Li et al., 2022). However, transferring
invariant information across domains remains an open question. This is primarily because of the unique characteristics of time series
data, including time-dependency, non-stationarity, and sequence interaction (Li et al., 2022; Ragab, et al., 2023). As illustrated in
Fig. 1, the three time series exhibit non-stationary patterns. Nevertheless, there is an underlying causal mechanism linking variables
such as wind speed (W), humidity (H) and PM2.5 concentration (P). This mechanism suggests that PM2.5 concentration is directly
influenced by past values of temperature and wind speed, and this non-linear dependence is particularly evident in the short-term
span shown in the figure. In addition, the historical trends of the data can also influence the future time series patterns. This type
of time-dependent pattern is often observed in time series data. Furthermore, time series data also contain various types of noise
due to the inherent uncertainty in the data generation processes, data entry errors or external factors (He, Queen, et al., 2023).
This noise needs to be carefully taken into account in many time series tasks. Consequently, learning invariant mechanisms across
domains is a critical task in UTSDA.

Currently, representation learning has gained significant attention due to its capacity to generate high-dimensional representation
spaces with enhanced expressiveness and generalizability (Liu, Lin, & Sun, 2023). Some approaches (He, Queen, et al., 2023) have
been proposed for UTSDA that leverage representation learning and cross-domain feature alignment. The main goal of these methods
is to make the representation spaces from the source and target domains more alike. This helps models trained on the source domain
work well in the target domain (Jin, Park, Maddix, Wang, & Wang, 2022; Kang, Jiang, Yang, & Hauptmann, 2019). For example,
Deep CORAL (Sun & Saenko, 2016) is an extension of the original CORAL (Sun, Feng, & Saenko, 2016) method that aligns the
second-order statistical properties in source and target distributions using a nonlinear transformation within deep neural networks.
This enhancement leads to superior performance on standard datasets. AdvSKM (Liu & Xue, 2021) improves domain adaptation by
leveraging a hybrid spectral kernel network to redefine the MMD metric, addressing the limitation of low-order and local statistics in
discrepancy metrics. Furthermore, SASA (Cai et al., 2021; Li et al., 2022) utilizes sparse attention mechanisms to uncover associative
patterns in time series data and presents an innovative model for aligning these sparse associative structures to facilitate domain
adaptation.

Despite the success achieved by the aforementioned approaches, several challenges still exist in UTSDA. On one hand, time series
data contain intricate components (e.g., trend, seasonality, noise, and nonlinear dependencies), posing challenges for traditional
single-task representation learning methods, which may struggle to accurately encapsulate all of these aspects simultaneously (Fu,
2011). On the other hand, some previous works overlooked time series’ inherent separable trend and seasonal components. They
directly modeled the original data to create domain-invariant spaces, which might fail to capture the underlying mechanisms related
to trends and seasonal patterns within that domain-invariant space. For instance, as shown in Fig. 1, the economic development
level of a country might consistently influence the long-term trend of PM2.5 concentrations across its various regions. Therefore,
extracting information from the long-term trend components in time series data can better reflect the mechanisms that influence
the data’s long-term trajectory. However, in the short term, changes in PM2.5 concentrations in each region are likely influenced by
factors like rainfall or wind speed. The nonlinear relationships between these factors might be more evident due to the absence of
smoothing or averaging effects in these short-term seasonal time series components. As a result, this underscores the necessity for
2
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methods in time series DA methods that (1) possess stronger representation learning capabilities to handle complex time series data,
and (2) construct a domain-invariant space that preserves both trend-related and season-related mechanisms across the domains.

In this paper, inspired by relevant disentangled representation learning work (Lv et al., 2022; Yang et al., 2021), we propose a
method called "Multi-Task Disentangled Learning Representations" (MDLR) to obtain a better domain-invariant space. Disentangled
representations can effectively separate mixed features in the data into independently interpretable components. Moreover, consid-
ering the well-separated nature of time series data between trend components and seasonal components, we employ disentangled
representations to extract trend-related and season-related domain-invariant mechanisms more finely. This forms the core motivation
behind the MDLR method. Specifically, we leverage causal reasoning theory to theoretically analyze the causal relationships between
elements such as trend and season in time series domain adaptation task, revealing the importance of different aspects of domain-
invariant information contained in trend and season components of time series data. This provides a solid foundation for our
disentangled representation learning method. To translate the theoretical concept into practical application, we design a multi-task
learning representations framework that separately extracts trend-related and season-related domain-invariant information after
performing causal intervention on the original time series data. Specifically, we simplify the do-operation in causal intervention by
separating the original time series into trend and season components. This simplification allows us to perform feature extraction
independently on these separated components and ensures that the underlying domain-invariant mechanisms at both long and
short-term scales remain disentangled, avoiding their entanglement in the learned representations. Finally, we incorporate labeled
classification and domain classification tasks in the framework to enable iterative training of the entire model. By doing so, the
model can effectively learn disentangled representations that capture different mechanisms and achieve superior performance in
UTSDA.

1.1. Research objective

The primary goal of our proposed method, MDLR, is to enhance the effectiveness of UTSDA by learning disentangled represen-
tations that separately capture trend-related and season-related domain-invariant information, thereby ensuring more robust and
accurate model performance across diverse domains. To summarize, our main contributions can be summarized as follows:

• We provide a new theoretical perspective on the time series domain adaptation problem via a causal perspective and argue
for the benefits of learning disentangled domain-invariant representations for UTSDA.

• We propose MDLR, a multi-task disentangled learning approach that utilizes a dual-tower architecture to learn invari-
ant information across different domains. This invariant information encapsulates the trend-related and season-related
mechanisms.

• We demonstrate the superiority of our approach compared to state-of-the-art methods through extensive experiments on
real-world time series data. Furthermore, visualization results affirm that the effectiveness of learning trend-related and
season-related representations for the UTSDA task.

The paper is structured as follows: Section 2 reviews related work on unsupervised domain adaptation and disentangled
representation in time series data. Section 3 presents a causal perspective on UTSDA, laying the foundation for MDLR. Section 4
details the MDLR model’s architecture and methodology with a dual-tower approach. Section 5 showcases experimental results,
comparing MDLR to baseline methods. Section 6 analyzes the results and underscores MDLR’s significance. Finally, Section 7
concludes by summarizing our work and suggesting future research directions.

2. Related work

Our work focuses on unsupervised time series domain adaptation (UTSDA), which mainly focusing on three related main areas:
domain adaptation, time series domain adaptation, and disentangled learning representation. In the following subsections, we
highlight some methods that are closely related to our work.

2.1. Unsupervised domain adaptation

Unsupervised Domain Adaptation (UDA) is a form of transfer learning designed to tackle the ‘‘domain shift’’ issue (Nozza,
Manchanda, Fersini, Palmonari, & Messina, 2021). This approach involves adjusting a model, initially trained in one specific domain
(source domain), to function efficiently in a different domain (target domain), without the need for labeled data from this target
domain (He, Queen, et al., 2023; Liu & Xue, 2021; Ramponi & Plank, 2020). While various UDA techniques have been developed for
visual applications, they generally focus on deriving domain-invariant features using feature extraction networks (Li et al., 2022).
Among these techniques, the adversarial-based approach has emerged as particularly significant. Within this framework, a domain
discriminator is tasked with identifying whether data originates from the source or target domain. Concurrently, a deep learning
classifier is trained to produce features that are indistinguishable to the discriminator, effectively bridging the gap between the
two domains (Hoffman et al., 2018; Tzeng, Hoffman, Darrell, & Saenko, 2015). For example, TA3N (Chen et al., 2019) achieved
better performance by utilizing domain discrepancy on four video domain adaptation datasets. In addition to the adversarial-
based approach, another popular method utilizes the discrepancies between the feature representations of different domains to
facilitate more efficient domain adaptation. This discrepancy-based approach is epitomized by techniques like Maximum Mean
Discrepancy (MMD) (Rozantsev, Salzmann, & Fua, 2018), which has been used in strategies like the adaptation layer in Deep Domain
3



Information Processing and Management 61 (2024) 103638Y. Liu et al.

m
M
p

2

f
a
d
t
c
n
A
t
a
A
m

t
M
f
a

2

C
M
d
v
I
i
r
t
l
2
s
a

o
T
a
d
o
o

3

t
o

3

g

Confusion (DDC) (Tzeng, Hoffman, Zhang, Saenko, & Darrell, 2014) to enhance classification effectiveness while maintaining domain
consistency. For example, ODIN (Hussein & Hajj, 2022) introduces an SPS domain adaptation architecture that utilizes MMD to
model the adaptation loss function. Other commonly used metrics include Correlation Alignment (CORAL) (Sun & Saenko, 2016)
and Contrastive Domain Discrepancy (CDD) (Kang et al., 2019).

Adversarial and discrepancy-based strategies are the two main approaches to the challenge of domain shift. While adversarial
ethods are often plagued by unstable training dynamics, discrepancy-based methods such as MMD offer a more stable alternative.
MD is characterized by its direct estimation of distributional variances, which streamlines both the implementation and training

rocesses. Given these advantages, our MDLR uses MMD as the key metric for assessing and mitigating distributional discrepancies.

.2. Time series domain adaptation

The special characteristics of time series data have led to a relatively limited exploration of self-supervised domain adaptation
or such data types (He, Queen, et al., 2023). Drawing inspiration from established approaches in visual unsupervised domain
daptation, these methods focus on training models to create general and strong features suited for the complex nature of time series
ata (He, Queen, et al., 2023; Jin et al., 2022). One notable method, CoDATS (Wilson, Doppa, & Cook, 2020), employs adversarial
raining and utilizes a Convolutional Neural Network (CNN) for feature extraction, which offers flexibility in handling diverse
omplexities of the data. VRADA (Purushotham, Carvalho, Nilanon, & Liu, 2016) took the route of a variational recurrent neural
etwork for feature extraction, demonstrating the potential of recurrent networks in this domain. Another noteworthy approach is
dvSKM (Liu & Xue, 2021), which focuses on minimizing statistical divergence and argues that MMD may not be robustly applied

o UTSDA. As a solution, it proposes an Adversarial Spectral Kernel Matching (AdvSKM) method for UTSDA. Furthermore, there
re methodologies like SASA (Cai et al., 2021) which have worked on aligning both intra- and inter-variable attention using MMD.
nd SEA (Wang et al., 2023) efficiently tackles MTS-UDA challenges by aligning sensor features at local and global levels using a
ulti-branch self-attention mechanism for domain adaptation.

The existing methods in UTSDA primarily emphasize aligning features at the level of their characteristics, without fully exploring
he potential of disentangled learning representations for facilitating easier alignment across varying domain spaces. However, our
DLR approach sets itself apart by paying attention to the trend and seasonality elements of time series data. This strategy allows

or a more effective disentanglement of the intrinsic mechanisms involved in domain adaptation, leading to potentially more robust
nd accurate alignment across different domains.

.3. Disentangled learning representations

Disentangled learning representations aim to separate out the underlying causal factors of the data (Li et al., 2023; Wang,
hen, Zhou, Ma, & Zhu, 2022), which can facilitate more effective transfer and generalization of learning (Khemakhem, Kingma,
onti, & Hyvarinen, 2020). A wide range of techniques has been developed and proposed specifically to attain the objective of

isentangled representations in various contexts. For example, Variational Autoencoders (VAEs) are usually used to employ a latent
ariable model for the disentanglement of features (Khemakhem et al., 2020; Liu, Wang, & Li, 2024). Another notable method is
nfoGAN, which leveraging the maximization of mutual information between certain latent variables and observations to enhance
ts effectiveness (Chen et al., 2016). Due to the specific nature of time series, some work has also explored disentangled learning
epresentations in this context. For instance, DTS (Li et al., 2021) is a novel framework for learning interpretable and disentangled
ime-series representations by addressing complex temporal correlations, KL vanishing, and multi-level disentanglement challenges,
eading to superior performance in downstream applications with high interpretability. CoST (Woo, Liu, Sahoo, Kumar, & Hoi,
022) is a work closely related to this paper. It utilizes contrastive learning for superior time-series forecasting via disentangled
easonal-trend representations. These methods demonstrate the promising potential of disentangled representations in time series
nalysis.

While methods using disentangled learning representations are frequently utilized for forecasting in time series, a notable
versight in many of these approaches, especially in the UTSDA task, is their neglect of inherent trend and seasonal patterns.
hese elements are critical yet are often overlooked despite their separability. To address this gap, our study presents the MDLR
pproach. This method specifically acknowledges the distinct features pertaining to trends and seasonality inherent in time series
ata. By strategically decomposing the time series into trend-based and senson-based components, MDLR simplifies the architecture
f the representation layers. This simplification not only streamlines the design but also enhances the efficiency and effectiveness
f information extraction from time series data.

. Preliminaries

This section aims to establish the foundation for understanding domain adaptation in time-series data. Firstly, we will present
he problem and define necessary terminology. Furthermore, we will explore the causal aspect of domain adaptation to elucidate
ur approach.

.1. Problem formulation

In this section, we offer an in-depth exploration of fundamental domain adaptation concepts. We have organized key terminolo-
[ ]
4

ies in Table 1, providing their definitions to aid understanding throughout this paper. Consider a dataset 𝑠 = 𝑋𝑠, 𝑌𝑠 from a
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Table 1
Notations and explanations.

Notations Explanations

𝑠 Source domain’s labeled data
𝑋𝑠 Source domain time series
𝑃𝑠(𝑋𝑠)∕𝑃𝑠 Source data’s marginal distribution
𝑡 Target domain’s unlabeled data
𝑋𝑡 Target domain time series
𝑃𝑡(𝑋𝑡)∕𝑃𝑡 Target data’s marginal distribution
𝑌𝑠 Labels in the source domain
𝐾 Number of labels
𝐂 Underlying causal factors
𝑆 Season-related causal factors
𝑇 Trend-related causal factors
𝑋trend Time series’ trend component
𝑋season Time series’ seasonal component
𝑔1 Season feature extractor
𝑔2 Trend feature extractor
𝐶𝐿𝑆 Classification loss
𝐷𝑂𝑀 Domain classification loss
𝑇𝑀𝑀𝐷

MMD loss for trend
𝑆𝑀𝑀𝐷

MMD loss for season
ℎ Model function for label prediction
𝑤season, 𝑤trend Weights for season/trend factors in the classifier
𝛼, 𝛽, 𝛾 Parameters to balance loss components
𝜅 Kernel size in time series decomposition

source domain, with 𝑋𝑠 ∈ R𝑛𝑠×𝑑 representing a multivariate time series and 𝑌𝑠 =
(

𝑦1,… , 𝑦𝑛𝑠
)𝑇

∈ R𝑛𝑠×1 as its corresponding labels.
In contrast, the target domain has an unlabeled dataset, 𝑡 = [𝑋𝑡], where 𝑋𝑡 spans a 𝑛𝑡 × 𝑑 dimensional space. Both domains share
an identical label space 𝑌 = {1, 2,… , 𝐾}, with 𝐾 representing the total number of distinct labels. Notably, the marginal distributions
of the data from these domains differ, as signified by 𝑃𝑠(𝑋𝑠) ≠ 𝑃𝑡(𝑋𝑡) (Ragab, Eldele, Tan, et al., 2023). The objective of domain
daptation is to develop a resilient predictive model capable of accurately assigning labels to the target domain data, leveraging the
nvariant knowledge extracted from a labeled source domain (He, Queen, et al., 2023). Essentially, domain adaptation focuses on
apturing the statistical correlation between observed inputs and their associated labels, symbolized by 𝑃 (𝑌 |𝑋). This relationship
s typically assumed to change between different domains.

.2. Overview of domain adaptation from causal view

Domain adaptation (DA) focuses on modeling the statistical association between observed inputs 𝑋 and their respective labels
, particularly 𝑃 (𝑌 |𝑋), which is subject to variation across different domains (Cai et al., 2021; Javidian, Pandey, & Jamshidi, 2021;
isamori, Kanagawa, & Yamazaki, 2020). In the context of causal inference, domain adaptation predominantly addresses the issue of
ovariate shift, a scenario where the feature distribution varies among domains (Schölkopf et al., 2012). To address this challenge,
e seek causally invariant features that remain consistent across domains. While we represent the underlying causal factors as
, we lack prior knowledge about them. Instead, we are provided with unstructured time series data 𝑋. The Independent Causal
echanisms (ICM) principle (Lv et al., 2022; Peters, Janzing, & Schölkopf, 2017) proposes that causal factors should be jointly

ndependent. This principle enables the factorization of the joint distribution 𝑝𝐂̃
(

𝑐1,… , 𝑐𝐷
)

of causal factors into conditionals:

𝑝𝐂̃
(

𝑐1,… , 𝑐𝐷
)

=
𝐷
∏

𝑖=1
𝑝𝑖
(

𝑐𝑖 ∣ 𝐜𝑝𝑎(𝑖)
)

, (1)

here 𝑝𝐂̃ represents the combined distribution of the causal elements 𝐜̃, which includes various factors such as {𝑐1, 𝑐2,… , 𝑐𝐷}.
dditionally, 𝑝𝑖 indicates the specific distribution of each element 𝑐𝑖, conditioned upon its causal parents, which are represented by
𝑝𝑎(𝑖). It should be noted, however, that identifying all causal factors in time-series data presents significant challenges, even under
he assumption that these factors operate independently. The task of domain adaptation can be simplified as a feature selection
roblem (He, Queen, et al., 2023). The objective is to find the best subset of predictors that keeps the conditional distribution of
he target variable consistent across different domains.

In time-series analysis, decomposing data into seasonal and trend components helps distinguish short-term changes from
ong-term patterns, improving forecasting and data interpretation (Meng et al., 2023; Wen et al., 2022). In time series domain
daptation, the trend component provides us with long-term directional information, while the seasonal component helps us identify
nd understand short-term seasonalchanges and non-linear dependencies. Modeling these two components can capture different
haracteristics of time series data. In this paper, inspired by tasks related to time-series prediction (Chen et al., 2022; Woo et al.,
022) and considering the separability of seasonal and trend components in time series, we classify causal factors into two subsets.
he first subset consists of season-related causal factors denoted by 𝑆 = {𝑐𝑠1, 𝑐

𝑠
2,… , 𝑐𝑠ℎ𝑠}, and the second subset consists of trend-

elated causal factors denoted by 𝑇 = {𝑐𝑡 , 𝑐𝑡 ,… , 𝑐𝑡 }. To represent the joint distribution of causal factors in a time series, considering
5
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Fig. 2. Causal graph of the proposed model. White circles represent observed variables, while gray circles represent latent (unobserved) variables. In (a), the
output 𝑌 is directly affected by the trend-related variable 𝑇 and season-related variable 𝑆. The observed time series data 𝑋 is derived from the interactions of
𝑆 (season-related factors), 𝑇 (trend-related factors), and 𝐸 (error variable). The inference stage of the ‘‘𝑑𝑜’’ operation is illustrated in (b) and (c).

the distinct nature of its seasonal and trend components, we can reformulate it as follows:

𝑝𝐂̃
(

𝑐1,… , 𝑐𝐷
)

=
ℎ𝑠
∏

𝑖=1
𝑝𝑖
(

𝑐𝑠𝑖 ∣ 𝐜𝑝𝑎(𝑐𝑠𝑖 )
)

ℎ𝑡
∏

𝑗=1
𝑝𝑗

(

𝑐𝑡𝑗 ∣ 𝐜𝑝𝑎(𝑐𝑡𝑗 )
)

, (2)

where pa(⋅) indicates the causal parents for a specified causal component. Instead of trying to rebuild all causal factors directly, our
approach involves breaking down the time series data into components of seasonality and trend. We aim to efficiently train models
focused on these trends and seasons to learn representations effectively. This approach will better capture the causal factors in 𝑋
and help in generalizing across different domains when predicting 𝑌 .

In order to model the conditional probabilities 𝑝
(

𝑐𝑠 ∣ 𝐜𝑝𝑎(𝑐𝑠)
)

and 𝑝
(

𝑐𝑡 ∣ 𝐜𝑝𝑎(𝑐𝑡)
)

, we draw inspiration from Bayesian Structural
Time Series models (Qiu, Jammalamadaka, & Ning, 2018; Scott & Varian, 2015) and illustrate the generative process of the time
series data through a causal graph, as depicted in Fig. 2(a). The time series data 𝑋 that has been observed can be attributed to three
distinct variables (Woo et al., 2022): the error variable 𝐸, the trend-related variable 𝑇 , and the season-related variable 𝑆. As 𝐸 is
unpredictable noise, the primary prediction task 𝑌 depends only on 𝑇 and 𝑆. Based on the causal graph, the following Structural
Causal Model (SCM) is formulated to represent the process of generating time series data:

𝑋 ∶= 𝑓 (𝑆, 𝑇 , 𝐸) ,

𝑌 ∶= ℎ (𝑆, 𝑇 ) = ℎ
(

𝑔1(𝑋), 𝑔2(𝑋)
)

, (3)

where 𝑓 , 𝑔, and ℎ are unknown structural functions. Structural Causal Model (SCM) (Schölkopf, 2022) provide a framework for
describing how variables interact and influence each other, making them highly relevant in the context of domain adaptation. In
this approach, we critically analyze and model the components of SCM, namely 𝑇 , 𝑆, and 𝐸, to understand the causal relationships
that help identify and adapt to the causal variations that exist across different domains. Furthermore, we formulate the optimization
problem of UTSDA as follows:

ℎ∗ = argmin
ℎ

E𝑃 [𝓁(ℎ(𝑔1(𝑋), 𝑔2(𝑋)), 𝑌 )]

= argmin
ℎ

E𝑃 [𝓁(ℎ(𝑆, 𝑇 ), 𝑌 )], (4)

where the function 𝓁(⋅, ⋅) symbolizes the cross-entropy loss. The focal point of this approach is to identify the function ℎ that is
most effective in reducing the expected loss, represented as E𝑃 [𝓁(ℎ(𝑔1(𝑋), 𝑔2(𝑋)), 𝑌 )]. By identifying the stable causal factors 𝑇 and
𝑆 for different domain data or finding a function 𝑔 that effectively maps the transformed inputs 𝑋 to 𝑆 and 𝑇 , we can potentially
enhance the model’s proficiency in performing the UTSDA task.

4. Methodology

In this section, we explore the details of our proposed MDLR method for unsupervised time series domain adaptation (UTSDA).
Specifically, we will first present an overview of MDLR, including its overall architecture and loss function. Subsequently, we will
delve into the fundamental design details of MDLR.

4.1. Overview of MDLR

In this paper, we consider the separability of trend and seasonal components in time series data, which represent unique aspects in
the process of generating time series data. For example, as shown in Fig. 1, the long-term trend can reflect macroeconomic conditions
such as economic policies, while seasonal components can reflect the sequence interaction mechanisms among multidimensional
time series. This determines that we can decompose domain-invariant causal factors into two subsets: season-related and trend-
related factors. Therefore, guided by structural causal model (SCM) (Schölkopf, 2022), we assume that the trend-related variable
𝑇 and the seasonal-related variable 𝑆 causally affect the category label 𝑌 , as depicted in Fig. 2. In UTSDA, Our objective is to
6
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Fig. 3. Overall architecture of MDLR. The architecture features a dual-tower structure, each dedicated to the trend and seasonal components of the time series.
Both towers process data through causal intervention, embedding, cross-domain alignment, and classifier layers.

identify and extract the latent causal elements represented by 𝑆 and 𝑇 from the raw input 𝑋. These two causal factors capture
different aspects of the underlying domain-invariant representations. To achieve this, we adopt a dual-tower architecture inspired
by multi-task learning to effectively handle complex time series data, as illustrated in Fig. 3.

The MDLR framework comprises two separate towers, each dedicated to extracting trend-related and season-related domain-
invariant representations. This design choice is motivated by the need to handle the complexities and distinct nature of trend and
seasonal data in a more focused and effective manner. Additionally, both towers are structured with four distinct layers. In the
causal intervention layer, we use the Moving Average (MA) algorithm to decompose the input time series data 𝑋 ∈ R𝑛×𝑑 into
trend component 𝑋trend ∈ R𝑛×𝑑 and season component 𝑋season ∈ R𝑛×𝑑 . In the embedding layer, a season feature extractor (SFE),
𝑔1 ∶ R𝑛×𝑑 → R𝑛×𝑑𝑆 , extracts season-related patterns from 𝑋season, while a trend feature extractor (TFE), 𝑔2 ∶ R𝑛×𝑑 → R𝑛×𝑑𝑇 , extracts
trend-related patterns using an encoder backbone to transform the trend components data into a latent space. The separation of these
extractors within the dual-tower architecture is a strategic decision to optimize the individual processing of each component, thereby
enhancing the overall accuracy and robustness of the model. In the cross-domain alignment layer, the alignment of trend-related and
season-related representations across various domains is achieved using the Maximum Mean Discrepancy (MMD) method. Finally,
the classifier layer outputs the results for both the label and domain classification tasks by concatenating the separately trained
outputs of the classifier module on the trend-related and season-related representations. The overall loss function for the MDLR
framework is given by

 = 𝛼𝐶𝐿𝑆 + 𝛽𝐷𝑂𝑀 +
𝛾
2
(𝑇𝑀𝑀𝐷

+ 𝑆𝑀𝑀𝐷
), (5)

where 𝛼, 𝛽, and 𝛾 are hyperparameters that balance the trade-off between all loss factors.
Next, we detail the core layers of the MDLR architecture.

4.2. The causal intervention and embedding layers

Existing domain adaptation methods model the probability 𝑃 (𝑌 |𝑋) to adapt to different domains. As discussed in the prelimi-
naries section, we can divide the numerous domain-invariant factors into trend-related causal factors 𝑆 and season-related causal
factors 𝑇 , which directly influence the output variable 𝑌 . Therefore, in the UTSDA task, the conditional distribution of input time
series 𝑋 and output 𝑌 can be further represented as:

𝑃 (𝑌 |𝑋) = 𝑃 (𝑌 |𝑆, 𝑇 ). (6)

As described in Eq. (3), the functions 𝑔1 and 𝑔2 serve the purpose of extracting the season-related and trend-related mechanistic
information from the original time series 𝑋. Furthermore, according to the independent mechanisms assumption, it is clear that the
modules representing seasonal and trend factors operate independently, without influencing each other or sharing information. In
practical applications, deep neural network models are typically used to learn and represent these causal factors indirectly, rather
than reconstruct them directly.

To proceed, we need to design separate models for extracting the invariant season-related mechanisms and trend-related
mechanisms among different domains. As shown in Fig. 2(b), to effectively model the season-related factors 𝑆, we need to eliminate
the bias introduced by the trend-related information 𝑇 during the training period. Inspired by the use of causal intervention (Lv
7
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et al., 2022; Woo et al., 2022), which have been extensively utilized to enhance the robustness of deep learning models across
various tasks, we use the ‘‘𝑑𝑜’’ operation to exclude the influence of the confounder 𝑇 on the impact of the seasonal factors 𝑆 on
the model output 𝑌 . Specifically, by using the ‘‘𝑑𝑜’’ operation to prevent the introduction of causal effects of 𝑇 on 𝑌 , we can derive
he causal effects of the target feature 𝑆 on the model output 𝑌 as follows:

𝑃 (𝑌 ∣ 𝑑𝑜 (𝑆)) =
∑

𝑃 (𝑌 ∣ 𝑆, 𝑡)𝑃 (𝑡) , (7)

where 𝑡 ∈ 𝑇 corresponds to a trend-related factor. Since 𝑇 cannot be directly observed, and directly computing the above expression
would incur a large sampling cost, we employ the Normalized Weighted Geometric Mean (NWGM) (Xu et al., 2015; Zhang, Sang,
Wang, Jiang, & Wang, 2023) as an approximation technique. NWGM has been widely utilized in various causal inference intervention
calculations. To infer 𝑃 (𝑌 ∣ 𝑑𝑜 (𝑆)), we utilize the intervention feature E [𝑡] to substitute specific trend features 𝑡. The expression
can be rewritten as follows:

𝑃 (𝑌 ∣ 𝑑𝑜 (𝑆)) = 𝑃 (𝑌 ∣ 𝑆,E [𝑡])) , (8)

where E [𝑡] is the mathematical expectation of 𝑡. Similarly, the trend-related factor intervention 𝑃 (𝑌 ∣ 𝑑𝑜 (𝑇 )) can be calculated.
Inspired by the work (Wang, Feng, He, Zhang, & Chua, 2021), we implement the intervention in our model by excluding the

rend-related factor 𝑡 from the model’s input. This is equivalent to setting E [𝑡] to 0. As a result, the resulting model is specifically
rained to predict 𝑃 (𝑌 ∣ 𝑑𝑜 (𝑆)), relying exclusively on season components of time series. This allows us to eliminate any potential
ias introduced by the trend-related features. In the causal intervention layer, we employ a moving average (MA) strategy (Hyndman,
011) to mitigate seasonal variations and emphasize long-term patterns in time series data inspired by the idea of time series
ecomposition (Cleveland, Cleveland, McRae, & Terpenning, 1990; Dudek, 2023; Woo et al., 2022). MA is a statistical way to
mooth data by calculating the average of a set of data points over a specific time period (window) and repeating the calculation
s the window slides along the data. Specifically, given an input time series of length 𝑛, 𝑋 ∈ R𝑛×𝑑 , the process is as follows:

𝑋trend = AvgPool( Padding (𝑋)),

𝑋season = 𝑋 −𝑋trend, (9)

here 𝑋season and 𝑋trend are matrices in R𝑛×𝑑 , representing the season and trend components. The AvgPool(⋅) function with padding
s used to smooth the data and maintain the original length of the time series. To capture information from different time periods as
uch as possible, different kernel sizes can be used. We introduce the SeriesDecomp(⋅) function to summarize the above equations,

nd the results of different kernel sizes 𝜅 are given by:

𝑋𝜅
𝑠𝑒𝑎𝑠𝑜𝑛, 𝑋

𝜅
𝑡𝑟𝑒𝑛𝑑 = SeriesDecomp(𝑋, 𝜅). (10)

To better represent the seasonal and trend components extracted from the time series, we utilize the capabilities of Convolutional
eural Networks (CNNs) in the embedding layer. CNNs are adept at capturing local patterns in data, which is particularly beneficial

or time series analysis (Ragab, Eldele, Tan, et al., 2023). Given the seasonal component 𝑋𝜅
𝑠𝑒𝑎𝑠𝑜𝑛 and the trend component 𝑋𝜅

𝑡𝑟𝑒𝑛𝑑 for
ach kernel size 𝜅, we utilize a CNN backbone to extract features:

𝑆𝜅 = CNN(𝑋𝜅
𝑠𝑒𝑎𝑠𝑜𝑛),

𝑇 𝜅 = CNN(𝑋𝜅
𝑡𝑟𝑒𝑛𝑑 ). (11)

ere, the features extracted from the seasonal and trend components for a kernel size of 𝜅 are represented as 𝑆𝜅 and 𝑇 𝜅 , respectively.
hese feature extractors form the basis of the trend feature extractor (TFE) and the season feature extractor (SFE). The primary
ifference between TFE and SFE lies in their algorithmic implementation, which is primarily determined by their hyperparameters.
he TFE is designed to identify and capture long-term patterns and shifts in the time series data, and the SFE is tailored to detect
nd analyze seasonalpatterns and cyclic behaviors inherent in the data. By jointly considering both seasonal and trend components
rom different scales, the model becomes better equipped to learn a domain-invariant feature space.

.3. The cross-domain alignment layer

Unsupervised domain adaptation aims to create a representation space where data from various domains can be consistently
nd comparably represented. One common approach to achieve this goal is to reduce the divergence in distance between data
riginating from the source domain and that from the target domain. The Maximum Mean Discrepancy (MMD) metric (Gretton,
orgwardt, Rasch, Schölkopf, & Smola, 2006) provides an effective tool for quantifying the difference between two data distributions.
his measure fundamentally contrasts the average values of samples within a reproducing kernel Hilbert space. By minimizing this
easure, it ensures that the two distributions are made as similar as possible within this space. In this paper, we also introduce
MD metric to balance the distributions between different domains. From a causal inference perspective described above, domain-

nvariant factors across domains can be dissected into two main factors: trend-related and season-related causal factors. While
eason-related features in time series data often exhibit more microscopic invariant patterns across various domains, such as the
onlinear dependencies between different time sequences, these dependencies might not be evident on larger time scales but can be
ery pronounced on smaller scales. On the other hand, trend-related features reflect more macroscopic domain-variant factors. For
nstance, when people engage in physical activities, vital signs like heart rate and respiration rate might indeed show an increasing
8
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Table 2
Overview of utilized datasets detailing number of domains, sensor channels, classes, and total samples in training and test portions.

Dataset Domains Classes Channels Training set Testing set

UCIHAR (Anguita, Ghio, Oneto, Parra Perez, & Reyes Ortiz, 2013) 30 6 9 2300 990
WISDM (Kwapisz, Weiss, & Moore, 2011) 36 6 3 1350 720
HHAR_SA (Stisen et al., 2015) 9 6 3 12,716 5218

trend until they stabilize. Considering this observation, we propose a dual-alignment approach, where trend-related and season-
related representations are aligned separately across the source and target domains. This dual alignment is encapsulated in our loss
function, which comprises two distinct MMD terms: 𝑇𝑀𝑀𝐷

for trend-related alignment and 𝑆𝑀𝑀𝐷
for season-related alignment.

MMD = 𝑇𝑀𝑀𝐷
+ 𝑆𝑀𝑀𝐷

. (12)

.4. The label and domain classifier layer

Unsupervised domain adaptation is a powerful approach that leverages knowledge derived from a known domain to enhance
erformance on a new, previously unseen domain. In most domain adaptation tasks, there is some supervision information available,
ncluding partial labels of the target domain, domain information, or other forms of partial supervision information. Among these,
abel and domain information are two important types of information that can be utilized, and they are widely used in transfer
earning (Woo et al., 2022). Therefore, we design a label and domain classifier layer to train the UTSDA model effectively. In our
abel classifier, a deep neural network architecture is employed. This network accepts a related representation as its input and yields
prediction for the label linked to the source data. As previously discussed, the prediction label can be formulated as:

𝑌 = 𝑤𝑡𝑟𝑒𝑛𝑑soft(MLP(𝑇 𝜅 )) +𝑤𝑠𝑒𝑎𝑠𝑜𝑛soft(MLP(𝑆𝜅 )), (13)

here soft(⋅) represents the softmax function applied to the task classifier’s output. 𝑤𝑡𝑟𝑒𝑛𝑑 and 𝑤𝑠𝑒𝑎𝑠𝑜𝑛 are the weights assigned to
trend-related and season-related factors. The definition of the cross-entropy loss for the label classifier module is as follows:

𝐶𝐿𝑆 = −E𝑋𝑠∼𝑃𝑠 [𝑌𝑠 log(ℎ(𝑔1(𝑋𝑠), 𝑔2(𝑋𝑠)))] (14)

where notation 𝑃𝑠 symbolizes the distribution of data 𝑋𝑠 from the source domain, while 𝑌𝑠 signifies the real labels associated with
the source domain. In this paper, the domain classifier operates as an adversarial component during the training process and consists
of a multilayer perceptron (MLP) architecture. Specifically, it is trained to determine from which domain the input data originated.
Trend and seasonal features, as important components within time series data, play a significant role in enhancing the performance
of the domain classifier. Trend features, in particular, exhibit lower levels of noise. In our practice, we have observed that utilizing
trend features leads to greater stability and more accurate domain classification. The loss of the domain classifier is also calculated
using the cross-entropy loss, and the predicted domain result 𝑌𝑑𝑜𝑚 can be formulated as:

𝑌𝑑𝑜𝑚 = soft(MLP(𝑔2(𝑋))). (15)

5. Experiment

To assess the MDLR model’s performance in real-world scenarios, we conducted a series of experiments in this section. We first
introduce the experimental setup, which includes datasets, baseline methods, and evaluation metrics used to assess the effectiveness
of the UTSDA methods. Subsequently, we present the specific experimental results, including comparisons with baseline methods,
ablation visualization results, and hyperparameter 𝜅 analysis results.

5.1. Experimental setup

5.1.1. Dataset overview
In this section, our method’s performance is evaluated using popular time series datasets, chosen from real-world scenarios as

noted by ADATIME (Ragab, Eldele, Tan, et al., 2023). These datasets play a crucial role in evaluating models within Unsupervised
Time Series Domain Adaptation (UTSDA), offering diverse challenges and real-world applicability. Detailed summaries of these
datasets can be found in Table 2, and their descriptions are as follows:

• UCIHAR (Anguita et al., 2013) gathers data from accelerometers, gyroscopes, and body sensors across 30 subjects performing
six distinct activities. It uniquely treats each subject as a separate domain, offering a diverse perspective on human activity
recognition. Our evaluation focuses on five randomly selected cross-domain scenarios, aiming to assess the model’s adaptability
in handling activity patterns.

• WISDM (Kwapisz et al., 2011) includes accelerometer data from 36 subjects undertaking activities identical to those in
UCIHAR. Its significance lies in the inherent class imbalances, offering a rigorous test for models in handling diverse, real-world
data distributions.

• HHAR_SA (Stisen et al., 2015) or Heterogeneity Human Activity Recognition, involves data gathered from nine individuals
using smartphone and smartwatch sensors.
9
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5.1.2. Baselines
In our study, our primary goal is to conduct a thorough evaluation of the effectiveness of our multi-task disentangled learning

epresentations (MDLR) approach. In order to achieve this goal, we have carefully selected a set of baseline methods covering a wide
ange of strategies in the context of UTSDA. These selected baseline methods play a crucial role in evaluating how well our proposed
pproach performs in different facets of domain adaptation. Below, we provide a more detailed explanation of the rationale behind
he selection of each of these baseline methods:

• LSTM (Hochreiter & Schmidhuber, 1997) is a type of network good at understanding long-term dependencies in sequential
data. Its primary strategy involves learning from the source domain and directly applying the learned model to the target
domain without specific adaptation techniques. We include LSTM as a baseline due to its widespread use and effectiveness
in capturing long-term dependencies in time series data. It provides a fundamental benchmark for evaluating more complex
adaptation techniques.

• Deep CORAL (Sun & Saenko, 2016) primarily focuses on aligning the second-order statistics (covariances) of the source and
target domain features in a deep neural network. This alignment is achieved by minimizing a loss function that measures the
difference in covariances between the two domains. By doing so, Deep CORAL effectively reduces the domain shift, enabling
the neural network to generalize better to the target domain, even in the absence of labeled data in that domain. This method
is both efficient and effective, making it a valuable tool in the field of UTSDA.

• CoDATS (Wilson et al., 2020) excels in improving accuracy and reducing training time, particularly in scenarios with varying
data availability across domains. It leverages data from multiple sources, enhancing its effectiveness for complex datasets with
high inter-domain variability. Additionally, the model incorporates the Domain Adaptation with Weak Supervision (DA-WS)
method, utilizing weak supervision through target-domain label distributions, setting a new standard in time series domain
adaptation.

• SASA (Cai et al., 2021; Li et al., 2022) offers a novel solution for domain adaptation in time series data. This method includes
adaptive segment summarization to handle offsets, and employs both intra- and inter-variable sparse attention mechanisms to
capture associative structures considering time lags. The alignment of these structures facilitates effective knowledge transfer,
showcasing SASA’s innovative approach to overcoming the complexities in time series domain adaptation.

• AdvSKM (Liu & Xue, 2021) employs adversarial spectral kernel matching, a technique that aligns the spectral distributions of
source and target domains to facilitate domain adaptation. The approach is particularly effective in scenarios where labeled
data is scarce or unavailable in the target domain. By leveraging the spectral properties of time series data and adversarial
learning, this method significantly enhances the adaptability and performance of time series models across different domains.

• CoTMix (Eldele et al., 2023) addresses the challenge of domain shift between a labeled source domain and an unlabeled
target domain. CoTMix uses contrastive learning and a temporal mixing strategy to create intermediate augmented views for
both domains, effectively reducing the distribution shift. This approach maximizes the similarity between each domain and
its augmented view, guiding both towards a common intermediate space.

.1.3. Model variants
In order to gain deeper insights into the impact and importance of various components within our proposed framework, we

ntroduce and evaluate several model variants. This involves creating and analyzing various model adaptations, each designed to
ighlight the individual contribution of a specific component to the overall effectiveness of the model. This subsection details the
pecific structure and purpose behind each variant:

• MDLR is our original model proposed in this paper.
• MDLR-tr eliminates the component that extracts season-related features to determine the significance of trend-related feature

information.
• MDLR-sea only utilizes season-related information instead of both trend-related and season-related information to verify its

usefulness.

5.1.4. Evaluation metric
Due to the fact that certain classes may be entirely absent from certain subjects, the accuracy metric alone may not provide a

epresentative evaluation in such cases (Ragab, Eldele, Tan, et al., 2023). As a result, we use the Macro F1 (MF1) score for a more
alanced evaluation of our methods. The MF1 score averages the F1 scores across different classes, ensuring a fair assessment even
hen some classes are absent. The MF1 is calculated as:

MF1 = 1
𝑁

𝑁
∑

𝑖=1
F1𝑖, (16)

where 𝑁 represents the total number of classes, and F1𝑖 denotes the F1 score calculated for the 𝑖−th class.

5.1.5. Implementation details
The comparison algorithms in our study primarily rely on two key approaches: ADATIME (Ragab, Eldele, Tan, et al., 2023) and
10

SASA (Cai et al., 2021). We obtain our experimental data from the ADATIME research, which involves splitting each dataset into
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Table 3
Comparison of the MF1 score over the UCIHAR dataset.

Method 2→11 12→16 9→18 4→9 27→3 Avg

LSTM (Hochreiter &
Schmidhuber, 1997)

44.2652(4.4149) 41.8773(5.8167) 34.1139(2.2722) 38.5430(9.2611) 45.9549(1.8307) 40.9508

Deep Coral (Sun &
Saenko, 2016)

99.6258(0.6479) 58.6122(0.4840) 48.0212(12.4747) 43.0574(12.4843) 90.9798(7.8535) 68.0592

AdvSKM (Liu &
Xue, 2021)

93.5802(11.1193) 57.3007(1.0508) 42.5054(6.0673) 60.1062(6.2722) 78.7377(6.3465) 66.4460

CoDATS (Wilson
et al., 2020)

100(0) 63.1813(1.7432) 76.0955(4.0992) 62.1657(7.7272) 96.2181(4.9818) 79.5321

SASA (Cai et al.,
2021; Li et al.,
2022)

59.0502(2.3981) 57.3815(0.7630) 53.7608(3.5208) 28.5359(3.2997) 56.7476(4.0086) 51.0950

CoTMix (Eldele
et al., 2023)

92.7723(0.6454) 75.8572(3.0900) 85.0630(1.6305) 57.6395(1.4525) 97.9336(0.0507) 81.8531

MDLR 100(0) 65.2370(6.4914) 77.1725(5.0914) 70.3994(14.3148) 98.7233(0.5561) 82.3064

Table 4
Comparison of the MF1 score over the WISDM dataset.

Method 7→18 20→30 35→31 6→19 23→31 Avg

LSTM (Hochreiter &
Schmidhuber, 1997)

24.4478(0.3814) 24.9676(3.4875) 37.2910(1.0819) 24.2355(0.7308) 20.6698(6.6812) 26.3223

Deep Coral (Sun &
Saenko, 2016)

56.0187(2.1786) 63.9740(4.9646) 46.7507(19.1594) 57.7043(5.75693) 49.2834(7.7823) 54.7462

AdvSKM (Liu &
Xue, 2021)

45.9945(0.6307) 69.2655(4.0615) 46.3613(3.9359) 58.7460(6.4677) 55.6449(6.1024) 55.2024

CoDATS (Wilson
et al., 2020)

45.7402(5.5218) 67.9711(11.1440) 67.7228(0.9210) 54.3348(11.9263) 44.9203(12.4757) 56.1378

SASA (Cai et al.,
2021; Li et al.,
2022)

57.7813(1.0139) 60.7300(3.2919) 56.6333(1.9611) 52.9275(2.0720) 47.3673(6.2272) 55.0878

CoTMix (Eldele
et al., 2023)

50.8580(11.1642) 69.2431(5.5169) 62.7697(2.8024) 52.3571(6.7929) 55.7332(5.4097) 58.1922

MDLR 57.9102(6.0991) 71.8890(6.1517) 62.7448(6.4254) 74.9741(14.5675) 59.5477(3.6414) 65.4131

training, validation, and test sets. The experiments are conducted on a robust computational platform featuring a 12th Gen Intel(R)
Core(TM) i5-12490F processor, complemented by 16 GB of RAM. The system is further enhanced with a high-performance NVIDIA
GeForce RTX 3060 12G GPU, ensuring efficient processing of complex algorithms. We maintain a consistent batch size of 32 across
all datasets throughout the experiments. To optimize our model, we employ the Adam optimizer with a consistent weight decay of
0.0001. Regarding the model parameters, we set 𝑤𝑡𝑟𝑒𝑛𝑑 = 𝑤𝑠𝑒𝑎𝑠𝑜𝑛 = 0.5, indicating that equal weights are assigned to the trend-related
nd season-related predictors in the label classifier. We choose 𝛼 = 100, 𝛽 = 1, and 𝛾 = 1 to balance the trade-off between all loss

factors. Furthermore, we select only one kernel size and maintain a consistent kernel size parameter (𝜅) 8 for all three datasets. To
ensure the reliability and robustness of our results, we randomly select five adaptation problems/tasks. For each task, we compute
the average performance on the test set across three separate sets of network weights, all initialized randomly.

5.2. Experimental results and analysis

5.2.1. Overall comparison
Results on UCIHAR. Table 3 illustrates an comprehensive overview of different UTSDA methods on the UCIHAR dataset. The

MDLR method significantly outperformed other state-of-the-art models, with a remarkable average MF1 score of 82.3064. Among
other methods, CoTMix performed almost as well as MDLR with an average score of 81.8531, demonstrating its ability to adapt
during domain shifts. LSTM has the lowest average score of 40.9508. The AdvSKM and Deep Coral methods have intermediate levels
of accuracy, while the SASA method has the lowest average accuracy among these intermediate methods. Overall, these findings
highlight the effectiveness and adaptability of MDLR and CoTMix, making them top contenders for UCIHAR dataset tasks.

Results on WISDM. The comparison of the MF1 score over the WISDM dataset clearly indicates the strength of our proposed
model. Table 4 presents the mean values and standard deviations of the outcomes for various methodologies. Notably, our MDLR
model attains superior F1 scores across numerous tasks, distinguishing itself in performance. For example, Task 20 → 30 achieves an
F1 score of 71.8890 (with a standard deviation of 6.1517), and Task 6 → 19 attains 74.9741 (with a standard deviation of 14.5675).
Although CoDATS obtains the highest score of 67.7228 in Task 35 → 31, MDLR closely follows with a score of 62.7448. Based on
the average F1 scores, MDLR outperforms all other methods with an average score of 65.4131. The CotMix method, ranked second,
achieved a score of 58.1922, exhibiting a noteworthy difference from the MDLR algorithm’s performance. The average F1 scores
11

further prove the robustness of our model in extracting invariant knowledge across diverse domains.
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Table 5
Comparison of the MF1 score over the HHAR_SA dataset.

Method 8→1 0→2 5→8 7→6 5→3 Avg

LSTM (Hochreiter &
Schmidhuber, 1997)

44.2900(0.3909) 56.3782(2.0068) 62.4528(5.2861) 62.1426(6.7426) 46.6353(2.0185) 54.3797

Deep Coral (Sun &
Saenko, 2016)

93.7473(1.0487) 68.7375(2.5435) 96.5117(0.2691) 90.0865(8.1601) 95.2632(0.9637) 88.8692

AdvSKM (Liu &
Xue, 2021)

88.5591(1.9946) 66.2225(1.8916) 85.4380(10.8185) 83.6562(0.8402) 74.7243(0.5439) 79.7200

CoDATS (Wilson
et al., 2020)

76.5712(15.3432) 68.0878(5.3224) 92.9593(5.9070) 89.0866(2.6734) 83.1453(10.9483) 81.9700

SASA (Cai et al.,
2021; Li et al.,
2022)

64.8329(2.5699) 55.6107(1.5656) 75.7382(0.8887) 72.1470(0.3227) 69.8535(0.8078) 67.6364

CoTMix (Eldele
et al., 2023)

73.1530(1.6602) 72.6165(0.8942) 98.9269(0.6092) 94.6952(0.8325) 67.1293(53.9731) 81.3041

MDLR 94.5543(1.9030) 73.7938(4.1498) 97.1164(1.8901) 89.8126(0.1527) 93.1630(2.3677) 89.6880

Fig. 4. Feature visualization on the UCIHAR 19 → 15 and 12 → 16 task. The t-SNE embedding features for tasks 12 → 16 and 19 → 15 are displayed in the
upper and lower rows, respectively, with each color denoting a different category. The first column shows the original data’s embedding features without any
processing. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)

Results on HHAR_SA. The performance outcomes for different models on a time series domain adaptation task, utilizing the
HHAR_SA dataset, are detailed in Table 5. It appears that MDLR and CoTMix are the top-performing methods, with relatively low
standard deviations and high mean values across most pairs of input and output sequences. For example, MDLR has a mean value of
73.7938 for the 0 → 2 pair, which is the highest among all methods. On the other hand, LSTM appears to be the weakest performer,
with mean values consistently lower than the other methods. In the 5 → 3 task, Deep Coral emerges as the leader, but it does not
hold a significant advantage over MDLR. The CoTMix algorithm continues to show the best results in the 7 → 6 and 5 → 8 tasks,
although the gap between it and MDLR is not very significant. In summary, MDLR and Deep Coral are the most effective methods
for this task, with MDLR achieving the best performance.

5.2.2. Ablation study and visualization
We also utilize the t-SNE visualization tool to illustrate the effectiveness of trend-related and season-related information that

MDLR has learned in the UTSDA task, thus further proving the rationality of our proposed method for learning disentangled season
and trend representations. Specifically, we visualize the final features obtained by the variant models (MDLR, MDLR-tr and MDLR-
sea) on the UCIHAR (Anguita et al., 2013) 12 → 16 and 19 → 15 tasks. The results of the t-SNE embedding are presented in
Fig. 4, spanning from subfigures (a) through (h). In subfigures (a) and (e), the visualizations reveal that the original time series data
exhibit poor separability in the feature space. The season and trend factors of the time series data respectively represent different
information from the original data, which can be known by the discrete degree of different color clusters in the illustration. For
instance, as illustrated in subfigures (b) and (f), trend-related data effectively differentiates the blue, green, and red categories.
Similarly, subfigures (c) and (g) demonstrate that season-related information is key in distinguishing between the purple and yellow
categories. This suggests that our proposed method for learning disentangled representations of season and trend in the original
time series data is reasonable.
12
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Fig. 5. Sensitivity Analysis of the kernel Sizes Parameter 𝜅. Bars of different colors represent distinct 𝜅 values: blue (𝜅 = 1), green (𝜅 = 5), red (𝜅 = 10), purple
(𝜅 = 15), yellow (𝜅 = 20), and cyan (𝜅 = 25). (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this
article.)

5.2.3. Sensitivity analysis of the kernel sizes parameter 𝜅
In this subsection, our objective was to investigate the influence of kernel sizes (𝜅) on MDLR model’s performance across

diverse transfer tasks within datasets, specifically tasks randomly selected as HAR(4→15), WISDM(7→30), and HHAR_SA(0→7).
As visualized in Fig. 5, the 𝑥-axis represents categorizes of the datasets, and the 𝑦-axis quantifies the performance using the MF1
score. From the chart, HAR(4→15) achieves its highest MF1 score with 𝜅 = 10, WISDM(7→30) peaks at 𝜅 = 5, and HHAR_SA(0-> 7)
reaches its optimal performance at 𝜅 = 5. Overall, in all transfer tasks, there is a common pattern where the MF1 score initially
increases as 𝜅 increases and then starts to weaken. The optimal 𝜅 value appears to be around 8 for these tasks. Importantly, it is
clear that too high values of 𝜅 may result in a decrease in performance. This underscores the importance of carefully tuning the 𝜅
parameter for each dataset when using the MDLR model.

6. Discussion and analysis

6.1. Results analysis

In response to the challenge of adapting deep learning models to diverse time series domains, MDLR is designed as a dual-tower
architecture capable of disentangled learning of trend-related and season-related features to better extract invariant factors inherent
in various domains of time series data. Our experimental results reveal that our newly developed MDLR approach is highly effective
in addressing the UTSDA challenge. Specifically, when compared to existing methods such as LSTM, Deep CORAL, CoDATS, SASA,
AdvSKM, and CoTMix on three real-world time series datasets, MDLR consistently outperforms them, as indicated by higher MF1
mean scores. Ablation studies and sensitivity analysis further emphasize the significance of individual components in the overall
model architecture. The MDLR-tr and MDLR-sea variants in the ablation experiments reveal the distinct contributions of trend and
season-related information to the model’s performance. In this research, the Moving Average (MA) method is applied to smooth out
seasonalfluctuations, with kernel size (𝜅) influencing data smoothness and sensitivity. Our experiments explore different kernel sizes,
finding the optimal range to be 5–10. However, this varies with the dataset and transfer task, as indicated by sensitivity analysis.

Overall, combining all experimental results and comparing them with existing baseline methods highlights the advantages of
our proposed MDLR method, which are primarily focused on the following points: (1) In complex time series data domation
adaptation tasks, this method demonstrates good performance. (2) It emphasizes the importance of trend and season components
in time series data, especially in transfer tasks, where the performance of domain-invariant factors in different domains exhibits
significant differences in both the season and trend scales. The MDLR method effectively identifies and utilizes these differences to
enhance the model’s transfer capability. (3) By separately extracting trend-related and season-related domain-invariant information
from decomposed trend and seasonalcomponents of time series data, it effectively decouples representations of trend and periodic-
related invariant factors. While our MDLR method achieves good performance, its limitations mainly lie in the manual setting of
the hyperparameter 𝜅 for different datasets, which not only increases the preprocessing workload but may also affect the final
performance.

6.2. Theoretical and practical implications

From a theoretical perspective, we introduce the MDLR framework with a causal perspective, aiming to enhance the learning
of domain-invariant mechanisms across various domains. Specifically, we analyze the Time Series Domain Adaptation (TSDA) task
using causal inference and construct a causal graph based on the inherent decomposability features of trend and season components
in time-series data. Using a Structural Causal Model (SCM) and do-intervention operations, we design a dual-tower architecture
13
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comprising a Trend Feature Extractor (TFE) and a Season Feature Extractor (SFE) to extract trend-related and season-related
information. The causal theory provides a solid theoretical foundation for our model, offering a valuable theoretical framework
for addressing more complex domain-invariant factors in future research. In practical terms, our proposed multi-task disentangled
representation learning algorithm takes into consideration the separability of trend and season components in real-world time-
series data. By separately extracting features from these components to obtain domain-invariant factors, it significantly reduces the
complexity of training a single model to achieve disentangled representations in practice. Therefore, this work holds great promise
for practical applications.

7. Conclusion

This paper introduces a new method for unsupervised time series domain adaptation (UTSDA), focusing on a multi-task approach
hat leverages disentangled learning representations. Specifically, the causal inference theory provides a theoretical foundation for
pplying the disentangled learning representation method in UTSDA. Simultaneously, a multi-task framework is employed to extract
rend-related and season-related mechanisms separately. By using a cross-domain alignment loss to facilitate cross-domain feature
lignment, the method effectively learns invariant information across various domains. The proposed MDLR method has been tested
nd validated for its effectiveness through experiments on three different real-world datasets, demonstrating its practical utility in a
ariety of scenarios. Despite these promising results, our approach is not without limitations. A primary concern is that our method
ocuses predominantly on trend and seasonality aspects in time series data. This focus potentially overlooks other critical factors,
hich might be crucial in certain domain adaptation tasks. In response to this limitation, future work will explore the integration
f additional mechanisms within the UTSDA framework to capture a wider array of domain-specific features.
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