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Abstract—In autonomous driving, behavioral decision-making
and trajectory planning remain huge challenges due to the large
amount of uncertainty in environments and complex interaction
relationships between the ego vehicle and other traffic partici-
pants. In this paper, we propose a novel fixed-horizon constrained
reinforcement learning (RL) framework to solve decision-making
and planning problems. Firstly, to introduce lane-level global
navigation information into the lane state representation and
avoid constant lane changes, we propose the constrained A-star
algorithm, which can get the optimal path without constant lane
changes. The optimality of the algorithm is also theoretically
guaranteed. Then, to balance safety, comfort, and goal com-
pletion (reaching targets), we construct the planning problem
as a constrained RL problem, in which the reward function is
designed for goal completion, and two fixed-horizon constraints
are developed for safety and comfort, respectively. Subsequently,
a motion planning policy network (planner) with vectorized input
is constructed. Finally, a dual ascent optimization method is
proposed to train the planner network. With the advantage
of being able to fully explore in the environment, the agent
can learn an efficient decision-making and planning policy. In
addition, benefiting from modeling the safety and comfort of the
ego vehicle as constraints, the learned policy can guarantee the
safety of the ego vehicle and achieve a good balance between
goal completion and comfort. Experiments demonstrate that
the proposed algorithm can achieve superior performance than
existing rule-based, imitation learning-based, and typical RL-
based methods.

Index Terms—Autonomous driving, trajectory planning, con-
strained reinforcement learning, fixed-horizon constraint, policy
learning.

I. INTRODUCTION

HERE has been considerable interest in autonomous
driving technology by both industry and academia in
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recent years [1-3]. This is mainly due to potential benefits that
autonomous driving technology could bring to our daily lives,
such as enhancing road safety, alleviating parking difficulties,
improving daily commutes, and reducing emissions. Notably,
behavioral decisions and trajectory planning have become
critical components in autonomous driving [4].

In general, decision-making and planning algorithms can be
divided into two categories: traditional rule-based methods [5—
13] and learning-based methods. Moreover, the latter can be
divided into imitation learning (IL) based approaches [14-22]
and reinforcement learning (RL) based algorithms [23-28].

Rule-based methods: In traditional rule-based autonomous
driving, behavioral decision-making and planning problems
are usually solved separately. For behavioral decision-making,
lane change decision is a key component as a lateral deci-
sion model. Common lane change models include SUMQO’s
lane change model [5], MOBIL model [6], and personalized
driver model [7]. Particularly, in SUMO’s lane change model,
according to the urgency of the decision, cooperative lane-
changing, tactical lane-changing, and regulatory lane-changing
are considered to cope with different situations. In addition,
the Intelligent Driver Model (IDM) [8] is a classic single-
lane acceleration control model (car flow model), which is
often used for longitudinal decisions in typical autonomous
vehicles. Other car flow model includes [9, 10]. To achieve
intelligent behavioral decision-making, a series of rules are
often designed according to the experience of experts, and the
finite state machine can be used to model these rules. Kurt
et al. [11] proposed a hierarchical layout driverless control
system based on a finite state machine, which successfully
controlled a car to complete the DARPA! urban challenge.
On the other hand, for trajectory planning, given lanes and
static obstacles around the ego vehicle, the trajectory can be
obtained using numerical optimization [12], heuristic search
algorithms [13], and spline smoothing approaches.

IL-based methods: In the face of complex traffic scenarios,
rule-based methods are usually not applicable. This is because
it may be difficult to design effective and elaborate rules for
complex scenarios. Therefore, IL-based methods have become
popular in recent years. Chauffeurnet [15] is a deep learning
model that learns a robust autonomous driving planning model
by adding random perturbations to expert datasets. Taking
rasterized images as input, Chauffeurnet successfully drives
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a real car in a test facility. Different from the rasterized input
in Chauffeurnet, Zeng et al. [16] proposed a planning network
that directly takes the lidar and the original high-definition
(HD) map as input. It can generate a safe planning result
by sampling a set of diverse physically possible trajectories
and choosing the safest one. Moreover, MP3 [17] does not
use HD map information but directly utilizes lidar data to
construct local map information. In MP3, an innovative neural
motion planner is constructed by considering the uncertainty
information of other vehicles. On the other hand, vectorized
representation is another common state representation pattern
in the field of autonomous driving. The most typical state
construction method is VectorNet [18], in which maps, lanes,
and all traffic participants are represented by a series of
vectors. Compared with the rasterization input, the benefit of
vectorized input is that it does not lose any representation
accuracy. Based on the VectorNet, Scheel et al. proposed a
motion planning model trained by an offline policy gradi-
ent method [19], which achieves excellent performance in
complex autonomous driving scenarios. In addition, there are
autonomous driving planning methods based on generative
adversarial IL [21, 22], which have also achieved excellent
performance in many complex scenarios.

RL-based methods: However, in the existing autonomous
driving datasets used in IL-based methods, most of the data
is collected during normal driving situations. For example, a
large amount of data is collected when driving straight. There
is not much data on challenging cases, like when a car brakes
suddenly in front of the ego vehicle or a pedestrian crosses at
a red light. This feature makes the existing IL-based methods
unable to effectively deal with special corner cases. Thus, with
the assistance of high-fidelity simulation environments, RL
is introduced into behavioral decision-making and planning
[23]. In RL, an agent can fully explore various situations
in environments and obtain a planner that could maximize
the cumulative rewards [29, 30]. Huang et al. [24] proposed
a prior knowledge-based RL algorithm that achieved good
performance in the scenarios of a left turn at intersections and
roundabouts. Aiming at the problem of obstacle avoidance in
urban scenes, Zhao et al. [25] developed an RL algorithm
that utilizes a hybrid offline and online training technique,
which successfully realizes efficient obstacle avoidance on
urban roads. In order to ensure the stability and safety of
the RL algorithm in trajectory planning, Gangopadhyay et al.
[26] proposed an RL algorithm based on the control barrier
functions (CBF) and control Lyapunov functions, which suc-
cessfully controlled the vehicle to reach the target point in
a simulation environment. Similarly, for the control problem
with vehicle obstacle avoidance, Hu et al. [27] also proposed a
model-based safety exploration method based on CBF. Other
efficient RL-based planners have been summarized in [28].

Existing RL-based methods can only maximize the cumula-
tive reward during the policy optimization process. In order to
balance safety, comfort, and goal completion (reaching targets)
in planning, it is usually necessary to carefully design the
reward function in environments which is usually intractable.
In many cases, agents may sacrifice safety or comfort to
achieve better goal completion for higher rewards or become

quite conservative for absolute safety. In this paper, to better
balance the goal completion, safety, and comfort, we model
the problem as a constrained RL, in which the reward item
aims to make the ego reach the target as soon as possible, and
the constraint components consider the safety, comfort, and
violations of traffic rules. The overall optimization goal is that
the planner needs to maximize the cumulative reward while
satisfying all constraints (e.g., safety constraint and comfort
constraint). As a consequence, we propose a fixed-horizon
constrained RL-based planner for autonomous driving with
complex scenarios. The main contribution of this work is
summarized as follows:

o A fixed-horizon constrained RL framework is designed,
in which the fixed-horizon cumulative cost is utilized
to build the safety and comfort constraints. The plan-
ner trained by the proposed framework can achieve an
excellent balance in goal completion, safety, and comfort
for decision-making and planning tasks in autonomous
driving.

o To implement constrained policy training, a planner net-
work is designed, in which a graph network is applied to
extract the features of lanes, traffic participants, etc. Then,
a dual ascent policy learning method is developed, which
enables the learned policy to maximize the cumulative
reward while satisfying all the constraints.

e To introduce the global navigation information in lane
state representation in the planner network, a constrained
A-star algorithm is developed. It can be guaranteed that
the planned lane-level global path will not change lanes
constantly. In addition, the optimality of the constrained
A-star algorithm is theoretically proved.

o Experiments demonstrate that the proposed algorithm
can successfully perform tasks such as changing lanes,
waiting for red lights, and turning right in a complex
traffic scenario, and can reach the target point safely,
comfortably, and quickly. In addition, compared with
existing rule-based, IL-based, and RL-based approaches,
the proposed method can achieve better performance in
terms of goal completion, safety, and comfort.

The remainder of this paper is structured as follows. In
Section II, we describe the preliminary of the constrained RL.
In Section III, the fixed-horizon constrained RL-based planner
is introduced. In Section IV, the proposed method is verified in
simulation experiments. Comparisons with existing rule-base,
IL-base, and RL-based approaches are also carried out. Finally,
conclusions and future work are summarized in Section V.

II. PRELIMINARY
A. Constrained RL

Generally, constrained RL problems are often modeled
using a constrained Markov decision process (CMDP)
[31]. A CMDP can be represented by a tuple M =
(S, A, P J.,Ci,~), where S represents a state space and
A denote an action space. P(s'|s,a) : Sx A xS = R
represents the probability of the next state s’ € S occurring
given the current state s € S and action a € A. In addition,
r: S x A — Ris the reward given by the environment on
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Fig. 1. An illustration of the proposed RL-based framework.

each state transition. J., is a constraint function, which defines
cost in a constraint and C; is a cost threshold. v € [0,1] is a
discount factor. A standard CMDP aims to find a policy 7 that
can maximize the expected sum of rewards while satisfying
all constraints to make the agent have risk-sensitive behavior.
A CMDP problem is formally defined as

max E, thr(st,at) , .
T =0 M

st. J,(m) <Gy, i=1,..,n.

Moreover, the state value function V7(s) and the state-
action value function Q™ (s, a) are introduced to evaluate the
performance of the policy. Specifically, they are defined as the
discounted total reward under the policy 7 given the initial
state and action. From the definition, the following equations
hold [32]:

V7™(s) = Z m(als) Z P(s'|s,a)[r+4V7™(s)], (2

a

Q"(s,a) =r+v Y _ P(s'|s,a)V"(s). 3)

III. METHODOLOGY

This section first describes the proposed constrained A-star
search algorithm for global routing, which is used for lane
state representation in the input of the planner network. Then,
the state space, action space, reward, and cost design in our

method are introduced. Subsequently, the proposed motion
planning policy network is described, and the fixed-horizon
constrained policy learning with a dual ascent algorithm is
demonstrated. An illustration of the proposed framework can
be seen in Fig. 1.

A. Constrained A-star for Lane-level Global Routing

In order to realize lane-level navigation for lane state
representation, a directed graph is constructed based on the
relationship among lanes in the HD map. Each node in the
graph represents a lane, and the relationship among nodes
includes successor, left neighbor, and right neighbor. In ad-
dition, the weight on the edge connecting each node is the
distance between center points of the two lanes. Fig. 2 shows
a lane graph near an intersection.

Given a starting lane node and a target lane node, the
shortest path algorithm (e.g., Dijkstra’s algorithm or A-star
algorithm) can be directly used to obtain the optimal lane-
level path with the shortest distance. Note that consecutive lane
changes are uncomfortable and, in some areas, even against
traffic regulations. However, when solving lane-level global
routing problems, existing shortest path algorithms may give a
solution with constant lane changes. To deal with this problem,
we propose the constrained A-star algorithm. The path it plans
does not change lanes constantly and can find the shortest path
under the constraint of non-constant lane changes.

In normal A-star algorithms, the shortest path from the
starting node to the target node can be obtained by iterative
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Fig. 2. A lane graph near an intersection.

updates. Let g[n| represent the distance from the starting node
to node n in the iterative process, then g[n| can be updated
by

min
meprev(n

gln] =  Lglm] + Gmllnl}, )
where prev(n) is defined as previous nodes of node n,
and G[m][n] indicates the weight of the edge E(m,n). In
our constrained A-star algorithm, we first give the following

definition:

Definition 1. g1 [n] and g2|n] are defined as the distance from
the starting node to node n in the iterative process, where the
attributes of the last edge on the path represented in g1[n| and
g2[n] are left (or right) neighbor and successor, respectively.

Definition 2. G1[i]|[j] and G:li][j] are defined as the weight
on the edge connecting two adjacent nodes i to j, where
the relationships between © and j are left (or right) neighbor

and successor, respectively. When i and j are not connected,
G1lil[j] = oo, Ga[i][j] = oo

Definition 3. F}[i] and F[i] are defined as the parent node of
node 1 in the iterative process, where the relationship between
F1[i] and i is left (or right) neighbor, and the relationship
between Fy[i] and i is successor.

To further explain the meaning of the above definitions, an
example is shown in Fig. 3. Let the starting node be 1 and
n = 6. Then, ¢ [6] is the shortest path distance from node 1 to
node 6, where the attribute of the last edge is left neighbor, and
the corresponding path is 1 — 2 — 3 — 5 — 6. At this time,
F1[6] is the previous node of node 6 in the path, so F}[6] = 5.
Similarly, g2[6] is the shortest path distance from node 1 to
node 6, where the attribute of the last edge is successor. The
corresponding path is 1 -+ 2 — 3 — 4 — 6 and F3[6] = 4.

Then, in the iterative process, we can update g [n] and go[n]
with the following form:

pln = _min {golm] + Grlmfn]}. )
pln] = min {min {gs[m]. gelm]} + Gafmlnl} . (6)

n==6

Path 1 52—3—-4—-6 _
corresponds to ga[n]

T Path 12356,
* corresponds to g1 [n]

Starting Node 1

Fig. 3. An example to illustrate definitions of g1 [n], g2[n], F1[n], and F»[n].

where prevn(n) represents previous nodes of node n, which
satisfies that the attribute of the edges connecting them and
node n is successor. Notably, using (5) to update g; can ensure
that there will be no path with constantly changing lanes. Thus,
we can give the constrained A-star algorithm in Algorithm 1.

After obtaining g1, g2, we get the final path based on F1, Fb.
It can be shown that the case of constant lane change is avoided
when the path is constructed in Algorithm 1. For the shortest
path path*, (5) and (6) must hold, which can be viewed as the
optimality equation. Otherwise, there will be a shorter path.
Therefore, when the heuristic function is defined as h = 0, the
path obtained according to Algorithm 1 must be optimal under
the constraint of non-constant lane changes. Detailed proof of
the optimality of Algorithm 1 is shown in Theorem 1.

Theorem 1 (optimality). Let 6[n] be the shortest path distance
without constant lane changes from the starting node to node
n in the lane graph. Also, let g[n] = min{gy[n], g2[n]}, where
g1[n], g2[n] are obtained by the constrained A-star Algorithm.
Then, when the heuristic function satisfies h = 0, we have

gln] = d[n].

Proof. We prove it by induction. Denote X as the closed node
set and the starting node ID as 1. When |X| = 1, we denote
X as X;. Then, we have X; = {1}, and g[1] = 0 = §[0].
When |X| = k, let us assume g[z] = d[z],2 € X. Then,
when | X| = k+1, let us denote X}, 1 = Xy U{u}. Thus, we
only need to prove that g[u] = d[u].

We prove it by contradiction. Suppose exist the shortest
path W without constant lane changes from node 1 to node
u, whose length is {(1V), that satisfies (W) < g[u].

In the path W, denote E(p, q) as the first edge that leaves
Xk+1. Then, one can have

I(Wp) +1U(p,q) < LW),

where W), is the sub-path of W, who connects node 1 to node
p. According to the assumption when | X| = k, g[z], 2 € X,
g[p] is the shortest path distance without constant lane changes,
one can obtain g[p] < I(W,). Then we have

glp] +1(p,q) <UW).

Considering the fact that p and ¢ are adjacent and in the con-
strained A-star Algorithm g; and gy are updated by minimize
operations, we can get g1[g] < g2[p]+1(p, ¢) when the attribute
of FE(p,q) is successor, and g2[q] < g[p] +1(p, ¢). In addition,
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Algorithm 1 Constrained A-star Algorithm
Input: A graph G4, and a graph G». Let starting node ID as
1 and target node ID as N. Two distance arrays g; and g2. A
heuristic function h. Two parent arrays F; and F,. An open
node set Q = {1,..., N}.
Procedure:

1: Initialize g1[1] = 0, g2[1] = 0.

2: Initialize ¢1[k] = 00, g2[k] = 00,k =2, ..., N.

3: while 2 is not empty do

4:  Let m = mingeq {min{gi [k], g2[k]} + h(k, N)}.

5:  Get all next nodes of node m as a set B.

6: for nin B do

7: if the attribute of edge E(m,n) is successor then

8

9

Let p = min{g1[m], g2[m]} + G2[m][n].
if p < g2[n] then

10: Let g2[n] = p and Fy[n] = m.
11: end if

12: else

13: Let p = g2[m] + G1[m][n].

14: if p < g1[n] then

15: Let g1[n] = p and Fi[n] =m.
16: end if

17: end if

18:  end for

19:  Remove n from (2.

20: end while

21: Let path =[], le=1 and n = N.
22: while n is not staring node do

23:  if le==1 and g;[n] < g2[n] then

24: Let n = Fi[n] and le = 0.
25:  else

26: Let n = Fy[n] and le = 1.
27:  end if

28:  Add n to path.
29: end while
30: Reverse path.

Output: min{g1[N], g2[N]}, path.

the next point u selected in the constrained A-star algorithm
is based on the smallest g, then we have g[u] < g[q]. Finally,
one can get

glu] < glg] = min{g:[q], g2[q]}
< min {gz2[p] +1(p, ), glp] +1(p,q)}
=glpl +1(p,q) <UW)
< g[ul,

which makes a contradiction. Therefore, there is no such path
W that satisfies [(W) < g[u]. O

B. State Space and Action Space Design

With the constrained A-star algorithm, the lane state in state
space can be constructed based on the resulting global routing
information. To fully represent all the information that the
agent can perceive, there are four main parts in the state space,
including ego vehicle, traffic participants, lane, and traffic light
and type representation.

1) Ego Vehicle: The state of the ego contains the position
and the heading angle (,y, heading) of the current moment
and the three historical moments. Thus, a matrix with the shape
of (4,3) is used to represent the state of the ego. The position
and heading angle are in the coordinate system based on the
ego vehicle at the current moment.

2) Traffic Participants: The state of the traffic participants
is similar to the ego vehicle. In our setting, up to 30 traffic
participants within 75 meters of the ego vehicle are considered.
Thus, a tensor with the shape of (30, 4, 3) is used to represent
the state of traffic participants.

3) Lane: To make full use of global navigation information,
only lanes that exist in the planned path by the constrained A-
star are included. In addition, up to 30 lanes within 100 meters
of the ego vehicle are taken into account. The representation
of a lane consists of three parts: the centerline of the lane,
and the left and right sidelines of the lane. In the setting of
this article, 40 points are used to represent a line (centerline,
left line, or right line), and each point is represented by the
position (z,y). Thus, all centerlines can be represented by a
tensor whose shape is (30, 40, 2). The entire lanes can be
represented with 3 tensors (center, left, and right lines), and
the size of each tensor is (30, 40, 2). The coordinates of these
points are based on the ego vehicle coordinate system.

4) Traffic Light and Type Representation: In order to rep-
resent the traffic lights and types of traffic participants and
different lane lines, an extra type encoding is used, includ-
ing tp_car, tp_bike, tp_pedestrian, tl_red, tl_yellow, tl_green,
tl_none, line_solid, and line_dashed, in which tp means traffic
participants and ¢/ means traffic light. Considering that there
are at most 30 traffic participants, 30 lane centerlines, 30 left
lanes, and 30 right lanes, a total of 120 elements need to be
coded. Therefore, a vector with a length of 120 is used to
represent their type.

5) Action Space: The main advantage of RL is the ability to
make intelligent decisions, so the control part of the vehicle is
not considered. Therefore, the action is defined as the position
and heading angle of the ego vehicle after 0.1 seconds on the
ego vehicle coordinate system.

C. Reward and Cost Design

The algorithm proposed in this paper aims to make the ego
drive to the target lane while ensuring the safety and comfort
of the vehicle. Therefore, the goal completion and the speed
of the agent are considered in the design of the reward. Safety
and comfort of the agent are taken into account in the design
of the cost.

1) Reward for Reaching Target: In order to enable the ego
vehicle to reach the given target lane, the reward for reaching
the goal 7, is defined as

ro=Az-af + Ay -y +025- (A2% + Ay%), (D)

where (Az, Ay) is the ego’s movement distance along the
two axes. (z},y;) is the tangent direction of point p; on the
planning path 7, where p; is the closest point to the ego on
T¢. T¢ 18 the standard trajectory which is defined as follows:
7y is the lane centerline when no lane changes are needed, or
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Unsafe or Uncomfortable
States

Fig. 4. Intuition about why the fixed-horizon constraints can alleviate the
conservativeness of the agent in the learning phase.

T 1s the straight line between the start point and end point of
the two lanes when a lane change is needed. Thus, the agent
will be rewarded for driving along the lane and moving fast.
To avoid speeding of the ego vehicle, the values of Az, Ay
are truncated in our environment.

2) Safety Cost (collision): In order to avoid collisions
between the ego vehicle and traffic participants and avoid
violation of traffic rules, an additional cost value is output
in the environment at each time to indicate the safety of the
agent. The safety cost ¢} is defined as

¢; = 1{collision or violation of traffic rules}, (8)

where 1{} is the indicator function.

3) Comfort Cost (jerk): The previous reward design and
safety cost design have been able to make the agent safely
reach the target point. In addition, in order to ensure sufficient
comfort during driving, an additional comfort cost cf is set in
this environment, which is defined as

c; = 1{ace, < Co}, ©)

where acc; represents the acceleration of the ego vehicle at
time t. C, is a threshold for acceleration, which is set to 4 to
avoid uncomfortable situations.

D. Motion Planning Policy Network

The essence of the policy network is to learn a mapping
from the state space to the action space, so that the agent can
safely and comfortably drive to the target point. Inspired by
the VectorNet proposed by Gao et al. [18], the structure of the
policy network proposed in the paper is shown in Fig. 1.

The state in the environment can be seen as a series of
arrays. Each array is composed of many points. For example,
an array can represent the edge of a lane or a trajectory of a
traffic participant. Therefore, we first consider using a graph
network to model the relationship between these points in an
array. The features of each array can be obtained by readout
from the graph after aggregation. Then, we can get one ego
feature, multiple lane features, and several traffic participant
features. Combined with the type embedding representation,
these features are put into a multi-head attention layer to build
the interactive relationship among the ego vehicle, lanes, and
other traffic participants. Then, a fully connected layer is used
to output the ego’s action.

Algorithm 2 Fixed-Horizon Constrained Policy Learning with
Dual Ascent

Input: Initialize parameters € of the policy network mg.
Initialize parameters 1), o1, 2 of the three critic networks
Vy? Ve, Wae, respectively. Initialize a clip ratio ¢, a learning
rate «, and two positive dual variables u, v. Initialize a data
buffer D.

Procedure:

1: for each epoch do

2. for each step do

3: Observe state s and take the action a ~ mg(- | s).

4: Observe the next state s’, reward r, safety cost c*,
comfort cost c®, and done signal d.

5 Store the data (s,a,s’,r, ¢, ¢ ds) in D.

6: end for

7. Compute A™ with V[ and data in D.

8:  Update 0 by gradient decent using (18) and A™®.

9:  Update u,v by dual ascent using (19) and (20).

10:  Update v, o1, 2 by gradient descent with MSE loss.

11:  Clear buffer D.

12: end for

Output: 7g.

E. Policy Training With Dual Ascent Algorithm

To efficiently train the policy network, make the collision
rate as small as possible (safety), and make the driving of the
ego vehicle comfortable, we construct the following problem
with fixed-horizon constraints:

e}
E t
) - Eﬂ'g YTt
t=0

min

N
1
st Eny |57 D Cirn| <C° (10)
k=0

N

1 C c

E‘ﬂ'e NE Cotk <7,
k=0

in which N is a fixed-horizon [33], and 0 is the parameters of
the policy network mg. The optimization goal is to maximize
the discounted cumulative reward and ensure that the ratio of
collisions between the ego vehicle and other traffic participants
in a fixed-horizon is less than a small threshold C*. In addition,
the average number of sudden jerks in a fixed-horizon should
also be less than a small threshold C*°.

As shown in Fig. 4, in existing typical constrained RL,
the constraints are usually constructed with infinite-horizon
cumulative cost (e.g., Er, D pegcitr] < C) [34]. The
consideration of the cost with infinite steps makes the agent
conservative in the exploration process. However, with fixed-
horizon constraints in this paper, the agent is not influenced
by unsafe behaviors in the distant future. Thus, the constraint
is actually relaxed, and it can make the agent explore with
less conservativeness while keeping a sense of risk avoidance.
Then, higher returns become easier to achieve.

To solve the problem shown in (10), three critic networks

V”",Vg‘i,ng’ are used to evaluate the cumulative reward,
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Fig. 5. Comparison of the proposed constrained A-star algorithm with the typical A-star algorithm on six different path planning tasks.

fixed-horizon safety cost, and fixed-horizon comfort cost:

Vo (s) =Ex | >_v're|s] (11)
Lt=0

B N
us 1 S
V7o(8) = En, NZCH’CS , (12)
L k=0
L
WZe(s) = Enr, NZchrks , (13)
L k=0

where 1, 1,2 are the parameters of the three networks
VJ; °, Vf;‘j , Wf;g respectively. Then, the loss functions of these
three critic networks can be defined as the mean square error
(MSE) on the data that has been collected by the policy.
Subsequently, the advantage function A™ (s, a;) in terms of

reward can be defined as
A (s, a,) = En, [n AV (5041) — v;e(st)] (14

which indicates how much is a certain action a; a good

decision given a state s;. Practically, we can calculate the

advantage using generalized advantage estimation (GAE) [35]
oo

A" (s, a0) & Y (PN oy,

t'=t

15)

in which 6y = 7y —|—'yV$9 (str41) —V$9 (s¢). Then, we denote
A™0 (s, a;) as A:ek. Same as in PPO [36], to avoid unstable
updates of the policy, the optimization goal in the k-th policy
iteration can be set to minimize

L(e) = _E‘ﬂ'e |:mln {ptAz'ek , Chp (Pt7 1— €, 1 + 6) A:ek }‘:| 7
(16)

mo(a|st)
7oy, (ai]st)
mg and me, at time step t. clip is defined as clip(x,b,u) =

max{min{x,u},b}, and e describes the clip range. Then,
to solve the optimization problem with constraints shown
in (10), we first denote E.,[1/N Z,ICVZO ciii) as Js(@) and
Erp[l/N Z,ICVZO ¢y i) as J.(@). Then, the Lagrangian of the
optimization problem in (10) can be written as

where p; = is the weight of the importance between

L£(0,u,v) = L(6) +u (Js(0) — C°) +v (J(0) — C°), (17)

where u, v are the Lagrange multipliers. With the dual ascent
method, in each iteration of the policy, we can update the
parameter 6 with the following form:

oL
0« 06— a%(e,u,v),

where « is the learning rate. Then, the Lagrange multipliers
u,v can be updated by

(18)

U — maX{O,u—Fagﬁ(O,u,v)},

= max {0,u + a(Js(0) — C*)}, (19)
v max{Om +agf(0,u,v)} ,
= max {0,v + a(J.(0) — C)}. (20)

Then, we can iteratively apply (18), (19), and (20) to update
the policy and the two dual variables u, v. Finally, the problem
shown in (10) can be solved, and we can obtain a policy that
satisfies the constraints and has a high cumulative reward. We
summarize the policy training process in Algorithm 2.
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Fig. 6. The description of an autonomous driving task. During the whole
process, from the initial lane, the ego vehicle needs to complete four tasks:
(1) Change lanes to the right-turn lane; (2) Wait for the red light; (3) Turn
right; (4) Go straight to reach the target lane. Note that the color on the lane in
the intersection indicates the status of the traffic light at the current moment,
and red indicates that the traffic light on this lane is red. In addition, in this
environment, the time interval of the simulation is 0.1 seconds.

IV. EXPERIMENTS

In this section, we first evaluate the effectiveness of the pro-
posed constrained A-star algorithm in intersection scenarios.
Then, based on the state space constructed by the constrained
A-star algorithm, the performance of the proposed policy
learning algorithm is evaluated in a simulation environment.
Subsequently, comparisons are made with existing rule-based,
IL-based, and RL-based methods to evaluate the strengths of
the proposed algorithm. Overall, we aim to investigate the
following research questions:

o« RQI1: When constructing a state in the environment
for incorporating the global routing information, is the
proposed constrained A-star algorithm able to avoid the
situation of constant lane changes during path planning?

¢ RQ2: Can the ego trained by the proposed algorithm drive
to the target lane safely in autonomous driving tasks?

o RQ3: Compared with existing rule-based, IL-based, or
RL-based approaches, can the proposed method achieve
better performance?

A. Implementation Details

In this paper, we built a simulation environment based on
Bokeh? - an interactive visualization library. This environment
simulates a complex intersection whose state space, action
space, and reward design have been described in Section III.
Compared with other existing autonomous driving simulation
environments [37—40], our environment uses real lane data (an
intersection in Boston, USA), and the relationship between the
lanes is more complex. In addition, traffic lights are simulated
in our environment. Moreover, interactive simulations of other
traffic participants were also realized by adopting IDM [8] and
a lane change model [5]. During environment initialization,

Zhttps://bokeh.org

TABLE I
HYPERPARAMETERS USED IN OUR POLICY OPTIMIZATION ALGORITHM

Hyperparameter Value
Fixed-Horizon N 10
Safety threshold C'® 0
Comfort threshold C* 0.1
Discount factor -y 0.99
GAE \GAP 0.97
Activation function ReLu
Learning rate of the policy network o le-4
Learning rate of all critic networks 2e-4

Clip ratio 0.2

Max Kullback-Leibler divergence 0.01
Max episode length 1000
Training steps of the policy network per epoch 40
Training steps of all critic networks per epoch 80
Steps per epoch 1024

each traffic participant is assigned a target lane, which is
chosen randomly from all nodes in the lane graph that do
not have a successor node.

One evaluation indicator is that whether the ego vehicle
can successfully reach the target lane. Going out of driveable
areas is considered unsuccessful. We also evaluate the number
of times the ego vehicle collides with other vehicles, and the
comfort level of the ego vehicle while driving (the number of
jerks in an entire episode).

The proposed model was trained on a workstation with CPU
of Intel Gold 6240R and GPU of NVIDIA GeForce RTX
3090 using PyTorch [41]. Hyperparameters of the proposed
algorithm and the training configuration are shown in Table 1.

B. Constrained A-star Evaluation

To answer RQ1, Fig. 5 shows the experimental results of
the proposed constrained A-star algorithm on six path planning
tasks. Compared with the traditional A-star algorithm, our
method can successfully perform path planning and effectively
avoid the situation of constant lane changes. Notably, in
some cases, the traditional A-star method can also obtain the
solution of non-constant lane changes, shown in Fig. 5 (c), but
this situation cannot be guaranteed in all path planning tasks.

C. Motion Planner Evaluation

To answer RQ2, we evaluate the proposed policy learning
algorithm in a target reach task, which is shown in Fig. 6.
In this task, the ego vehicle needs to reach the target lane
safely, which means the ego vehicle should not collide with
other traffic participants, go out of the drivable area, or violate
traffic rules. As shown in Fig. 6, starting from the initial
lane, firstly, the ego should change to the right-turn lane.
Then, the agent may need to wait for the end of the red
light at the intersection. Subsequently, the ego needs to turn
right and finally go straight to the target lane. During this
period, in order to avoid collisions with other vehicles, the
ego may also need to follow the car ahead. To train the
policy network by the proposed constrained RL algorithm, the
simulation environment is built based on the map shown in Fig.
6. Fig. 7 shows the key trajectories of the learned policy in
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(a) Change lanes

(b) Wait for the end of the red light

(d) Go straight

Fig. 7. Trajectories of the policy trained by the proposed method in our simulation environment with four subtasks, including changing lanes, waiting for
the red light, turning right, and going straight. The green lines are the trajectories of the ego vehicle in the next 1.5 seconds. A more detailed driving video

can be viewed in the supplementary materials.

performing the autonomous driving task. It can be seen that the
ego vehicle can successfully complete tasks such as changing
lanes, waiting for the red light, and turning right. Finally,
the policy obtained by the proposed method successfully and
safely arrives at the target lane. In addition, the position,
heading angle, velocity and angular velocity of the ego vehicle
when driving to the target position is shown in Fig. 8. The
whole driving process took about 26 seconds, and the period
is divided into 4 stages, namely changing lanes, waiting for
a red light, turning right and going straight to approach the
target point. Among them, the maximum velocity is 19.903
m/s, with an average speed of 7.518 m/s.

Therefore, we can conclude that the driving policy obtained
by the proposed algorithm can successfully make the ego
vehicle drive to the target position safely.

D. Compare With Related Methods

To answer RQ3, we compare the proposed policy learning
algorithm with a traditional rule-based planning approach, two
IL-based approaches, and one RL-based method. Specifically,
the following four methods are compared:

o A rule-based method: this method is a decision-making
and planning model, based on the IDM [8] model and a
lane-changing model [5]. In order to further ensure the
safety of the model, an additional emergency braking rule
is added to the model. When the ego vehicle is less than
1 meter away from the vehicle in front, the ego vehicle
will brake urgently to avoid a collision.

o An IL-based method (IL-1): a common IL-based planning
method is Urban Driver [19]. The model is trained on
the Lyft dataset [42], which includes 100 hours of expert
demonstrations on urban roads.

e An IL-based method (IL-2): considering the fact that a
larger scale autonomous driving planning dataset has been
released recently [40], named NuPlan Dataset®, which
contains approximately 1300 hours of driving data with
a total size of about 1.8T, we fine-tune the Urban Driver
model (IL-1) on these data and get a new IL-based model
(IL-2).

3https://www.nuscenes.org/nuplan#data-collection
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Fig. 8. The position and velocity of the ego vehicle during performing an
autonomous driving task, in which the ego’s motion planning policy is trained
by the proposed policy optimization algorithm.

o A typical deep RL method: PPO [36] is a classic deep
RL algorithm, which is featured by gradient clipping. In
experiments, PPO is also trained in the proposed environ-
ment. Without the constrained A-star, the representation
of lanes is slightly different. The way to get the lane
state is as follows: (1) Given the roads where the starting
point and the end point are located, the traditional A-star
algorithm is used to obtain the navigation roads where
the agent should drive. Note that a road is composed of
multiple side-by-side lanes in the same direction; (2) At
time step ¢, lane state is all the lanes on the navigation
road near the ego car. Without the constrained A-star, no
lane-level standard trajectory 7; can be used to reward
the agent. Instead, the centerline of the road is used as
the reference trajectory. In addition, the policy network
used in PPO is the same as the policy network presented
in this paper.

Table II shows the evaluation results of the above four
approaches and the proposed policy learning algorithm in the
simulation environment with the indicators of total reward,
total safety cost, and total comfort cost. It can be seen
from Table II that the rule-based method can successfully
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TABLE II
COMPARISON OF OUR DRIVING POLICY WITH THE RELATED METHODS

Performance Time and Speed
Method Total Total Safety Cost Total Comfort Cost ?;agc; Time Average Veloci . .
Reward  (Number of Collisions) (Number of Jerks) Consumed ge Velocity  Maximum Velocity
Rule-based [5, 8]  246.526 0 24 Yes 289 s 6.779 m/s 14.258 m/s
IL-1 [19] 253.316 3 12 Yes 27.6 s 7.094 m/s 18.283 m/s
IL-2 [19, 40] 249.464 2 9 Yes 28.7 s 6.860 m/s 17.946 m/s
PPO [36] 56.697 6 16 No N/A N/A N/A
Ours 262.308 0 18 Yes 26.2 s 7.518 m/s 19.903 m/s
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Fig. 9. Visual comparisons of avoiding collisions between our method and
the IL-2 method. (a) Visualization result of IL-2 method; (b) Visualization
result of the proposed method.

reach the target lane and has not collided with other traffic
participants. However, due to the rule of emergency braking
in order to ensure safety, there are 24 jerks during driving.
Moreover, the total reward attained by the rule-based method
is relatively low. The number of jerks in IL-based methods
is significantly reduced due to training from a large number
of expert demonstrations. However, because the training goals
of IL-based are relatively single and cannot effectively weigh
between safety and goal completion, it leads to a certain
collision. The driving speed of IL-based methods is higher than
the rule-based method, and it can get higher total rewards. For
PPO, it can’t reach the target lane. This is mainly because the
trajectory is quite aggressive without considering the comfort
constraint and safety constraint during policy learning, which
eventually leads to deviation from the drivable area especially
when the ego vehicle turns. Moreover, the lack of lane-
level representation and reward design may also be one of
the reasons. As for the proposed constrained policy learning
algorithm, the highest total reward is achieved. The proposed
method also achieves zero collision due to an additional
safety constraint term during policy learning. Furthermore,
from the aspect of comfort (number of jerks), the method
is superior to the rule-based method but inferior to IL-based
methods. Moreover, the proposed method also achieves the
fastest average speed and minimum time consumption.

In addition, we also visualize the performance of our
method and the IL-2 method in collision avoidance, as shown

ABLATION STUDY OF THE PROPOSED POLICY LEARNING ALGORITHM

Model  Total Reward  Total Safety Cost  Total Comfort Cost
WCC* 274.941 0 33
wsct 277.215 21 17

JIsE 229.692 0 11

Ours 262.308 0 18

* WCC means without the comfort cost constraint.
T WSC means without the safety cost constraint.
1 IH means infinite-horizon in constraints.

in Fig. 9. Group (a) shows a situation where the IL-2 method
cannot avoid a collision with a car in front. The ego car has
a tendency to brake, but it does not stop completely, which
means the planning network does not output 0 absolutely in
such a case. In similar cases, our method is able to stop stably
behind the car in front, as shown in group (b) in Fig. 9. This
is due to the safety constraint in the proposed method, which
guarantees that the final learned planner can avoid collisions.

From these observations, we can obtain the conclusion that
the proposed constrained policy learning method can achieve a
better balance in terms of reaching target, safety, and comfort
in the simulated autonomous driving task.

E. Ablation Study

To further verify the effects of various components in the
proposed motion planner, we perform an ablation experiment
on the proposed method on the components of comfort cost
constraint, safety cost constraint, and the horizon in con-
straints. Table IIT shows the result of the ablation study. It
can be observed that removing constraints yields a higher
total return, but the corresponding safety or comfort will be
reduced. In addition, increasing the horizon in the constraint
(e.g., infinite horizon) helps achieve better safety and comfort,
but will also significantly affect the value of the total reward.
As a consequence, with appropriate constraints, the final policy
network can achieve a good balance in goal completion, safety,
and comfort.

V. CONCLUSION AND FUTURE WORK

In this paper, we proposed a fixed-horizon constrained
RL framework for decision-making and trajectory planning
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problems in autonomous driving, which can make autonomous
vehicles reach the target point safely and comfortably in
complex transportation environments. Different from many
existing IL-based methods, which are aimed at short-term
trajectory planning, this paper introduces global navigation
information in the state representation for long-term planning.
To avoid constant lane changes in path planning for global
routing, we first propose the constraint A-star algorithm,
in which the optimality is guaranteed theoretically that the
optimal path under the constraint of non-constant lane changes
can be reached. Therefore, as a sort of global navigation
information, the result of constrained path planning is utilized
in the lane representation. Then, to achieve a good balance
among reaching target goals, safety, and comfort in the task
of planning, we proposed the fixed-horizon constrained policy
learning algorithm, in which safety and comfort are con-
structed as two different constraints. The goal of the agent is
to reach the target point while satisfying the constraints. The
dual ascent technique is proposed to solve the constrained RL
problem. In addition, to reduce the conservativeness of the
agent in the learning phase, we construct the safety constraint
and comfort constraint as the paradigm of fixed-horizon cu-
mulative cost. Complex traffic simulation experiments show
that the trajectory planning policy obtained by the proposed
algorithm can successfully perform the tasks of changing
lanes, waiting for traffic lights, turning, and going straight.
Things like collisions with other vehicles and violations of
traffic lights do not happen during driving. Compared with
other methods, the proposed method can get a better total
reward and can better balance safety, comfort, and reaching
targets.

It is worth noting that the trajectories given by the proposed
method are not as comfortable as the methods based on IL.
The main reason is that IL-based methods are trained on expert
demonstration data so that the trajectory output by the network
is similar to the trajectory driven by a human, which might be
smoother. However, our method discretely gives the waypoint
after 0.1 seconds to the agent, so the overall comfort is not
as good as methods based on IL. In future work, we will deal
with this problem by combining RL and expert demonstration.
In addition, we also consider applying the proposed algorithm
to real scenarios.
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