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Abstract. Streaming process discovery aims to discover a process model
that may change over time, coping with the challenges of concept drift
in business processes. Existing studies update process models with fixed
strategies, neglecting the highly dynamic nature of trace streams. Con-
sequently, they fail to accurately reveal the process evolution caused by
concept drift. This paper proposes RLSPD (Reinforcement Learning-
based Streaming Process Discovery), a dynamic process discovery app-
roach for constructing an online process model on a trace stream. RLSPD
leverages conformance-checking information to characterize trace distri-
bution and employs a reinforcement learning policy to capture fluctua-
tions in the trace stream. Based on the dynamic parameters provided by
reinforcement learning, we extract representative trace variants within
a memory window using frequency-based sampling and perform con-
cept drift detection. Upon detecting concept drift, the process model is
updated by process discovery. Experimental results on real-life event logs
demonstrate that our approach effectively adapts to the high dynamics of
trace streams, improving the conformance of constructed process models
to upcoming traces and reducing erroneous model updates. Additionally,
the results highlight the significance of the pre-trained policy in dealing
with unknown environments.

Keywords: Process discovery - Concept drift - Trace stream -
Reinforcement learning

1 Introduction

Process mining aims to understand the business processes of organizations by
analyzing event data recorded in information systems [1]. Process discovery is
the primary task of process mining. It explicitly constructs a process model
based on the execution records of a business process, providing insights for sub-
sequent process monitoring and improvement. Early process discovery meth-
ods [2—4] employ the entire event log to construct a process model by analyzing
the execution relationships among activities. These methods operate under the
assumption that the business process is in a steady state, and the process model
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Fig. 1. lllustration of dynamic parameter adjustments in streaming process discovery

extracted from historical event logs can describe the execution of the future pro-
cess. However, real-life processes may undergo changes over time due to shifts in
business environments, such as evolving requirements and policies, herein called
concept drift [5]. Organizations must treat the real-time event logs generated
by business systems as data streams and handle concept drifts within them [6].
When the underlying business process changes, the distribution of the traces
representing different process variants changes. Once a concept drift is detected,
the online process model must be updated to ensure high conformance with
upcoming traces.

Prior studies [7—12| primarily focus on detecting and locating concept drifts,
delving into when they occur, their characteristics, and the root causes. However,
the process evolution before and after concept drifts is not explicitly revealed.
Several approaches have recently explored dynamic process discovery on event
streams. In [13-16], process discovery is performed whenever new data arrives
or at regular intervals, without considering potential changes in the process exe-
cution. Consequently, the process model is updated solely upon detecting con-
cept drifts in [17]. Nevertheless, it uses the same fixed detection parameters for
diverse trace streams or segments within the same trace stream, failing to effec-
tively adapt to the highly dynamic nature of trace streams. This may result in
erroneous or delayed updates to the process model.

Figure 1 illustrates a fluctuating trace stream that contains underlying pro-
cess evolution and noise caused by misoperations. For instance, at time t5, uti-
lizing a fixed small window (e.g., window size = 3) may mistakenly identify
the fluctuation caused by the noise trace o5 as a concept drift, leading to an
erroneous model update. This issue can be addressed by enlarging the window
to filter out noise, thereby enhancing resistance to interference. Conversely, at
time t19, the underlying business process has changed. If the fixed window is
large (e.g., window size = 5), the discovered model is influenced by distant his-
torical traces, resulting in a delayed detection of the sudden drift. This issue
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can be mitigated by reducing the window size to focus exclusively on the most
recent traces, facilitating a rapid and accurate update of the process model.
In summary, dynamically adjusting parameters is crucial for streaming process
discovery.

This paper proposes RLSPD (Reinforcement Learning-based Streaming Pro-
cess Discovery), a novel dynamic process discovery approach designed to discover
an online process model over the trace stream. We utilize the conformance-
checking information of the process model for the upcoming traces to charac-
terize the trace distribution. Subsequently, we employ a reinforcement learning
policy to dynamically determine the required parameters (i.e., memory window
and sampling rate) for identifying the most representative trace variants through
frequency-based sampling. A change in the representative variants signifies a sig-
nificant shift in the trace distribution, indicating the detection of a concept drift.
At this point, the process discovery is re-performed based on the new trace vari-
ants, and the online process model is promptly updated.

The main contributions of this work are summarized as follows: 1) We pro-
pose a streaming process discovery approach that improves the conformance
of the online process model to the upcoming traces under concept drifts, and
reduces the number of incorrect model updates. 2) We characterize trace distri-
bution with conformance-checking information and employ reinforcement learn-
ing to capture the dynamic nature of trace streams. This enables the acquisi-
tion of robust online process models, even in the presence of totally new trace
streams. 3) We conduct experiments on several real-life event logs treated as
trace streams, and the results show the effectiveness of RLSPD.

The rest of this paper is organized as follows. Section 2 reviews related work.
Section 3 introduces preliminary concepts, while Sect. 4 describes the proposed
RLSPD approach. The experimental results and discussions are reported in
Sect. 5. Finally, Sect. 6 draws conclusions and sketches future work.

2 Related Work

Concept Drift in Process Mining. Traditional process mining algorithms,
such as Inductive Miner [2], ILP Miner [3] and Split Miner [4], operate under
the assumption that business processes always remain stable. However, real-
world business processes often change over time due to factors like customer
requirements and market trends.

Concept drift in process mining was initially explored in [7], where three
critical issues were identified: drift detection, drift localization, and unraveling
process evolution. Most research has primarily focused on the first two prob-
lems. Hypothesis testing is a prevalent method for detecting concept drift [7-9].
It involves extracting features at both the log and trace levels and conducting
hypothesis tests on consecutive sub-logs to determine whether there is statistical
evidence of significant differences in feature sets before and after the drift point.
Another category of concept drift detection methods is trace clustering [10-12].
This technique involves mapping traces into a vector space and clustering them
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within fixed-size windows. Drift is detected when there are notable differences
between two consecutive clusters. Drift localization approaches typically ana-
lyze variations in feature sets or trace clusters before and after concept drifts,
identifying the drift type and the changed activities or transitions.

These methods focus on detecting and locating concept drifts, but do not
reveal the process evolution before and after concept drifts. This necessitates a
mechanism for dynamic process discovery within event streams.

Streaming Process Discovery. In recent years, researchers have been ded-
icated to discovering evolving process models in dynamic business scenarios.
In [13-16], various static process discovery algorithms are applied to stream
settings. By introducing classic data stream mining techniques like Sliding Win-
dow and Lossy Counting, the event stream is managed to continuously update
the underlying data structure with the latest observations. The process model
is then reconstructed based on this updated representation. Despite addressing
the challenge of processing infinite event stream data with limited memory, these
approaches do not explicitly detect concept drifts. This leads to restarting pro-
cess discovery periodically or upon the arrival of each new event, potentially
resulting in unchanged process models and unnecessary time consumption.

Combining process discovery with concept drift detection becomes crucial. By
capturing the high dynamics of the log stream, it is possible to update the process
model only when necessary. STARDUST [17] designs a streamlined drift detec-
tion method specifically for streaming process discovery. It monitors the trace
stream and detects concept drifts when high-frequency trace variants changes,
and then uses these trace variants to discover a new process model. However,
its fixed window size and sampling rate cannot effectively adapt to the dynamic
changes in trace distribution, potentially resulting in false detections of concept
drifts and impacting model fitness and precision for upcoming traces.

Using identical and fixed parameters may result in poor performance when
confronted with various trace streams or diverse segments within a single trace
stream. While grid search is a prevalent approach for parameter optimization,
it is inefficient in highly dynamic real-time scenarios. Hence, we introduce rein-
forcement learning to adapt to changes in trace streams, dynamically adjusting
parameters for concept drift detection and process discovery.

3 Preliminaries

3.1 Event and Trace Stream

A process is a series of interrelated and ordered activities executed according to
specific rules and conditions to achieve a particular goal. Each case represents
an instance of process execution. Let A be the set of activities, C be the set of
case identifiers, and 7 be the set of timestamps.

Definition 1 (Event). An event e is a triple, e = (¢,a,t) € C x A x T repre-
senting that in case ¢, activity a is executed at timestamp t¢.
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To identify the case, activity, and timestamp of an event e = (c,a,t), we
introduce the functions: Ieqse(€) = ¢, Loctivity(€) = @, Ltime(€) = t, respectively.
Let L denote the end activity, an event e with I.qsc(e) = ¢ and Iycrivity(e) =L
represents the completion of case c.! Then, the complete execution trace o, of
case ¢ can be extracted.

Definition 2 (Trace). A trace o. is a sequence of all events within the same
case ¢ in time order, o. = (e1,e€2,...,e,), where I.gse(€;) = Icase(€it1) =
c, Itime(ei) < Itime(eiJrl)vi S {17 27 ceey U — 1}7 and Iactim'ty(en) =1.

For trace o. = (e1,e2,...,en), let o.(i) = e; be the i-th event of trace o,
|oc| = n be the total number of events in completed case ¢, and the completion
time of trace o, be t. = Iiime(0c(|0c|)) = Ltime(en). Different cases are executed
as the business process system runs, generating an online stream of traces.

Definition 3 (Trace stream). A trace stream X is an infinite sequence of
traces in order of trace completion time, i.e., X' = o1,09,..., where for each
c € C, 0. denotes the complete execution trace of case ¢, and t. < t.y1.

To adapt to the dynamic nature of streaming data, it is necessary to introduce
a memory window that only considers the traces from the most recent period.

Definition 4 (Memory window). Let w be the memory size. Given a trace
stream Y and the current trace o., a memory window extracts a trace subset
S¥ that records the most recent w traces, S = {Cc_w41,Tc—wt2; s Te -

When analyzing a trace set to discover a process model, the focus is on the
execution order of different activities in each trace and the frequency of distinct
trace variants.

Definition 5 (Trace variant). A trace variant v is a unique activity execution
sequence, v = (ay, az, ..., a,), where a; € A and a,, =L.

Let v(7) be the i-th activity of trace variant v, and |v| be the total number
of activities in v. The trace o, belongs to the trace variant v only if |o.| = |v]
and Ioctivity(€i) = v(i) for each i = 1,2, ..., |o.|.

Definition 6 (Trace variant counter). A trace variant counter Vg is a counter
that records distinct trace variants and their frequency in the trace set S.

Taking the trace stream Y = 01,09, ...,011, ... in Fig. 1 as an example, traces
01— 04,06 — 07 belong to trace variant (a1, as,as, L) and traces og — 011 belong
to trace variant (a1, as, L). With memory size w = 10 and the current trace
011, the trace set S1) = {09, 03,...,011} can be transformed into trace variant

5 4 1
counter Vgio = {(a1,a2,a3, 1)",(a1,as, 1), (a1,as, L) }.

! Business processes usually declare the completion of a case, such as ticket resolution
in help desk processes. Business processes that do not explicitly declare the comple-
tion of a case cannot be handled in this study and require further investigation in
future work.
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Before constructing a process model, it is a common practice to filter the
input traces to extract essential information and reduce noise interference. An
intuitive solution is to sample high-frequency trace variants from the trace vari-
ant counter as a preprocessing step for process discovery.

Definition 7 (Frequency-based sampling). Let p be the sampling rate.
Given a trace variant counter Vg, the frequency-based sampling algorithm is
a function @(p,Vs) that sorts the trace variants of Vg in descending order of

frequency and generates V£, which comprises the smallest counter set of the
rwe)
F(Vi)

top-frequent trace variants of Vg so that > p.

The function I'() counts the total occurrences of trace variants recorded in

a trace variant counter. For example, given p = 0.8 and Vs = {(a1, as, as, J_>5,

<(11,(15,J_>4 ) <a17a47J->1}a Vi = gp(pv VS) = {<a17a27a37J->5 ) <a17a57l>4}7 Sam-

P
pling the top two most frequent trace variant of Vg. In this case, 11:((“2 ; = 1% >

0.8.

3.2 Process Discovery and Conformance Checking

Using a trace variant counter as input, process discovery algorithms abstract the
order of activity execution, generating a summarized representation to construct
a process model.

Definition 8 (Process model discovery). A process discovery algorithm {2 :
Vs — M is a function that constructs a process model M from a trace variant
counter Vg.

Process models come in various forms (e.g., Petri nets, process trees, and
BPMN). Still, they exhibit similar behaviors in executing and generating a set
of traces based on the represented processes. For a given process model M,
its behavior By refers to the set of traces that can be generated through its
execution.

To evaluate a model, the typical practice involves checking its conformance
with a given trace variant counter, examining the model’s behavior against the
counter to measure its appropriateness.

Definition 9 (Conformance checking). Given a process model M and a
trace variant counter Vg, a conformance-checking algorithm ¥ (M, V) measures
the appropriateness of M for Vg, denoted as o = {af,a?}. of represents fit-
ness, quantifying how much of Vs can be reproduced in M, while of represents
precision, quantifying the proportion of Bj; can be observed in Vg.

Alignment [18] and Token Replay [19] are two widely used conformance-
checking algorithms. The former identifies inconsistencies by comparing traces
and executable paths of the model. Although intuitive and accurate, it exhibits
high computational complexity for large-scale models and traces. Conversely,
the latter employs tokens in a Petri net to simulate the execution of traces,
identifying errors or rule violations during the replay of traces in the model. It
achieves approximate alignment results with higher computational efficiency but
only applies to process models that can be converted into standard Petri nets.
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Table 1. Example of concept drift detected between t19 and t11 in X of Fig. 1

Timestamp | Vg V& with p=0.8 A(VE)

ty {{a1,a2,a3, 1)*  (a1,a5, 1)*, (a1, a4, L)'} | {{a1, a2, a3, L)% (a1,as, 1)*} | {{a1,az2,a3, 1), (a1, a5, L)}
t1o {{a1,a2,a3, 1)* (a1,a5, L)*} {{a1,az2,a3, 1)? (a1,as, 1)*} | {{a1,a2,a3, 1), (a1, a5, L)}
t1n {(al,az,ag,J_>1,(al,as,J_>4} {(al,as,J_>4} {{a1,as, 1)}

3.3 Streaming Process Discovery

When conducting process discovery tasks on a trace stream, the expectation is
that the process model discovered based on existing historical traces exhibits high
conformance with upcoming traces, thereby providing insights for downstream
tasks such as process monitoring, prediction, and enhancement. However, in the
presence of concept drifts, the existing model may fail to effectively depict the
ongoing business process. In such cases, it becomes necessary to dynamically
restart the process discovery for model updates.

We introduce function A(Vs) to identify distinct trace variants recorded
in a trace variant counter Vg, e.g., A({(a1,as as, L)°, (a1, a5, L)'}) =
{(a1,a2,a3,1),(a1,as, L)}. When the high-frequency trace variants A(VY) dif-
fer between two memory windows, we consider that there is a significant change
in the trace distribution between these two memory windows, that is, a concept
drift occurs.

Definition 10 (Concept drift). Considering two trace sets S}’ and S}
recorded by a memory window in a trace stream X' at timestamps ¢; and t;,
if A(VE,) # A(VE,), a concept drift is detected in X' between ¢; and ¢;.

i J

According to the definition, a concept drift is detected when a particular
trace variant in the trace stream experiences a substantial increase or decrease
in frequency. Table 1 illustrates a scenario of a concept drift detected between t1¢
and t17 in the trace stream Y of Fig. 1, considering a memory size w = 5. This
drift is attributed to the emergence of a newly frequent trace variant (a1, as, L).

4 Methodology

This section introduces RLSPD, as illustrated in Fig. 2, with four modules: Pro-
cess Discovery, Conformance Checking, RL-based Parameter Selector, and Con-
cept Drift Detection. Detailed descriptions of each module are provided below.

4.1 Process Discovery

In the initialization phase, we observe the trace stream X' to obtain the initial set
So = {01,092, ...,04,} consisting of the first w traces. We then extract the most
representative trace variants VSP0 = P(p, Vs,) by frequency-based sampling. In
this way, the online process model is initialized to M = Q2(V§ ).
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Fig. 2. The framework of RLSPD

After completing the initialization step, we continuously monitor the trace
stream. Once a concept drift is detected, we re-run the process discovery algo-
rithm and update the online process model M = (V) according to the latest
representative trace variants V' provided by the concept drift detection module.
Otherwise, the model M remains unchanged.

4.2 Conformance Checking

After initialization, we evaluate the online process model by checking its confor-
mance with upcoming traces. Considering computational efficiency, we choose
Token Replay [19] as the conformance-checking algorithm ¥. To maintain eval-
uation stability, we calculate the appropriateness with the upcoming trace set
rather than a single trace, avoiding drastic fluctuations cause by noise traces.

Let o be the observation window size. At each time step t, we observe the
trace stream X and record the next o arriving traces, obtaining the set S; =
{0i+1,0i+2, ..., Oito}, Where i represents the count of traces already seen in the
trace stream. Then, we transform S; to a trace variant counter Vs,, perform
a conformance-checking algorithm (M, Vs,) to calculate the appropriateness
oy = {af, P} and insert it into the historical queue Q.

4.3 RL-Based Parameter Selector

We aim to use the appropriateness queue @ as a feature to capture the fluc-
tuations in the trace stream, dynamically providing parameters p; to extract
the currently most representative trace variants for streaming process discovery.
This can be considered as an agent in reinforcement learning making real-time
adaptive adjustments to the dynamic environment.

In reinforcement learning, an agent learns how to make optimal decisions
in interacting with the environment. At each time step ¢ € [1,T], the agent
takes an action u; according to its current policy m(u:|x:) and state x; of the
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environment. The environment interacts with this action, gives a feedback reward
re = R(xt,uy), and proceeds to the next state. According to this new state,
the agent moves into the next time step and decides a new action. The goal
of reinforcement learning is to train an agent with policy 7 to maximize the
expected sum of rewards.

For streaming process discovery, the key is to find the optimal parameters
to select the most representative trace variants in the trace stream, thus prop-
erly characterizing the trace distribution and detecting concept drift. The trace
stream and the online model can be viewed as the environment in reinforcement
learning, and parameter adjusting can be viewed as the action. Then, parameter
optimization can be considered as training an adjusting agent to learn a policy
for finding the optimal action. In streaming process discovery, we evaluate the
appropriateness of the online process model with the upcoming traces in the
trace stream, which shows how the trace stream fluctuates and hence offers rich
information for adjusting the parameters. Having observed this, we apply the
appropriateness queue (Q at time step ¢ (denoted as Q) to construct the state
X;, denoted as

Xt = {Qt;Pt—1}7 (1)

where Q¢ = (at—ni1,Qt—ny2,op) and Pry = (Dt_n,Pt—ht1,--,Pt—1) are
queues consisting of appropriateness and parameters of the history window with
length h, respectively. Note that one time step of reinforcement learning corre-
sponds to o new arrival traces observed in trace stream .

Given the state x;, the agent will take an action, that is, choose a parameter
vector u; € R+, where N, is the number of parameters to be adjusted. This
is a user-defined variable that varies with different streaming process discovery
methods. We choose two key parameters, including memory size w; and sampling
rate p;. Thus, the action is defined as

uy = {we, pe}- (2)

The memory size determines how many recent traces in the trace stream
should be considered, while the sampling rate determines how frequently a trace
variant should appear to be considered representative. After taking the action,
the parameters are updated with u;, formulated as p; = {ws, p:}.

Based on the updated parameters p;, we detect whether a concept drift has
occurred, indicated by a binary variable d;. If d; = 1, we perform process discov-
ery and update the online process model. Then, we continue to observe the trace
stream and perform conformance checking on the model and the set of traces
within the next observation window, calculating the appropriateness a;11. After
that, the reward function R(x;,u;) is defined as

R(Xtyut) =1 — B dy — 7wy, (3)

where 3 and v denote penalty coefficients. The purpose of doing this is to main-
tain high appropriateness while reducing the occurrence of concept drift to save
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computational resources and decrease time consumption, and reducing the mem-
ory window size to minimize memory consumption. Finally, the environment
proceeds to the next time step and updates the state to x;41 = {Q¢+1, P}

We train the agent with the Twin Delayed Deep Deterministic policy gradient
algorithm (TD3) [20]. Each episode corresponds to a trace stream transformed
from a historical event log. Both the actor and critic networks adopt Gate Recur-
rent Unit (GRU) [21] to capture time-series features of the state.

During the online execution phase of streaming process discovery, the trained
actor network is used for inference. At each time step t, it takes an environmental
state x; as input and outputs the considered optimal parameter p; = u;.

4.4 Concept Drift Detection

As defined in Definition 10, we believe that a concept drift has occurred when
the representative trace variants change in the trace stream.

At each time step t, after calculating the appropriateness oy of the online pro-
cess model with the newly arrived trace set S = {011,042, .., Tito}, the RL
agent gives parameter p; = {wy, p+}. Then, the trace set to be considered in the
memory window w; can be extracted as Si'', = {Tito—w,+1, Tito—w,+25 -+ Tito)s

and the current representative trace variant counter is V5, = @(p, Ve ). Sim-
o, ito

ilarly, the trace set in the previous memory window w;_1 is S;" ™" = {0—w,_,+1,
Oi—w,_1+42, -, 07} and the previous representative trace variant counter is
Vg&;ﬂl = &(ps_1, Vguwi-1). If these two are not the same, we believe that the trace

distribution has changed significantly, indicating a concept drift has occurred.
We use a binary variable d; to denote whether a concept drift is detected at time
step t, formulated as

LA (Vi) # A (v )
0. (Vsi:“:il) = A (Ve

i+o

dy = (4)

If a concept drift occurs(i.e., d; = 1), the process discovery module is trig-
gered, updating the online process model; otherwise (i.e., d; = 0), the model
remains unchanged. After that, we go to the next time step ¢ + 1 and continue
monitoring the trace stream.

5 Experiment
The proposed RLSPD is implemented in Python, and the source code is available

in the GitHub repository?. We evaluate the effectiveness of RLSPD on several
benchmark event logs.

2 https://github.com/WHU-Process-Mining/RLSPD.
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Table 2. Statistics of event logs: number of activities, events, traces and trace variants

Event log #Activities | #Events | #Traces | # Variants
BPIC2013Incidents(BPIC13I) 4 65533 7554 1511
BPIC2020DomesticDeclarations(BPIC20DD) 17 56437 10500 |99
BPIC2020InternationalDeclarations(BPIC20ID) | 34 72151 6449 753
BPIC2020PermitLog(BPIC20PL) 51 86581 7065 1478
BPIC2020PrepaidTravelCost(BPIC20PC) 29 18246 2099 202
BPIC2020RequestForPayment(BPIC20RP) 19 36796 6886 89

5.1 Experimental Setting

Datasets. We generate trace streams from six real-life event logs available in
4TU. ResearchData? for experiments. These logs record the execution of busi-
ness processes related to travel reimbursement and traffic management. Table 2
provides the characteristics of these logs.

Hyperparameters. For each trace stream, an initial model is constructed using
the first 200 traces (i.e., wg = 200). According to [17], the initial sampling
rate pg is set to 0.8. Subsequently, continuously observing the trace stream to
obtain the next trace, conformance checks are performed between the model
and the next ten traces (o = 10). Then, parameters are given based on ten
historical evaluations (h = 10) by the reinforcement learning agent, and the
online process model is updated through process discovery if a concept drift is
detected. The process discovery algorithms we employed are Inductive Miner
(IND) [2] and ILP Miner (ILP) [3], both conveniently imported from PM4PY*.
The hyperparameters wg, 0, h are chosen based on experience and preliminary
experimental results as better values.

Comparison Methods. To validate the effectiveness of RLSPD, we compare
it with STARDUST [17], the state-of-the-art method that employs fixed param-
eters for concept drift detection and process discovery. Additionally, we use the
STATIC process discovery as a baseline, which keeps the process model discov-
ered in the initialization step without updates upon detecting concept drifts.

Evaluation Metrics. To evaluate the performance of different methods, we use
the average F-measure of fitness and precision, denoted as

T fop
1 1 20 o

F== E F, = T titp’ (5)

=1 i—1 0 t oy

where F; is the Fl-score of a{ and of , and it is calculated together with appro-
priateness in the online process discovery phase. In addition, we record the num-
ber of model updates (i.e., detected concept drifts) and the computation time

3 https://data.4tu.nl/.
4 https://github.com/pm4py /pm4py-core.
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Table 3. Overall performance

Trace stream | Method F-measure Update count Time(s)
IND |ILP |IND |ILP IND | ILP
BPIC13I STATIC 0.73 |0.65 |0 0 10 |9
STARDUST | 0.68 |0.62 | 329 |329 14 |12
RLSPD 0.75/0.67 | 67 |345 10 |11
BPIC20DD | STATIC 0.72 {0.72 |0 0 2 2
STARDUST | 0.93 | 0.89 |8 8 2
RLSPD 0.95/0.95 65 |141 2 5
BPIC20ID | STATIC 0.46 |0.61 |0 0 10 |8
STARDUST | 0.50 | 0.63 | 487 | 487 25 | 140
RLSPD 0.90/0.90 35 |45 6 8
BPIC20PL | STATIC 0.30 |0.59 |0 0 25 |15
STARDUST | 0.16 |0.32 | 630 |630 442 | 1895
RLSPD 0.83/0.84 50 |55 10 |12
BPIC20PC | STATIC 0.48 10.50 |0 0 2 2
STARDUST | 0.57 |0.77 | 134 |134 3 14
RLSPD 0.88/ 0.88 12 |15 1 2
BPIC20RP | STATIC 0.69 10.69 |0 0 1 1
STARDUST | 0.92 1 0.89 12 |12 1 2
RLSPD 0.94/0.94 |6 4 1 2

spent in seconds when processing the entire trace stream. The computation time
reflects the duration of a full episode during the testing phase of reinforcement
learning. This encompasses model initialization and the online phase (including
conformance checking, adaptive parameter adjustment by the trained RL agent,
concept drift detection, and potential restart of process discovery). The compu-
tation time is collected through experiments conducted on a workstation with
Intel(R) Core(TM) i7-12700 CPU, NVIDIA GeForce GTX 1080 Ti GPU and
125 GB RAM Memory, operating on Ubuntu 20.04.4 LTS.

5.2 Results and Discussions

Overall Performance Evaluation. To evaluate RLSPD’s overall performance,
we train the RL agent and conduct testing on the same dataset. We investigate
the impact of updating process models when concept drifts are detected through
a comparison with STATIC. Additionally, we explore the effectiveness of lever-
aging reinforcement learning for dynamically adjusting parameters in streaming
process discovery by comparing RLSPD with STARDUST. Table 3 reports the
average F-measure, as well as the update counts and computational time for the
online process model handling the entire trace stream.
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Fig. 3. The model’s appropriateness using fixed and dynamic parameters on BPIC13I

The results highlight a substantial performance boost of RLSPD compared to
the baselines. Continuous updates to the online process model, as evidenced by
the F-measure, prove to be more effective in adapting to the trace stream and
aligning with upcoming traces than maintaining the initial model unchanged.
Notably, on BPIC13I and BPIC20PL, STARDUST’s fixed parameter strategy
results in delayed or erroneous model updates due to numerous trace vari-
ants, leading to adverse effects. Regarding computation time, STATIC generally
requires less time due to its non-updating nature. However, in cases involving
a complex initial model followed by subsequent process simplification, STATIC
consumes more time due to conformance checking. In general, RLSPD excels
in capturing trace distribution fluctuations through dynamic parameter adjust-
ments, which not only enhances conformance with upcoming traces but also
reduces unnecessary model updates and time consumption.

Dynamic Parameter Analysis. To further explore the effectiveness of
dynamic parameters, we analyze the adjustment of the memory window in
RLSPD while processing the trace stream BPIC13I as an illustrative example.
We record the appropriateness of the online model at each time step (as shown in
Fig.3(b)) and compare it with the fixed parameter strategy (wo = 200) depicted
in Fig. 3(a).

The observations indicate that RLSPD tends to use smaller memory win-
dows, enabling it to promptly adapt to the numerous trace variants and signif-
icant fluctuations in BPIC13I. Around time steps 100 and 200, a slight decline
in the appropriateness is noticeable. RLSPD swiftly detects and mitigates this
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Table 4. Zero-shot performance

Trace stream | Method Memory size | Sampling rate | F-measure Update count
IND |ILP |IND | ILP
BPIC13I STARDUST | 800 0.8 0.68 | 0.62 | 329 | 329
Grid Search |10 0.1 0.75 | 0.67 | 341 | 341
RLSPD-Z 200 0.8 0.75|0.67 | 107 | 226
BPIC20DD | STARDUST | 1000 0.8 0.93 |0.89 |8 8
Grid Search | 200 0.2 0.95/0.95 5 5
RLSPD-Z 200 0.8 0.95/0.95 12 |15
BPIC20ID STARDUST | 600 0.8 0.50 | 0.63 | 487 | 487
Grid Search | 50 0.1 0.89 |0.89 |66 |66
RLSPD-Z 200 0.8 0.89 |0.90 | 28 |47
BPIC20PL STARDUST | 700 0.8 0.16 | 0.32 | 630 | 630
Grid Search | 50 0.1 0.830.84 | 105 | 105
RLSPD-Z 200 0.8 0.82 |0.84|79 |15
BPIC20PC | STARDUST | 200 0.8 0.57 |0.77 | 134 | 134
Grid Search | 700 0.1 0.89/0.89 0 0
RLSPD-Z 200 0.8 0.88 |0.88 |15 |17
BPIC20RP | STARDUST | 700 0.8 0.92 |0.89 |12 |12
Grid Search | 200 0.2 0.940.94 3 3
RLSPD-Z 200 0.8 0.940.94 6 4

change by increasing the memory window, thereby reducing noise interference
and preventing erroneous model updates. Around time step 300, a sharp appro-
priateness decline prompts RLSPD to infer a sudden concept drift, reducing the
memory window for rapid adaptation and timely model updates. This suggests
that RLSPD adeptly captures trace stream fluctuations through evaluation met-
rics, effectively enhancing the model’s conformance with future traces.

Zero-shot Performance Assessment. To assess RLSPD’s zero-shot capa-
bility with entirely new trace streams, we conduct transfer reinforcement
learning on RLSPD-Z. The RL agent is trained on five trace streams and
tested on the remaining new ones. In contrast, STARDUST employs a fixed
strategy when handling different trace streams, setting the memory window
to 10% of the trace stream size and the sampling rate to 0.8. In addi-
tion, we perform a grid search on STARDUST’s parameters, varying them
in the grid wy = {10,50, 100,200, 300, 400, 500, 600, 700, 800, 900, 1000} and
po ={0.1,0.2,0.3,0.4, 0.5,0.6,0.7,0.8,0.9, 1.0} to find the best fixed parameters
(labeled as Grid Search). Table4 presents the initial parameters for different
methods, along with the process model’s average F-measure and update counts.

The results indicate that RLSPD-Z achieves comparable performance to Grid
Search regarding the F-measure and effectively reduces the number of model
updates. The optimal parameters identified through Grid Search suggest vary-
ing memory window requirements for different trace streams, with sampling rates
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favoring lower values such as 0.1 or 0.2. This implies diverse fluctuation patterns
among trace streams, where a small number of high-frequency trace variants
can represent the overall trace distribution. In practical and various business
scenarios, STARDUST exhibits poor performance with a fixed parameter strat-
egy. Additionally, Grid Search requires partial data collection before searching
and becomes time-consuming as the search space expands. In contrast, RLSPD,
based on reinforcement learning with offline pre-training, demonstrates the abil-
ity to achieve satisfactory zero-shot results on entirely new trace streams.

6 Conclusion

In this paper, we propose RLSPD, a streaming process discovery approach for
dynamically adapting to evolving business processes. It leverages feedback from
conformance checking by reinforcement learning and updates the online process
model upon detecting concept drifts. Experimental results demonstrate that
RLSPD, through dynamic parameter adjustments, effectively improves model
conformance with upcoming traces and reduces unnecessary model updates.

Currently, our approach relies on event stream data partitioning into com-
plete traces, which is only suitable for business processes with declared com-
pletion activities. We plan to introduce predictive process monitoring to pre-
dict completion marks for ongoing cases. Additionally, our method only detects
whether concept drifts occur, lacking an analysis of drift characteristics and root
causes. Future work involves integrating relevant concept drift analysis methods.
Furthermore, our future research will explore how activity sequence information
in traces can be exploited in reinforcement learning, providing a more compre-
hensive understanding of trace stream dynamics.
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