Knowledge-Based Systems 284 (2024) 111253

Contents lists available at ScienceDirect

Knowledge-Based Systems

journal homepage: www.elsevier.com/locate/knosys

Check for

SDFormer: A shallow-to-deep feature interaction for knowledge graph S|
embedding
Duantengchuan Li®', Tao Xia?, Jing Wang ", Fobo Shi “!, Qi Zhang %", Bing Li »*", Yu Xiong

@ School of Computer Science, Wuhan University, Wuhan 430072, China

b School of Automation, Chongqing University of Posts and Telecommunications, Chongqing 400065, China

¢ National Engineering Research Center for E-Learning, Central China Normal University, Wuhan 430079, China

dSchool of Information Management, Central China Normal University, Wuhan 430079, China

¢ Hubei Luojia Laboratory, Wuhan 430079, China

f Research Center for Artificial Intelligence and Smart Education, Chongqing University of Posts and Telecommunications, Chongqing 400065, China

ARTICLE INFO ABSTRACT

Keywords:

Link prediction

Knowledge graph embedding
Shallow interaction

Deep interaction

Attention mechanism

Vector tokenization

Inferring missing information from current facts in a knowledge graph (KG) is the target of the link prediction
task. Currently, existing methods embed the entities and relations of KG as a whole into a low-dimensional
vector space. Nonetheless, they ignore the multi-level interactions (shallow interactions, deep interactions)
among the finer-grained sub-features of entities and relations. To overcome these limitations, we present
a shallow-to-deep feature interaction for knowledge graph embedding (SDFormer). It takes into account
the interpretability of sub-feature tokens of entities and relations and learns shallow-to-deep interaction
information between entities and relations at a more fine-grained level. Specifically, entity and relation vectors
are decomposed into sub-features to represent multi-dimensional information. Then, a shallow-to-deep feature
interaction method is designed to capture multi-level interactions between entities and relations. This process
enriches the feature representation by modeling the interaction between sub-features. Finally, a 1-X scoring
function is utilized to calculate the score of each knowledge triplet. The experimental results on several
benchmark datasets show that SDFormer obtains competitive performance results and more efficient training
efficiency on other comparative models and because of the shallow-to-deep feature interaction between entities
and relations.

1. Introduction by matching the latent semantic information between entities and rela-

tions [12-14], and (3) neural network-based methods, which utilizes

Freebase [1] and WordNet [2] are two examples of knowledge
graphs, which are structured representations of facts with nodes desig-
nating entities and edges designating relations between them. KGs are
widely adopted in different scenarios, like question answering systems,
recommendation systems [3,4], and web search. Nonetheless, there are
usually a large number of absent links in existing knowledge graphs.
The link prediction task [5-7] is to infer the missing knowledge triplets
from the existing knowledge graph to alleviate the drawbacks in the
existing KGs.

At present, massive methods for link prediction tasks already ex-
ist. These approaches can in turn be divided into three branches:
(1) translational distance methods, which calculates the translational
distance between subject entity and object entity vectors via relation
vector, such as [8-11], (2) semantic matching (or tensor decomposi-
tion) methods, which determines the plausibility of a knowledge triplet

* Corresponding author.

embedding-independent parameters to store the learned knowledge,
so that they can enrich feature representations, like [15-17]. More
recently, there are a lot of other views which employ Transformer [18]
for the task of link prediction. For instance, KG-BERT [19] evaluates the
confidence of the triplet by fine-tuning the pre-trained language model.
In addition to this, StAR [20] and Ruleformer [21] also have employed
Transformer in a different way for Knowledge Graph Embedding (KGE).

The above models map entities and relations into a low-dimensional
space to generate a single static embedding, and learn how entities and
relations interact mutually via simple vector splicing and convolutional
networks. As a result, they ignore the multi-level interactions among
finer-grained features. As shown in Fig. 1, to accurately predict the
triplet (Curry, Occupation,?), we first initialize the subject entity and
relation vectors. For the subject entity Curry, each dimension of its

E-mail addresses: dtclee1222@gmail.com (D. Li), qi.zhang.3519@gmail.com (Q. Zhang), bingli@whu.edu.cn (B. Li).

1 These authors contributed equally to this work.

https://doi.org/10.1016/j.knosys.2023.111253

Received 23 February 2023; Received in revised form 13 November 2023; Accepted 30 November 2023

Available online 13 December 2023
0950-7051/© 2023 Elsevier B.V. All rights reserved.

https://www.elsevier.com/locate/knosys
http://www.elsevier.com/locate/knosys
mailto:dtclee1222@gmail.com
mailto:qi.zhang.3519@gmail.com
mailto:bingli@whu.edu.cn
https://doi.org/10.1016/j.knosys.2023.111253
https://doi.org/10.1016/j.knosys.2023.111253
http://crossmark.crossref.org/dialog/?doi=10.1016/j.knosys.2023.111253&domain=pdf

D. Li et al

Shallow Interaction

aspect
physical fitness

aspect

Knowledge graph of Curry

Golden State Warriors

bounce
weight

I

1

I

1

1

1

I endurance
1 :

1

1

I height
1 :
1

dividual bo
e lengih individual body

|__||J‘> :

character

subject entity vector
of Curry

aspect

characteristics of !

Deep Interaction

mamEm

Knowledge-Based Systems 284 (2024) 111253

| Prediction

teacher

Fa

X

/
v

endurance: poor
bounce: poor

height: medium

arm length: short

workplace: classroom
working environment: Indoor
character: patience

age restriction: 60

endurance: strong
bounce: poor
height: short
arm length: short

workplace: gymnasium

working hours
workplace

uonpdnaoQ

working environment.

relation vector of occupation

occupational

sex
et characteristics
age restriction

aspect

atzo X

endurance: strong

\
\
\
\
\
\ working environment: Indoor
\

character: competitive spirit
age restriction: 25

lroopman bounee: strong

1

I

1

1

1

1

1

1

1

1

B [}

D:D:D: 1 table tennis player
Feature 1 x °
E: > I:: > i --->

IO Extraction :
: 1

I

1

I

1

I

1

I

1

1

height: tall

arm length: long

1 1 workplace: gymnasium
[} 1
1 1

working environment: Indoor and outdoor
character: competitive spirit
age restriction: 28

Fig. 1. An example of shallow and deep interactions between entity and relation.

features represents a certain attribute feature of Curry. Intuitively,
every entity can be characterized from multiple perspectives or aspects.
Therefore, it is natural to think that the subject entity and relation vec-
tors can be divided into several groups or aspects, i.e., multiple aspects,
as shown in the feature vectors in the figure, as shown in the Shallow
Interaction phase in Fig. 1. Therefore, intuitively, when predicting
Curry’s profession, features such as endurance and bounce in physical
fitness, as well as height and arm length in characteristics of individual
body, and character and age restriction in occupational characteristics,
as well as workplace and working environment in working condition,
are the most useful for determining Curry’s profession. For example,
if Curry has strong “endurance” and “bounce”, and is tall in “height”,
it would be assumed that Curry could be a volleyball, basketball, or
high jump athlete. But when the relational attribute “workplace” is a
stadium, and the “working environment” can be indoors or outdoors,
it leans more towards being a basketball athlete. Therefore, the inter-
action of features based on different aspects in entities and relations is
key to obtaining multi-angle feature representations.

Considering the feature interactions between entities and relations
from different levels, we propose a shallow-to-deep feature interac-
tion model for knowledge graph embedding (SDFormer). It breaks
up the embedding vectors of entities and relations into finer-grained
sub-features, and learns both shallow and deep interactions between
entities and relations. SDFormer is composed of three main modules:
(1) Vector Tokenization: an entity or relation vector is decomposed into
finer-grained sub-features by setting the token size. (2) A shallow-to-
deep feature interaction module: a multi-head self-attention mechanism
for shallow interaction and a multi-scale convolutional neural network
for deep interaction information between entities and relations. (3)
Score prediction: The updated feature vector is projected into the
embedding space of entities, and the sigmoid function is performed to
obtain the scores of all candidate entities and the one with top score is
chosen as the predicted object entity. Experiments and ablation studies
show that our model can learn both shallow and deep interaction infor-
mation between entities and relations, thereby achieving competitive
performance results on benchmark datasets and a smaller parameter
size for practical knowledge graph modeling.

The research contributions of our work are as follows:

» We propose a shallow-to-deep feature interaction for knowledge
graph embedding (SDFormer), which employs a multi-head self-
attention mechanism for shallow interaction and a multi-scale
convolution network for deep interaction.

+ We propose a vector tokenization method to decompose entities
and relations embeddings into sub-features, which guarantees the
interactivity between sub-features of entities and relations.

- Extensive experiments have demonstrated that on most bench-
mark datasets, SDFormer achieves competitive prediction results
and superior training efficiency with a smaller parameter size
compared to convolution-based and Transformer-based KGE mod-
els.

2. Related work

Employing models based on KGE to infer absent facts in KGs has
been widely explored in last decades. Current KGE models are practi-
cally divided into translational distance models, semantic matching models,
and neural network-based models.

2.1. Translational distance models

The earliest translational distance-based KGE model can be traced
back to TransE [8]. Given a triplet (e, r, ¢,), TransE attempts to measure
the translational distance between the subject entity vector e, and the
object entity vector e, with the relation vector r. TransE is a plain, swift
and effective model for large-scale knowledge graphs. Nonetheless, it
only works for 1-to-1 relations and does not handle reasoning about
complex relations effectively, like 1-to-N relations or N-to-N relations.

To alleviate the dilemma, TransH [9] proposes that each entity
should behave differently for different relations. Therefore, a hyper-
plane is defined for each relation so that the same entity has different
feature representations in different relations. RotatE [22] defines each
relation as a rotation from a source entity to a target entity in complex
vector space. Nevertheless, the features learned by the translational
distance models are not sufficient in contrast to the deep, multi-layer
models, thus making it difficult to achieve large improvements with
complex conditions.

2.2. Semantic matching models

Considering that translational distance models are difficult to ex-
press complex relations effectively, the researchers match the potential
semantic information in the vector space to calculate the reasonable-
ness of the triplet. RESCAL [12] is a classical model using semantic
matching method, which converts entities into vectors and relations
into matrices, and acquires the internal interactions of triplets through
a bi-linear scoring function. DistMult [13] streamlines the relation ma-
trix of RESCAL by limiting it to a diagonal matrix. HolE [23] presents
both entities and relations as vectors in space, combining the repre-
sentational strength of RESCAL with the simplicity and effectiveness of
DistMult. It defines a circular association operation where subject and
object entities interact, and the result of the operation is matched with

D. Li et al

Table 1

The main notations employed in this paper.
Notations Explanations
(4 Knowledge Graph
(eg, 1, e,) Triplet

e.r.e, €R? Embedded semantic vector of subject entity, relation, and

object entity separately

ER, T, T T, Set of entities, relations, triplets, negative triplets, and test
triplets

€], IR, Tyl Number of entities, relations and test triplets

E.R Embedding matrices of entities and relations

MM The input matrix after embedding and reshaping, and feature
matrix after shallow interaction

UeR? Semantic interaction information vector of head entity and
relation

SI Shallow Interaction module

WLV, The ith convolution kernel and feature map respectively

w Learnable parameter matrix

@(e,.r,e,) Score function of SDFormer

o All the parameters of SDFormer

L Loss function

the representation of the relation to compute the triplet score. Based
on the framework of DistMult, ComplEx [14] introduces complex-
valued embedding, in which entities and relations are embedded into
the complex space rather than the real-valued space. ANALOGY [24]
improves RESCAL to reflect the inference characteristics of entities and
relations more accurately. PairRE [25] is equipped with paired rela-
tionship vectors for each relation in order to handle complex relations
and various relation patterns simultaneously.

Nonetheless, the semantic matching models tend to be less applica-
ble for large KGs, because they need more embedding dimensionality
of KGs to enhance their expressiveness. As a consequence, these models
tend to be easier to overfit, which is often a tough issue to solve when
the knowledge graphs contain a significant number of entities and
relations.

2.3. Neural network-based models

Nowadays, researchers are focusing more on putting deep learning
to work for link prediction. R-GCN [26] is designed for processing ex-
tremely multi-relational KGs with Graph Neural Networks (GCN) [16],
which utilizes convolutional operations to capture local information in
the knowledge graph. ConvE [15] performs a two-dimensional con-
volution of the embedding vector to predict the missing links. Its
architecture contains a convolutional layer, a projection layer and a
matrix multiplication for the final prediction. InteractE [17] suggests
that semantic interaction information is limited in ConvE, thus they
propose to use multiple feature combination approaches and circular
convolution operations for obtaining better interaction information.
REP-OTE [27] proposes an information aggregation method for graph
neural networks based on relational embedding.

Inspired by the great improvement of Transformer [18] in different
fields, some Transformer-based KGE models have also been proposed
for link prediction. These transformer-based KGE models can be mainly
classified into two categories: (1) Pure transformer: only the trans-
former architecture is improved to learn entity and relation embeddings
in KG. StAR [20] was the first to attempt the link prediction task with
the transformer, a method that injects structural features into the entity
and relation embeddings obtained through the transformer encoder.
Ruleformer [21] joins rule learning and transformer to mine subgraph
context information in KG to achieve link prediction. (2) Variants of
transformer: these models introduce the description text of entities
as auxiliary information, and use variants of transformer to learn the
textual descriptions of entities. KG-BERT [19] is the first to evaluate
the confidence of a triplet by fine-tuning the pre-trained language
model. BLP-TransE [28] incorporates text as auxiliary information into

Knowledge-Based Systems 284 (2024) 111253

the learned entity representation through the link prediction task.
SimKGC [29] utilizes the pre-trained language model based on con-
trastive learning to enhance prediction accuracy. Inspired by [28],
RAILD [30] learns about unseen entities and relations using relational
features in the link prediction task. SDFormer belongs to the Pure
transformer type of Transformer-based Model.

However, majority of the Transformer-based models mentioned
above are built using pre-trained language models. Transformer has
demonstrated excellent global feature interaction aggregation and ca-
pabilities in many works. In many different disciplines, its self-attention
mechanism is extensively employed. Taking into account that the inter-
action between entities and relations is not only mutual but also self-
interactive, our work further improves the interaction between entities
and relations by multi-head self-attention mechanism to make enti-
ties and relations interact themselves, and by convolution to capture
information of cross-interaction between entities and relations.

3. Methodology
3.1. Problem formulation

Knowledge Graph is normally described as ¢ = (£,R,7), where
& =(ej, ey, ", €¢)) TEPrESENtS the set of entities and R = (r|,rp, -+ Rp)
represents the set of relations. |£| and |R| denote the total number of
entities and relations, respectively. 7 C £ X R X £ expresses knowledge
triplets set and each triplet can be represented as (e, r, e,). Normally we
use bold letters e,, r, e,€ RY to express the d-dimensional embeddings
of e,,r, and e,, respectively.

Link Prediction. For a triplet (e, r,?), given the subject entities and
relations, the goal of link prediction is to select the most suitable
one from the candidate entities as the object entities. To calculate the
credibility of the predicted triplet, a score function is generally defined
for the triplet. Then an optimization problem is solved for maximizing
the plausibility of all true triplets 7 in the KG. Finally, the entity
and relation embeddings could be well learned. Table 1 lists the main
notations employed throughout this article.

3.2. Outline of SDFormer

Considering that Transformer has limited extraction of interac-
tion information for subject entities and relations while convolutional
neural networks have a powerful receptive field, we combine the
advantages of both to propose the SDFormer. SDFormer consists of
three components, namely, vector tokenization, feature interaction, and
score prediction. For a triplet (e,,r,e,), we first index to the vector
representations of subject entity e, and relation r and divide them
into t tokens individually. For obtaining more detailed interaction
information among sub-features of entities and relations, a multi-head
self-attention mechanism is utilized for shallow interactions. Further,
multi-scale convolutional network is utilized to obtain the deep interac-
tion between entities and relations. Then the semantic vector between
entity and relation is generated through a hidden layer. Finally, the
semantic vector is matched with all candidate entities embeddings
to judge whether the triplet is proper. The general architecture of
SDFormer is illustrated in Fig. 2

3.2.1. Vector tokenization

Both entities and relations are composed of multiple fine-grained
sub-features. Take Stephen Curry as an example, it can be further de-
composed into sub-features such as “height”, “weight” “age” and so on.
In order to decompose entities and relations vectors into finer-grained
sub-features, we are inspired by tokens in Vision Transformer [31]
to tokenize the entity and relation vectors. The specific steps are as
follows.

For a knowledge graph ¢, we initialize all entities £ and relations R
as the d-dimension embeddings. In terms of a specific triplet (e,,r,e,),

D. Li et al

Knowledge-Based Systems 284 (2024) 111253

A A A A A A A 4 4 4
N A A I — — — | (TT====oT | N
g [Logits Sigmoid] o Q> MLP
) | i K—> 4
,vs o A N ‘ | e N
> = L VT)
7 ' bocoooos= i-
- [Matrix Multiplication] ! gmltl lSct?le
Q_‘ = : Shallow onvolution
| Interaction T
= i (L X ~
2% IIIIIAIIIII : > [1]
= 1 A |
s | i
é: I [Shallow-to-Deep]_/\:7 In
= Feature Interaction Module !
A A A A A A 1 t
p v N i Channel
.g COED()i i b Multi-head Concat
§ g it o)L 5ot E Attention L y j
g £ T reshape T E rearrange
> | [TITTTTTT11 ;
S ' Deep
= Stephen Curry Birth _In i Interaction)

Tokens

Fig. 2. The general architecture of SDFormer. The left part is the three parts of this model, namely vector tokenization, feature interaction and score prediction.

the embedding representations of subject entity and relation can be in-
dexed through the embedding matrices respectively as e,,r € R¢. First,
the token size is set as t, and token splitting is performed for entities and
relations, respectively. Then, the embedddings of entities and relations
are transformed into two set of tokens, and layer normalization [32] is
employed to normalize sub-features, separately. Finally, the sub-feature
tokens of entities and relations are spliced as the input matrix M of the
subsequent model.

M= [ln(e_s) ® ln(F)] € R2X1Xdy (@D)]

where @ denotes the concatenation operation, and e ,r denote the
vectors of the subject entity and relation are sliced into t tokens
respectively and ¢ x d,, = d. We use VT to represent the above steps.

3.2.2. Feature interaction

A multi-head self-attention mechanism is employed to compute
the correlation between sub-features in entities and relations to sim-
ulate the interaction between sub-features. The shallow interaction is
now completed, forming a new token embedding that includes vari-
ous sub-features. On this basis, the updated sub-features are merged
upwards into ‘“aspect features” and rearranged with relations. The
merged features undergo multi-scale convolution operations to extract
multiple relations and complete the deep interaction between entities
and relations.

Shallow Interaction (SI): Sub-features in entities and relations
interact with each other. To enrich the representation of each sub-
feature token, a multi-head self-attention mechanism is used to extract
shallow interactions between sub-features in entities and relations.

For each triplet (e,, r,?), we generate the query M? € R>%u, the
key MK € R>™du_and the value MV € R¥>4n by performing three dif-
ferent projection on the input matrix M with matrices W2, WK, WV e

R >4n_ Take the single-head attention as an example, the attention
matrix A € R?>% is calculated as:

omkT

Ve

Attention matrix A shows the attention weight of sub-features to the
other sub-features in an entity or relation. For example, attention scores
will be higher for sub-feature “height” with sub-features “weight” and
“shoe size” and lower with sub-feature “skin color”. Later the attention
matrix is multiplied with the value matrix M” to obtain the output
H € R?**“n of the attention module block as:

A = softmax(2)

),

H=AM", 3

To obtain multi-dimensional shallow interactions, multi-head self-
attention (MultiH) is a good choice for obtaining more expressive
representations. Multiple linear projections are conducted to generate
multiple sets of queries, keys and values with various sets of param-
eters. Then, self-attention mechanism is applied to each set of query,
key, and value. Finally, all value matrices are spliced and linearly
reconstructed. The formula is expressed as follows:

MultiHM?,MX M") = [H|, H,, - H;,]W,, @
where
M2MKT
H; = softmax (—I - >M,V (%)
dk

In the above equation, MiQ MQW,Q,MI.K = MAWX and M,V
MYWY, where WiQ,W,.K,W,V € R4k and WO e RM™dxdn are
projection matrices. h and d, denote the number of heads and the
dimension of each head, respectively.

D. Li et al

Stack Alternate Chequer
(11 [(11
1 1 1 1 1 1 1 1 1
Stack&Alternate Stack&Chequer Alternate&Chequer
e o r oo

Fig. 3. Six different token splicing methods utilized in this paper. Here, e and r
represent the Token of entitie and relation after shallow interaction, correspondingly.

Just like the normal Transformer model, a feed-forward network is
conducted for generating the eventual result M’ as:

M = FFNMultiH(M2, MX, M")), (6)
where
FFEN(x) = f(xW, + b))W, + by,)

where f denotes the activate function GELU [33], and W, € R9w*d b, €
R, W, € R%*4m and b, € R% are learnable parameters.

The above-mentioned multi-head attention mechanism and feed-
forward network (FFN) constitute a single layer of Shallow Interaction
(SI) module. For the sake of fully mining the interaction information
between entities and relational sub-features, SDFormer implements a
L-layer Shallow Interaction module. The value of L will be discussed in
the experiment section.

Deep Interaction (DI): To induce deep integration of the aspect
features of entities and relations, six different splicing methods are
adopted to rearrange and combine the feature vectors of entities and re-
lations, i.e. Stack [15], Alternate [17], Chequer [17], Stack&Alternate,
Stack&Chequer and Alternate&Chequer. We give the definition below
and the formalized stitching is shown in Fig. 3.

Stack: The tokens of entities and relations are directly connected
to spell a matrix.

Alternate: The tokens of entities and relations are sorted by
index, forming a staggered patchwork of tokens.

Chequer: The tokens are arranged such that no two adjacent cells
are occupied by components of the same embedding.
Stack&Alternate: The tokens of entities and relations are stitched
by Stack and Alternate through a picture-like multi-channel for-
mat.

Stack&Chequer: The same way to stitch Stack and Chequer.
Alternate&Chequer: The same way to stitch Alternate and Che-
quer.

There are often complex relations in the KGs, and the same entity
corresponds to different facts under different relations. Take apple as
an example, when referring to food, it is a fruit, and when referring
to a product, it could be a cell phone, computer, etc. Considering that
entities exhibit different semantic features under specific relations, we
employed multi-scale convolutional kernels to extract different aspects
of features to better extract complex relations in the knowledge graph.

As shown in Fig. 4, we refine the feature extraction with sev-
eral distinct convolution kernels (w},wf --wr') with various size to
obtain various feature maps(v,,v, ---v,). Specifically we use kernels

Knowledge-Based Systems 284 (2024) 111253

[wr' e R, wf € R24, wf e R ..] to capture multi-level interaction
information between sub-features vectors of entities and relations. The
mathematical formulation is as follows.
2%t dp,
Vaio) = F 5wy = (Y)Y M (i +a, j +b) W (a, b)), ®)
a=1 b=1
where * denotes the convolution operation, and f(x) represents the
rectified linear units (RELU) [34]. Then all feature maps are flattened.
Later a linear transformer parameterized by the matrix W is performed
to project the flattened feature maps into a d-dimension vector space
to gain the semantic interaction vector U € R? as follows:

U = f(dense(v}, vy, =+ V)W),)

where dense(-) denotes the flattening operation, W is the learnable
parameter matrix which maps the interaction features between entities
and relations into the entity space. The vector U holds information
about the shallow-to-deep interaction between subject entity e, and
relation r.

3.2.3. Score prediction

To calculate the plausibility score of the triplet, the semantic in-
teraction vector U will be utilized to do matrix multiplication with
the object entities embeddings. The score function ¢(e,,r,e,) of the
SDFormer is described as follows:

@(eg,re,)=0c(U-e,+b) €(0,1), (10)

where b is the bias item, and o(x) = 1/(1 + exp(—x)) is the logistic
sigmoid function to calculate the probabilistic score to judge whether
the triplet (e,, r, e,) is proper or not. With equations (1)-(10), the score
function is defined in detail as follows:

@leg,r,e,) =

. 11
o(f(dense(f(SI([In(e)) ® In(D)]) = w,)) - W) - &, + b), an

To increase computational efficiency and optimize the model, SD-
Former utilizes a 1-N scoring technique in its scoring module, which
is called the KvsAll Strategy [35]. Concretely, unlike the other models
that calculate the score for each knowledge triplet (e,,r,e,) (1-1 scor-
ing), SDFormer employs the 1-X scoring skill [15], i.e., the acquired
semantic vector is matched with the embedding matrix E of all entities
at the same time. Compared to 1-1 scoring, 1-N scoring improves
computational efficiency and lifts the accuracy. We applied a similar
method, 1-X scoring, for training. Concretely, for each object entity
in triplet, we negatively sampled X (X < N) entities as the candidate
entities for training.

3.3. Training and optimization

SDFormer will optimize the maximum likelihood function based on
the knowledge graph ¢ and all parameters of SDFormer, defined as
follows:

max p(G|@), 12

where © denotes the whole parameters of SDFormer, and contains the
embeddings of entities and relations, parameters in Shallow Interaction
module and Deep Interaction module. In this paper, we expect the
confidence score @(e,,r,e,) of the correct triplet (e,,r,e,) to be equal
to 1 and the opposite to be 0. Hence, the likelihood function is defined
as the Bernoulli distributions.

gloy = [(e, e’ —gle,re)' ™, as)
(eg.r.e,)ETUT'
in which
_ 1 for (egr.e)eT
r= { 0 for (en,re)eT’ ° as

D. Li et al

e ——————

Knowledge-Based Systems 284 (2024) 111253

Flatten

_> | |
Connected ||

1T reshape M
&concat]
CITT] L

" h

_ Tokens I

Fully | i

,__________

Fig. 4. The specific process of multi-scale feature interaction. Several convolutional kernels at different scales are used in SDFormer to extract feature representations of multiple

relations, and then perform flattening and fully connected operations.

where 7 is the set of negatively sampled incorrect triplets, which is
generated by random substitution of the subject or object entities in
the correct triplet while 7 is the truth triplet. Based on Egs. (11)-(14),
the loss function of SDFormer is summarized as follows:

minl = —log p(G|®) =

- X

(egure,)E{TUT'}

(logg(eg, r,e,) + (1 — log(l — gley, r,e,)) as)

Algorithm 1 The training process of SDFormer

Input: Knowledge Graph ¢ = (&,R,7T);
batch size b;
learning rate a;
number of negative samples n;
Output: The triplet prediction probability y (-);
1: E« &R« R; // Randomly initialize the embedding matrix of
entities and relations.

2: loop
3 Tpaten < sample(T ,b) ; // Randomly sample b triplets as training
set.

4. for (eg,r,e,) € Tyye, do

5: (e5.r.e,) = (eg,r,el); // Random generate n negative triplets.
e < (e E)

. r < R .

6: ¢ < (e B ° // Look up the embeddings.
e < (. E)

7: Pleg.r,e,) — @leg,r,e,); // Probability of correct triplets.

8: P (e r.el) « pleg,r.el); // Probability of incorrect triplets.

9: end for

10: With a, update embeddings matrix E and R and other parameters
with Equation (15);
11: end loop.

Algorithm T shows the training progress of our model. Next, we will
present the experimental implementation and analysis.

4. Experiments and analysis

4.1. Datasets

We perform adequate experiments for link prediction task on the fol-
lowing benchmark datasets: FB15k, WN18, FB15k-237, and WN18RR.
As noted by ConvE [15], there are many reversible triplets in the
test sets of WN18 and FB15k, resulting in high accuracy. Therefore,
to eliminate the problem of false correctness due to test set leakage,
WN18RR and FB15k-237 were re-built through removing the reversible
triplets in WN18 and FB15k. Statistical information on these datasets
is listed in Table 2.

Table 2

Statistical details of the datasets for knowledge graph.
Dataset Entities Relations Triplets

Train Valid Test

FB15k 14.951 1,345 483,142 50,000 59,071
WN18 40,943 18 141,442 5,000 5,000
FB15k-237 14,541 237 272,115 17,535 20,466
WN18RR 40,943 11 86,835 3,034 3,134

(1) FB15k [8] is extracted from Freebase [1], which consists of
14,951 entities and 1,345 relations. It contains numerous facts of
the true world, such as movies, actors, sports and sports teams,
etc.

(2) WN18 [8] is withdrawn from WordNet [2], which contains
40,943 entities and 18 relations. Entities of WN18 represent
the word meanings, and the relations define lingual relations
between entities.

(3) FB15k-237 [36] is the subset of FB15k which removed all in-
verse relations. It includes 14,541 entities and 237 different
relations.

(4) WNISRR [15] is the subset of WN18 which deleted reversible
relations. It contains 40,943 entities with 11 different relations.

4.2. Evaluation metrics

For a knowledge graph G = (£,R,T), let T,py = {xy, %5, - X1, |}
represents the test set. Similar to TransE [8], for the ith test triplet
x;, We create its entire negative triplets X; ¢ 7 (resp. X{ ¢ 7) by
substituting its subject or object entity with any other entities in KG.
Next, we observe whether SDFormer achieves a greater score of x; and
a worse score of false triplets. We calculate the score of the triplet via
score function ¢(e,,r,e,) and the scores of all triplets after negative
sampling. With these scores, we can calculate the ranking of the correct
triplet among all candidate triplets. The calculation procedure for
predicting the subject and object entities is shown below:

rank; = 1+ Z7féﬁm Io(x;) < (X))

i 16
T+ Xer,,, o) < oG "

rank =
where I[C] is the indicator function, which returns 1 when the con-
dition C is true, or else gives 0. In our experiments, we adopt several
common metrics, which conclude Mean Rank (MR), Mean Reciprocal
Rank (MRR), and Hits@k (for k=1, 3, and 10) metrics to assess the pre-
cision of the predicted triplet. The mathematical formulas are defined
as follows:

1
MR . ——
Ml &

test

1 1 1
MRR : + ’ 18
2T ZT:‘M (rank! rank) (18)

X; €

(rank! + rank?), a7)

D. Li et al

Table 3

Knowledge-Based Systems 284 (2024) 111253

The combinations of parameters on different datasets. #tokens denotes the number of tokens.

Model Dataset Batch size Ir emb,,,, featy,, hid,, #tokens #heads #layers s

FB15k-237 128 0.0005 0.3 0.4 0.5 4 4 4 0.2

WN18RR 128 0.0005 0.3 0.4 0.5 2 8 4 0.2

SDFormer- FB15k 128 0.001 0.2 0.3 0.4 4 4 4 0.2

WN18 256 0.00125 0.3 0.2 0.3 4 4 4 0.2

FB15k-237 128 0.0005 0.3 0.4 0.5 4 4 4 0.2

WN18RR 256 0.00125 0.3 0.1 0.5 2 2 4 0.2

SDFormer FB15k 256 0.001 0.2 0.2 0.2 8 4 4 0.2

WN18 256 0.00125 0.2 0.3 0.3 4 4 4 0.2
and + TorusE [43] uses a circular-structured indexing structure to store

Hits@k 1 Firank® < K1+ Ilrank® < & (19) and retrieve entities and relations in KGs.

its D— rank? rank’ R e . .
2|05 ; [i SKHIT i <K » CrossE [44] initially learns to capture the bidirectional interac-
Xi€Jtest

For all test triplets, MRR is the average inverse rank, while Hits@k
refers to the average percentage of triplets ranked less than or equal
to k in the link prediction. Usually, higher scores of MRR and Hits@k
indicate greater effect.

4.3. Experimental implementation

To better train SDFormer, our model utilizes Xavier [37] technique
to initialize all embedding parameters, and dropout [38] is used in
different stages to regularize the model, including the feature maps,
multi-head self-attention mechanism, and hidden layers after each
linear fully connected network. We also adapt batch normalization [39]
after each layer to regularize and improve the speed of convergence.
Label smoothing [40] is employed to avoid overfitting and make model
more generalized, while Adam [41] optimizer is selected to decrease
the loss of the model, which is a swift and computing efficiently
approach to optimize gradient-based models.

For the experiments of SDFormer and its single-scale version
SDFormer—, the hyperparameters were chosen through grid search on
the validation set to select an advisable configuration. The range of gird
search hyperparameters was as follows: entity and relation embedding
size range [128, 256, 512], feature map dropout range [0.2, 0.3, 0.4],
hidden layer dropout range [0.3, 0.4, 0.5], learning rate range [5e-
4, 1e-3, 1.25e—-3], and label smoothing range [0, 0.1, 0.2], batch size
range [64, 128, 256]. Further, we experimented with different layers
of SI, 2, 3, and 4 layers respectively. We used the number of heads
of 2, 4, 8, 16, 32, and 64 in the SI module to validate the effect of
different number of heads. Also, we have done different experiments
for the numbers of tokens fed into the SI module, which are 2, 4, 8
and 16. A special point is that we tried three different transformations
in the DI module, namely Stack, Alternate and Stack&Alternate.

For the combinations of parameters on different datasets we present
in Table 3. We realized SDFormer and duplicated other baselines using
python library PyTorch [42].

4.4. Comparison models

To verify the effectiveness of SDFormer, some baseline models,
which are also designed for link prediction task, are introduced. The
general descriptions of them are as follows:

» TransE [8] maps entities and relations into vector space and
minimizes the distance between entities and relations.

* DistMult [13] utilizes matrix multiplication to represent the rela-
tions between entities and relations.

» ComplEx [14] is a KGE model on basic of complex numbers, which
can capture complex relations between entities and relations.

* R-GCN [26] is a relational model based on graph convolutional
networks for extracting features from structured knowledge graphs.

» ConvE [15] is a typical KGE model using convolutional neural
networks, which can infer missing links in KGs.

tions between entities and relations.

* RotatE [22] defines each relation as a rotation from a source
entity to a target entity in complex vector space.

* PairRE [25] is equipped with paired relationship vectors for each
relationship in order to handle complex relationships and various
relation patterns simultaneously.

* BLP-TransE [28] incorporates text as auxiliary information into

the learned entity representation through the link prediction task.

StAR [20] attempts to inject structural features into the entity

and relationship embeddings obtained through the transformer

encoder.

REP-OTE [27] proposes an information aggregation method for

graph neural networks based on relational embedding.

ComplexGCN [45] adopts a graph convolutional neural network

with complex domain convolution to capture knowledge repre-

sentations of entities and relations.

Ruleformer [21] joins rule learning and transformer to mine sub-

graph context information in KG to achieve knowledge reasoning.

SimKGC [29] utilizes the pre-trained language model based on

contrastive learning to enhance prediction accuracy.

RAILD [30] learns about unseen entities and relationships using

relational features in the link prediction task.

SDFormer—: The single-scale version of SDFormer only use single-

scale convolutional kernels in Deep Interaction module.

SDFormer: The proposed shallow-to-deep feature interaction model

for link prediction, which consists of three components, namely

Vector Tokenization, Feature Interaction, and Score Prediction.

4.5. Link prediction results

In this section, we will analyze the overall performance of SD-
Former on the link prediction task. The best result is in bold and the
second-best result is underlined.

To verify the validity of SDFormer, we have compared it with
several baseline models. The overall results are presented in Tables 4
and 5. For FB15K-237 and WN18RR, SDFormer is far ahead in all
evaluation metrics compared to the best results in other approaches.
Since our model almost builds on ConvE [15], we specifically compare
against it and find that both SDFormer- and SDFormer outperform
ConvE on all metrics for all the four benchmark datasets. On FB15k-237
and WN18RR, compared with ConvE, SDFormer has 9.5% and 6.5%
relative improvement in MRR, 11.4% and 6.3% relative promotion in
Hits@1, and 8.0% and 1.5% relative lift in Hits@10. It proves that
SDFormer is effective. The reason for SDFormer’s underperformance
on FB15k compared to WN18 could be attributed to the uneven data
distribution in the training set. We found that, unlike WN18, in the
FB15k training and testing sets, the number of 1-to-N and N-to —1
relationships differs drastically, almost by two orders of magnitude,
as also mentioned in [46]. This led us to naturally speculate whether
such data imbalance caused SDFormer’s underperformance on FB15k.
In addition, given the data leakage problem on the FB15k and WN18

D. Li et al

Knowledge-Based Systems 284 (2024) 111253

Table 4
Comparison results with existing models for link prediction on FB15k-237 and WN18RR.
Model FB15k-237 WN18RR
MR MRR Hits MR MRR Hits

@1 @3 @10 @1 @3 @10
Traditional Models
TransE [8] 357 0.294 - - 0.465 3384 0.226 - - 0.501
DistMult [13] 254 0.241 0.155 0.263 0.419 5110 0.430 0.390 0.440 0.490
ComplEx [14] 339 0.247 0.158 0.275 0.428 5261 0.440 0.410 0.460 0.510
R-GCN [26] - 0.249 0.151 0.264 0.417 - 0.226 0.157 0.269 0.376
ConvE [15] 244 0.325 0.237 0.356 0.501 4187 0.430 0.400 0.440 0.520
TorusE [43] - 0.316 0.217 0.335 0.484 - 0.452 0.422 0.464 0.512
CrossE [44] - 0.299 0.211 0.331 0.474 - - - - -
RotatE [22] - 0.333 0.240 0.368 0.522 - 0.478 0.439 0.494 0.553
PairRE [25] - 0.351 0.256 0.387 0.544 - 0.454 0.411 0.469 0.548
ComplexGCN [45] - 0.338 0.245 0.371 0.524 - 0.455 0.423 0.468 0.516
REP-OTE [27] - 0.354 0.262 0.388 0.540 - 0.488 0.439 0.505 0.588
Transformer-based Models
StAR [20] - 0.296 0.205 0.322 0.482 - 0.401 0.243 0.491 0.709
BLP-TransE [28] - 0.195 0.113 0.213 0.363 - 0.285 0.135 0.361 0.580
Ruleformer [21] - 0.342 0.255 0.374 0.513 - 0.452 0.417 0.465 0.530
RAILD [30] - 0.216 0.127 0.241 0.397 - 0.291 0.177 0.390 0.609
SimKGC [29] - 0.333 0.246 0.362 0.510 - 0.671 0.585 0.731 0.817
SDFormer—(ours) 192 0.354 0.262 0.389 0.537 3772 0.449 0.415 0.465 0.513
SDFormer(ours) 185 0.356 0.264 0.390 0.541 3633 0.458 0.425 0.471 0.528

0.30 0.45
0.40 1
0.25 1
0.351
— o
® ®
Z Z
'E i 0.301
0.20 1
= Distmult 0.25 Distmult
ComplEx |=——ComplEx
ConvE ConvE
0.15 i i i |~ SDFormer| 0.204 i i i |~ SDFormer|
0 40 80 120 160 200 0 40 80 120 160 200
0.60 0.40
0.55 1 0.35 1
(=
® ~
£0.501 § 0.30 1
jan)
0.45 1 0.25 4
Distmult Distmult
== ComplEx == ComplEx
ConvE ConvE
0.40 i i i |~ SDFormer| 0.20 i i i |~ SDFormer|
0 40 80 120 160 200 0 40 80 120 160 200

Fig. 5. Validation performance of SDFormer, ConvE, DistMult, ComplEx on FB15k-237.

datasets, usually some simple rule-based methods can achieve good
results. For the sake of experimental fairness, the researchers preferred
to use FB15k-237 and WN18RR datasets to avoid data leakage.
Additionally, Table 4 shows that on the FB15k-237 and WN18RR
datasets, SDFormer outperforms similar Transformer-based Models.
Even compared to knowledge graph embedding models that use textual
descriptions as auxiliary information, which SDFormer does not have
(such as StAR [20], BLP-TransE [28]), SDFormer’s performance on
FB15k-237 is highly competitive. The reason for SDFormer’s slightly

inferior performance on certain metrics in the WN18RR dataset is
that WN18RR itself is a language-type knowledge graph, and the
introduction of textual descriptions of entities can significantly enhance
the model’s performance. However, most real-world knowledge graphs,
like FB15k-237, which contain world knowledge, are mainly modeled
on their structural information alone, as the introduction of textual
description information would increase the training burden of the
model. Therefore, we believe that the SDFormer model has stronger
universality.

D. Li et al

FB15k-237
0.36

0.354

0.34

£ 0.33

0.324

0.314

0.30 T T T T

#tokens

0.54 4

= 0.53

R

Hits@

0.52

0.51 T T T T

#tokens

Knowledge-Based Systems 284 (2024) 111253

WNI8RR
0.46

0.45

0.44 4

£ 0.43

0.42

0.41

0.40 T T T T

#tokens

0.53

0.52

0.514

Hits@10
(=3
wn
(=]

0.49

0.48 4

0.47 T T T T

#tokens

Fig. 6. Results of SDFormer on FB15k-237 and WN18RR datasets with different numbers of tokens.

Zzz:afison results with existing models for link prediction on FB15k and WN18.
Model FB15k WN18
MRR Hits MRR Hits
@1 @3 @10 @1 @3 @10
TransE [8] 0.380 0.231 0.472 0.641 0.454 0.089 0.823 0.934

DistMult [13] 0.654 0.546 0.733 0.824 0.822 0.728 0.914 0.936
ComplEx [14] 0.692 0.599 0.759 0.840 0.941 0.936 0.936 0.947

R-GCN [26] 0.696 0.601 0.760 0.842 0.814 0.686 0.928 0.955
ConvE [15] 0.657 0.558 0.723 0.831 0.943 0.935 0.946 0.956
TorusE [43] 0733 0.674 0771 0.832 0.947 0.943 0.950 0.954
CrossE [44] 0.728 0.634 0.802 - 0.830 0.741 0.931 -

SDFormer— 0.688 0.628 0.725 0.794 0.946 0.939 0.950 0.956
SDFormer 0.692 0.628 0732 0.802 0.948 0.944 0.951 0.957

Fig. 5 shows the performance of SDFormer and others on the train
set of FB15-237. It is clearly observed that SDFormer outperforms the
other models in all metrics throughout the whole training process.
SDFormer has a greater increasing speed of all metrics than the others
while it has a lower converging speed. The lower rate of convergence
is due to the complexity of SDFormer.

In addition, we have compared the parameter sizes of Traditional
Models and Transformer-based Models in Table 6. The scale of pa-
rameters in SDFormer has a clear advantage over both traditional
models and Transformer-based models, with parameter sizes of 9.11M
and 16.30M on FB15k-237 and WN18RR datasets respectively, smaller
than traditional structure-based models and significantly smaller than
those transformer-based models. The smaller parameters of SDFormer
also ensure that the model can be applied to training on large-scale
knowledge graph datasets, greatly improving the efficiency of model
training and having certain practical value.

In general, SDFormer makes great progress in modeling expressive
KGE for link prediction and efficient knowledge graph data modeling.
On the basis of its shallow-to-deep architecture, SDFormer learns multi-
level interactions among sub-features between entities and relations in
KGs and obtained momentous enhancements on all evaluation metrics.

4.6. Ablation study

4.6.1. Effectiveness of each module in SDFormer

To analyze the validation of Vector Tokenization (VT) module, Shal-
low Interaction (SI) module and, Deep Interaction (DI) module in SD-
Former, it is necessary to carry out an ablation study. The results of
this section are shown in Table 7.

Effectiveness of VT: To demonstrate the role of tokenization, we
take the embeddings of entity and relation as a whole instead of
tokenizing them. The experimental results indicated that Vector Tok-
enization could improve the performance of the model. This is because
after slicing into multiple tokens, we can learn the interactions between
sub-features more deeply and thus obtain richer feature interactions.

Effectiveness of SI: Without Shallow Interaction module, the scores
of evaluation metrics were much lower on the WN18RR dataset, but
less on the FB15k-237 dataset. Since there are only 11 relations in the
WN18RR dataset, each relation will correspond to a large number of
entities. In this case, the extraction of sub-features by Shallow Interaction
module becomes more important.

Effectiveness of DI: We observe that the scores of all metrics
drop rapidly when we drop the Deep Interaction module. Concretely,
w/o DI declines the MRR by 4.0% and Hits@10 by 3.0% on FB15k-
237. On the WN18RR dataset, w/o DI declines more the MRR by
7.2% and Hits@10 by 5.0%. We believe that the Shallow Interaction
module performs more of an aggregation of aspect features and lacks
interaction between entities and relations as a whole. In this case, the
interaction information we acquire is limited. Thus the deep module
in SDFormer allows for further interaction of the aggregated aspect
features. Hence, the role of shallow interactions is improved.

Considering the powerful perceptual field of convolutional net-
works, it can perceive the feature interactions between entities and
relations more globally. Therefore, it is easy to understand why deep
modules work better than shallow ones.

Experimentally, the SDFormer, as a shallow to deep Feature In-
teraction model, proves to be able to amplify the two modules very
well. This also demonstrates that our proposed multi-head self-attention
and convolutional neural networks are able to achieve shallow to deep
feature interaction effectively.

D. Li et al. Knowledge-Based Systems 284 (2024) 111253
Table 6
Comparison results with Traditional and Transformer-based models for model parameter on FB15k-237 and WN18RR.
Dataset Model
Traditional Model Transformer-based Model
TransE [8] DistMult [13] ComplEx [14] RotatE [22] BLP-TransE [28] StAR [20] Ruleformer [21] SDFormer
FB15k-237 14.78M 29.56M 29.56M 29.32M 108.44M 355.37M 11.45M 9.11M
WN18RR 20.47M 40.95M 40.95M 40.95M 108.41M 355.37M 21.07M 16.30M
0.356 FB15k-237 0.460 WNI8RR
—&— SDFormer- —&— SDFormer-
—&— SDFormer —&— SDFormer
0.355 4
0.455 4
0.354 4
0.450
~ 0.353 4 »
= 5
0.352 4 0.445 4
0.351 4 0.440 4
0.350 4
0.435
0349 T T T T T T T T T T T T T T
0 10 20 30 40 50 60 70 0 10 20 30 40 50 60 70
#heads #heads
Fig. 7. The results of MRR for SDFormer- and SDFormer on FB15k-237 and WN18RR datasets. #heads denotes the number of attention head.
Table 7 The above results show that multi-scale filters can effectively capture
Results of ablation study. w/o DI means SDFormer without Deep Interaction module. the deep interactions between entities and relations, thus enriching
s
Model FB15k-237 WN18RR feature representations.
MRR hits@10 MRR hits@10
SDFormer 0.356 0.541 0.458 0.528 4.6.4. Effect of negative sampling method
w/o VT 0.352 0.536 0.454 0.507 SDFormer employs random negative sampling during the negative
w/o Sl 0.348 0.530 0.432 0.493 sampling process. For the method of negative sampling, we referred
w/o DI 0.342 0.525 0.425 0.502

4.6.2. Effect of the number of tokens

The number of tokens directly affects the sub-feature granularity of
entities and relations. To investigate the effect of the number of tokens,
we perform some correlative experiments on SDFormer in WN18RR
and FB15k-237 datasets. Fig. 6 depicts the variation in the number of
tokens, which is tuned from [1, 2, 4, 8, 16]. For the comprehensive
evaluation metric MRR, we can observe that SDFormer achieves better
performance when the token number #tokens = 4 on the FB15k-237
dataset and #7okens = 2 on the WN18RR dataset. The reason for setting
a different number of tokens for different datasets may be that the
structural complexity of knowledge graph datasets is different. Specif-
ically, as shown in Table 2, there are only 11 relations in WN18RR,
but there are 237 relations in FB15k-237. For more relations, entities
need more combinations of sub-features to distinguish triplets of the
same entity under different relations. However, it demonstrates that
the finer-grained segmentation of entity and relation vectors is logical
and resultful. Model effectiveness could be improved by setting an
appropriate number of tokens.

4.6.3. Effect of multi-scale convolution

In order to explore the impact of multi-scale convolutional kernels,
we conduct some comparison experiments on FB15k-237 and WN18RR
datasets. The experimental results are shown in Table 9. We found that
multi-scale convolutional kernels achieve optimal performance while
reducing model parameters compared to simple stacking of single-scale
convolutional kernels. Moreover, SDFormer obtains the best experimen-
tal results when the moderate filter sizes are (1 x9,2x 4,3 x 3). Smaller
filter kernels restrict the degree of deep interaction between entities and
relations, and larger filter kernels tend to result in model overfitting.

10

to the works of [47,48]. From their experimental results, it is evident
that among the methods like Random sampling, Corrupting positive
instances, Typed Sampling, Relational Sampling, and Nearest Neighbor
sampling, Random sampling is the most efficient. The idea of using
semantically similar negative sampling and Nearest Neighbor sampling
methods is similar, as they both require obtaining negative samples
through the semantic embedding of entities, which intuitively can
add difficult negative cases and increase the training difficulty of the
model. However, on one hand, semantically similar negative sampling
generates negative examples by calculating the similarity of word
vectors, which can impose a significant burden on the model’s training
efficiency, contradicting our original intention of a simple and efficient
knowledge representation model. On the other hand, our SDFormer
method is based on embedding learning from the structural information
of knowledge graphs, without introducing textual semantic informa-
tion and only considering the structural information of entities and
relations. Considering the above reasons, we chose Random sampling,
which can effectively improve the efficiency of the SDFormer model.
Regarding the quantity of Random sampling, after referencing related
works [35,47,48], we adopted the two random negative sampling
methods mentioned in [35]: 1vsAll and KvsAll.

We conducted Random sampling using the above two methods
(1vsAll and KvsAll), after numerous experiments, found the optimal
number of negative samples for SDFormer on different datasets, as
shown in the Table 8. The experimental results show that under the
1vsAll approach, when the number of negative samples is set to 1000,
our model achieves better performance on the WN18RR and FB15k237
datasets.

4.7. Parameter sensitivity analysis

Attention heads impact. Self-attention with different numbers of
heads can extract multi-level interaction information between entities

D. Li et al

Knowledge-Based Systems 284 (2024) 111253

Table 8
The effect of different negative sampling methods. |€| denotes the number of entities.
Random sampling FB15k-237 WN18RR
Type # of negative examples MRR Hits MRR Hits
@1 @3 @10 @1 @3 @10
500 0.353 0.260 0.389 0.535 0.449 0.417 0.460 0.514
1vsAll 1000 0.356 0.264 0.390 0.541 0.458 0.425 0.471 0.528
1500 0.355 0.263 0.390 0.540 0.454 0.422 0.465 0.517
2000 0.353 0.261 0.387 0.540 0.454 0.420 0.469 0.517
KvsAll &l -1 0.346 0.256 0.382 0.529 0.454 0.424 0.466 0.510

Table 9
Performance of different scale convolution kernels in SDFormer on the FB15k-237 and
WN18RR datasets.

Method Filter-type FB15k-237 WN18RR
MRR Hits@10 MRR Hits@10
1x5 0.350 0.536 0.449 0.513
1x9 0.353 0.539 0.437 0.501
2x 4 0.354 0.443 0.455 0.508
Single-Scale 2x5 0.353 0.538 0.444 0.498
3x3 0.350 0.538 0.445 0.510
3 x4 0.352 0.537 0.440 0.500
[1 x 5]
2 x5 0.351 0.538 0.458 0.528
|l 3 x 3]
[1 x 9]
Multi-Scale 2 x4 0.356 0.541 0.458 0.520
|l 3 x 3]
[1 x 9]
2 x5 0.352 0.537 0.454 0.512
| 3 x 4]

Table 10
Layer number analysis in Shallow Interaction modules on FB15k-237 and WN18RR
datasets.

#Layers FB15k-237 WN18RR
MRR Hits@10 MRR Hits@10
2 0.336 0.520 0.413 0.484
Shallow Interaction 3 0.339 0.525 0.419 0.491
Module 4 0.342 0.525 0.425 0.502

Table 11
Performance analysis of different splicing methods in Deep Interaction modules on
FB15k-237 and WN18RR datasets.

Splicing method FB15k-237 WN18RR
MRR Hits@10 MRR Hits@10

Stack 0.339 0.521 0.413 0.489
Deep Interaction Alternate 0.344 0.525 0.432 0.493
Module Chequer 0.281 0.426 0.413 0.447

Stack&Alternate 0.348 0.530 0.444 0.497

Stack&Chequer 0.342 0.526 0.439 0.488

Alternate&Chequer ~ 0.345 0.525 0.440 0.487

and relations. To analyze the influence of the number of heads on
proposed model, some comparison experiments with attention heads
ranging from [2, 4, 8, 16, 32, 64] are performed on FB15k-237 and
WN18RR datasets. As shown in Fig. 7, for the FB15k-237 dataset, both
SDFormer- and SDFormer achieve the greatest results when the number
of heads is set as 4, while for the WN18RR dataset, the number of heads
is equal to 2 and 8 on SDFormer and SDFormer—, respectively. Too
many self-attention heads may bring more redundant features, while a
smaller number of heads is more conducive to the hierarchy of feature
interactions. Therefore, an appropriate number of attention heads is
selected for different datasets in the Shallow Interaction module.
Layers in Shallow Interaction. Considering that too many layers will
introduce too many parameters and increase the complexity of the

model. There, we perform several experiments with the number of
layers sampled from [2, 3, 4] to explore the effect of layers in the
Shallow Interaction module. The results are shown in Table 10. The
results show that as the number of layers in the Shallow Interaction
module increases, the performance of SDFormer continues to improve.
However, considering the performance and operating efficiency of the
model, the number of layers in the Shallow Interaction module is set to 4.

Token splicing method in Deep Interaction. The splicing method be-
tween sub-features in entities and relations directly affects the inter-
action ability. To analyze the effects of three different token splicing
methods, we conducted comparative experiments on the Stack, Al-
ternate, and Stack&- Alternate methods on FB15k-237 and WN18RR
datasets, respectively. According to the results in the following Ta-
ble 11, the best performance is achieved when the Splicing Method
uses Stack&Alternate. The main reason might be that there is a certain
correlation between the features obtained from the Shallow Interaction
output, and each output token represents a collection of features of a
certain aspect of entities and relations. However, using the Chequer
method disrupts the existing correlation between features, hence re-
ducing the model’s performance after implementing the Chequer mech-
anism. Moreover, our chosen Stack&Alternate method, introducing
some randomness through the Alternate method, has been experimen-
tally proven to enhance the model’s generalizability and performance.
Therefore, ultimately, we use the Stack&Alternate method for splicing
methods.

5. Conclusion and future work

This paper presents a novel shallow-to-deep feature interaction for
knowledge graph embedding called SDFormer, which takes the multi-
level interaction information among fine-grained sub-features between
entities and relations into account. Concretely, the vectors of entity and
relation are decomposed into multiple tokens to represent sub-features
of different dimensions. On this basis, we design a shallow-to-deep fea-
ture interaction method. First, a multi-head self-attention is employed
to compute the correlation between sub-features between entities and
relations in the Shallow Interaction module. This process enriches the
feature representations by weighting sub-features with multiple corre-
lation weights. Then, we merge upwards from sub-features into “aspect
features”, which are rearranged with the sub-features of relations. The
merged features undergo multi-scale convolution operations to extract
multiple relationships in the Deep Interaction module. Experimental
results show that SDFormer, which extracts multi-level interaction
information, outperforms numerous baselines.

In the future, we are desired to incorporate textual description
information of entities and relations as auxiliary information in the
model to simulate the semantic embedding of entities (relations) in the
real world. Besides, we further study on the impact of the quality and
efficiency of negative sampling on KGE.

CRediT authorship contribution statement
Duantengchuan Li: Conceptualization, Methodology, Software, Su-

pervision, Writing — original draft, Writing — review & editing. Tao
Xia: Data curation, Software, Writing — original draft, Writing — review

11

D. Li et al.

& editing. Jing Wang: Conceptualization, Formal analysis, Writing —
review & editing. Fobo Shi: Methodology, Software, Writing — review
& editing. Qi Zhang: Conceptualization, Methodology, Supervision,
Writing — original draft, Writing — review & editing. Bing Li: Conceptu-
alization, Project administration, Supervision. Yu Xiong: Data curation,
Writing — review & editing.

Declaration of competing interest

The authors declare that they have no known competing finan-
cial interests or personal relationships that could have appeared to
influence the work reported in this paper.

Data availability
Data will be made available on request.
Acknowledgments

This work is supported by the National Natural Science Foun-
dation of China (Nos. 62032016, 62377007), the Key Research and
Development Program of Hubei Province, China (No. 2021BAA031).

References

[1] K. Bollacker, C. Evans, P. Paritosh, T. Sturge, J. Taylor, Freebase: A collabora-
tively created graph database for structuring human knowledge, in: SIGMOD,
Association for Computing Machinery, 2008, pp. 1247—1250.

G.A. Miller, WordNet: A lexical database for english, 38, (11) Association for
Computing Machinery, 1995, pp. 39—41,

B. Wu, L. Zhong, L. Yao, Y. Ye, EAGCN: An efficient adaptive graph convolutional
network for item recommendation in social internet of things, IEEE Internet
Things J. 9 (17) (2022) 16386-16401.

B. Wu, L. Zhong, H. Li, Y. Ye, Efficient complementary graph convolutional
network without negative sampling for item recommendation, Knowl.-Based Syst.
256 (2022) 109758.

Z. li, Y. Zhao, Y. Zhang, Z. Zhang, Multi-relational graph attention networks for
knowledge graph completion, Knowl.-Based Syst. 251 (2022) 109262.

Z. Li, Q. Zhang, F. Zhu, D. Li, C. Zheng, Y. Zhang, Knowledge graph represen-
tation learning with simplifying hierarchical feature propagation, Inf. Process.
Manage. 60 (4) (2023) 103348.

J. Wang, Q. Zhang, F. Shi, D. Li, Y. Cai, J. Wang, B. Li, X. Wang, Z. Zhang, C.
Zheng, Knowledge graph embedding model with attention-based high-low level
features interaction convolutional network, Inf. Process. Manage. 60 (4) (2023)
103350.

A. Bordes, N. Usunier, A. Garcia-Duran, J. Weston, O. Yakhnenko, Translat-
ing embeddings for modeling multi-relational data, in: Advances in Neural
Information Processing Systems, Vol. 26, 2013, pp. 2787-2795.

Z. Wang, J. Zhang, J. Feng, Z. Chen, Knowledge graph embedding by translating
on hyperplanes, 28, (1) 2014, pp. 1112-1119,

Y. Lin, Z. Liu, M. Sun, Y. Liu, X. Zhu, Learning entity and relation embeddings
for knowledge graph completion, in: AAAI, AAAI Press, 2015, pp. 2181—2187.
G. Ji, S. He, L. Xu, K. Liu, J. Zhao, Knowledge Graph Embedding Via Dynamic
Mapping Matrix, Association for Computational Linguistics, 2015, pp. 687-696.
M. Nickel, V. Tresp, H.-P. Kriegel, A three-way model for collective learning on
multi-relational data, in: ICML, Omni Press, 2011, pp. 809—816.

B. Yang, W. tau Yih, X. He, J. Gao, L. Deng, Embedding entities and relations for
learning and inference in knowledge bases, International Conference on Learning
Representations, 2015.

T. Trouillon, J. Welbl, S. Riedel, E. Gaussier, G. Bouchard, Complex embeddings
for simple link prediction, in: ICML, JMLR.org, 2016, pp. 2071—2080.

T. Dettmers, P. Minervini, P. Stenetorp, S. Riedel, Convolutional 2D knowledge
graph embeddings, in: AAAI/IAAI/EAAI, AAAI Press, 2018.

M. Defferrard, X. Bresson, P. Vandergheynst, NIPS, Curran Associates Inc., 2016,
pp. 3844—3852.

S. Vashishth, S. Sanyal, V. Nitin, N. Agrawal, P. Talukdar, InteractE: Im-
proving convolution-based knowledge graph embeddings by increasing feature
interactions, 34, (03) 2020, pp. 3009-3016,

A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A.N. Gomez, L. Kaiser,
I. Polosukhin, in: I. Guyon, U. Von Luxburg, S. Bengio, H. Wallach, R. Fergus,
S. Vishwanathan, R. Garnett (Eds.), Attention is All you Need, Vol. 30, Curran
Associates, Inc., 2017.

L. Yao, C. Mao, Y. Luo, KG-BERT: BERT for knowledge graph completion, 2019.

[2]

[3]

[4]

[5]

[6]

[71

[8]

[91]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

12

[20]

[21]

[22]

[23]

[24]

[25]

[26]

[27]

[28]

[29]

[30]

[31]

[32]
[33]
[34]

[35]

[36]

[37]

[38]

[39]

[40]

[41]
[42]

[43]

[44]

[45]

[46]

[47]

[48]

Knowledge-Based Systems 284 (2024) 111253

B. Wang, T. Shen, G. Long, T. Zhou, Y. Wang, Y. Chang, Structure-augmented text
representation learning for efficient knowledge graph completion, in: Proceedings
of the Web Conference 2021, 2021, pp. 1737-1748.

Z. Xu, P. Ye, H. Chen, M. Zhao, H. Chen, W. Zhang, Ruleformer: Context-aware
rule mining over knowledge graph, in: Proceedings of the 29th International
Conference on Computational Linguistics, 2022, pp. 2551-2560.

Z. Sun, Z.-H. Deng, J.-Y. Nie, J. Tang, Rotate: Knowledge graph embedding by
relational rotation in complex space, in: International Conference on Learning
Representations, 2019.

M. Nickel, L. Rosasco, T. Poggio, Holographic embeddings of knowledge graphs,
in: AAAI, AAAI Press, 2016, pp. 1955—1961.

H. Liu, Y. Wu, Y. Yang, Analogical inference for multi-relational embeddings, in:
ICML, JMLR.org, 2017, pp. 2168—2178.

L. Chao, J. He, T. Wang, W. Chu, PairRE: Knowledge graph embeddings
via paired relation vectors, in: Proceedings of the 59th Annual Meeting of
the Association for Computational Linguistics and the 11th International Joint
Conference on Natural Language Processing (Volume 1: Long Papers), 2021, pp.
4360-4369.

M. Schlichtkrull, T.N. Kipf, P. Bloem, R. van den Berg, I. Titov, M. Welling,
Modeling relational data with graph convolutional networks, in: A. Gangemi, R.
Navigli, M.-E. Vidal, P. Hitzler, R. Troncy, L. Hollink, A. Tordai, M. Alam (Eds.),
Springer International Publishing, 2018, pp. 593-607.

H. Wang, S. Dai, W. Su, H. Zhong, Z. Fang, Z. Huang, S. Feng, Z. Chen, Y. Sun, D.
Yu, Simple and effective relation-based embedding propagation for knowledge
representation learning, in: Proceedings of the Thirty-First International Joint
Conference on Artificial Intelligence, IJCAI-22, 2022, pp. 2755-2761.

D. Daza, M. Cochez, P. Groth, Inductive entity representations from text via link
prediction, in: Proceedings of the Web Conference 2021, 2021, pp. 798-808.
L. Wang, W. Zhao, Z. Wei, J. Liu, SimKGC: Simple contrastive knowledge
graph completion with pre-trained language models, in: Proceedings of the 60th
Annual Meeting of the Association for Computational Linguistics (Volume 1: Long
Papers), 2022, pp. 4281-4294.

G.A. Gesese, H. Sack, M. Alam, RAILD: Towards leveraging relation features
for inductive link prediction in knowledge graphs, in: Proceedings of the 11th
International Joint Conference on Knowledge Graphs, 2023, pp. 82-90.

A. Dosovitskiy, L. Beyer, A. Kolesnikov, D. Weissenborn, X. Zhai, T. Unterthiner,
M. Dehghani, M. Minderer, G. Heigold, S. Gelly, J. Uszkoreit, N. Houlsby, An
image is worth 16x16 words: Transformers for image recognition at scale, 2021.
J.L. Ba, J.R. Kiros, G.E. Hinton, Layer normalization, 2016.

D. Hendrycks, K. Gimpel, Gaussian error linear units (GELUs), 2016.

A. Krizhevsky, I. Sutskever, G.E. Hinton, ImageNet classification with deep
convolutional neural networks, in: Advances in Neural Information Processing
Systems, Vol. 25, Curran Associates, Inc., 2012, pp. 1106-1114.

D. Ruffinelli, S. Broscheit, R. Gemulla, You CAN teach an old dog new tricks! on
training knowledge graph embeddings, in: International Conference on Learning
Representations, 2020.

K. Toutanova, D. Chen, Observed versus latent features for knowledge base and
text inference, Association for Computational Linguistics, 2015, pp. 57-66.

X. Glorot, Y. Bengio, in: Y.W. Teh, M. Titterington (Eds.), Understanding the
difficulty of training deep feedforward neural networks, in: Proceedings of
Machine Learning Research, vol. 9, PMLR, 2010, pp. 249-256.

N. Srivastava, G. Hinton, A. Krizhevsky, 1. Sutskever, R. Salakhutdinov, Dropout:
A simple way to prevent neural networks from overfitting, 15, (56) 2014, pp.
1929-1958,

S. Ioffe, C. Szegedy, in: F. Bach, D. Blei (Eds.), Batch Normalization: Accelerating
Deep Network Training by Reducing Internal Covariate Shift, PMLR, 2015, pp.
448-456.

C. Szegedy, V. Vanhoucke, S. Ioffe, J. Shlens, Z. Wojna, Rethinking the Inception
Architecture for Computer Vision, IEEE Computer Society, 2016, pp. 2818-2826.
D.P. Kingma, J. Ba, Adam: A method for stochastic optimization, 2014.

A. Paszke, S. Gross, S. Chintala, G. Chanan, E. Yang, Z. DeVito, Z. Lin, A.
Desmaison, L. Antiga, A. Lerer, Automatic differentiation in pytorch, 2017.

T. Ebisu, R. Ichise, Toruse: Knowledge graph embedding on a Lie group, in:
AAAI/IAAI/EAAI, AAAI Press, 2018.

W. Zhang, B. Paudel, W. Zhang, A. Bernstein, H. Chen, Interaction embeddings
for prediction and explanation in knowledge graphs, in: WSDM, Association for
Computing Machinery, 2019, pp. 96—104.

A. Zeb, S. Saif, J. Chen, A.U. Haq, Z. Gong, D. Zhang, Complex graph
convolutional network for link prediction in knowledge graphs, Expert Syst. Appl.
200 (2022) 116796.

K. Toutanova, D. Chen, Observed versus latent features for knowledge base and
text inference, in: Proceedings of the 3rd Workshop on Continuous Vector Space
Models and their Compositionality, 2015, pp. 57-66.

B. Kotnis, V. Nastase, Analysis of the impact of negative sampling on link
prediction in knowledge graphs, 2018, arXiv:1708.06816.

H. Kamigaito, K. Hayashi, Comprehensive analysis of negative sampling in knowl-
edge graph representation learning, in: Proceedings of the 39th International
Conference on Machine Learning, Vol. 162, 2022, pp. 10661-10675.

http://refhub.elsevier.com/S0950-7051(23)01002-X/sb1
http://refhub.elsevier.com/S0950-7051(23)01002-X/sb1
http://refhub.elsevier.com/S0950-7051(23)01002-X/sb1
http://refhub.elsevier.com/S0950-7051(23)01002-X/sb1
http://refhub.elsevier.com/S0950-7051(23)01002-X/sb1
http://refhub.elsevier.com/S0950-7051(23)01002-X/sb2
http://refhub.elsevier.com/S0950-7051(23)01002-X/sb2
http://refhub.elsevier.com/S0950-7051(23)01002-X/sb2
http://refhub.elsevier.com/S0950-7051(23)01002-X/sb3
http://refhub.elsevier.com/S0950-7051(23)01002-X/sb3
http://refhub.elsevier.com/S0950-7051(23)01002-X/sb3
http://refhub.elsevier.com/S0950-7051(23)01002-X/sb3
http://refhub.elsevier.com/S0950-7051(23)01002-X/sb3
http://refhub.elsevier.com/S0950-7051(23)01002-X/sb4
http://refhub.elsevier.com/S0950-7051(23)01002-X/sb4
http://refhub.elsevier.com/S0950-7051(23)01002-X/sb4
http://refhub.elsevier.com/S0950-7051(23)01002-X/sb4
http://refhub.elsevier.com/S0950-7051(23)01002-X/sb4
http://refhub.elsevier.com/S0950-7051(23)01002-X/sb5
http://refhub.elsevier.com/S0950-7051(23)01002-X/sb5
http://refhub.elsevier.com/S0950-7051(23)01002-X/sb5
http://refhub.elsevier.com/S0950-7051(23)01002-X/sb6
http://refhub.elsevier.com/S0950-7051(23)01002-X/sb6
http://refhub.elsevier.com/S0950-7051(23)01002-X/sb6
http://refhub.elsevier.com/S0950-7051(23)01002-X/sb6
http://refhub.elsevier.com/S0950-7051(23)01002-X/sb6
http://refhub.elsevier.com/S0950-7051(23)01002-X/sb7
http://refhub.elsevier.com/S0950-7051(23)01002-X/sb7
http://refhub.elsevier.com/S0950-7051(23)01002-X/sb7
http://refhub.elsevier.com/S0950-7051(23)01002-X/sb7
http://refhub.elsevier.com/S0950-7051(23)01002-X/sb7
http://refhub.elsevier.com/S0950-7051(23)01002-X/sb7
http://refhub.elsevier.com/S0950-7051(23)01002-X/sb7
http://refhub.elsevier.com/S0950-7051(23)01002-X/sb8
http://refhub.elsevier.com/S0950-7051(23)01002-X/sb8
http://refhub.elsevier.com/S0950-7051(23)01002-X/sb8
http://refhub.elsevier.com/S0950-7051(23)01002-X/sb8
http://refhub.elsevier.com/S0950-7051(23)01002-X/sb8
http://refhub.elsevier.com/S0950-7051(23)01002-X/sb9
http://refhub.elsevier.com/S0950-7051(23)01002-X/sb9
http://refhub.elsevier.com/S0950-7051(23)01002-X/sb9
http://refhub.elsevier.com/S0950-7051(23)01002-X/sb10
http://refhub.elsevier.com/S0950-7051(23)01002-X/sb10
http://refhub.elsevier.com/S0950-7051(23)01002-X/sb10
http://refhub.elsevier.com/S0950-7051(23)01002-X/sb11
http://refhub.elsevier.com/S0950-7051(23)01002-X/sb11
http://refhub.elsevier.com/S0950-7051(23)01002-X/sb11
http://refhub.elsevier.com/S0950-7051(23)01002-X/sb12
http://refhub.elsevier.com/S0950-7051(23)01002-X/sb12
http://refhub.elsevier.com/S0950-7051(23)01002-X/sb12
http://refhub.elsevier.com/S0950-7051(23)01002-X/sb13
http://refhub.elsevier.com/S0950-7051(23)01002-X/sb13
http://refhub.elsevier.com/S0950-7051(23)01002-X/sb13
http://refhub.elsevier.com/S0950-7051(23)01002-X/sb13
http://refhub.elsevier.com/S0950-7051(23)01002-X/sb13
http://refhub.elsevier.com/S0950-7051(23)01002-X/sb14
http://refhub.elsevier.com/S0950-7051(23)01002-X/sb14
http://refhub.elsevier.com/S0950-7051(23)01002-X/sb14
http://refhub.elsevier.com/S0950-7051(23)01002-X/sb15
http://refhub.elsevier.com/S0950-7051(23)01002-X/sb15
http://refhub.elsevier.com/S0950-7051(23)01002-X/sb15
http://refhub.elsevier.com/S0950-7051(23)01002-X/sb16
http://refhub.elsevier.com/S0950-7051(23)01002-X/sb16
http://refhub.elsevier.com/S0950-7051(23)01002-X/sb16
http://refhub.elsevier.com/S0950-7051(23)01002-X/sb17
http://refhub.elsevier.com/S0950-7051(23)01002-X/sb17
http://refhub.elsevier.com/S0950-7051(23)01002-X/sb17
http://refhub.elsevier.com/S0950-7051(23)01002-X/sb17
http://refhub.elsevier.com/S0950-7051(23)01002-X/sb17
http://refhub.elsevier.com/S0950-7051(23)01002-X/sb18
http://refhub.elsevier.com/S0950-7051(23)01002-X/sb18
http://refhub.elsevier.com/S0950-7051(23)01002-X/sb18
http://refhub.elsevier.com/S0950-7051(23)01002-X/sb18
http://refhub.elsevier.com/S0950-7051(23)01002-X/sb18
http://refhub.elsevier.com/S0950-7051(23)01002-X/sb18
http://refhub.elsevier.com/S0950-7051(23)01002-X/sb18
http://refhub.elsevier.com/S0950-7051(23)01002-X/sb19
http://refhub.elsevier.com/S0950-7051(23)01002-X/sb20
http://refhub.elsevier.com/S0950-7051(23)01002-X/sb20
http://refhub.elsevier.com/S0950-7051(23)01002-X/sb20
http://refhub.elsevier.com/S0950-7051(23)01002-X/sb20
http://refhub.elsevier.com/S0950-7051(23)01002-X/sb20
http://refhub.elsevier.com/S0950-7051(23)01002-X/sb21
http://refhub.elsevier.com/S0950-7051(23)01002-X/sb21
http://refhub.elsevier.com/S0950-7051(23)01002-X/sb21
http://refhub.elsevier.com/S0950-7051(23)01002-X/sb21
http://refhub.elsevier.com/S0950-7051(23)01002-X/sb21
http://refhub.elsevier.com/S0950-7051(23)01002-X/sb22
http://refhub.elsevier.com/S0950-7051(23)01002-X/sb22
http://refhub.elsevier.com/S0950-7051(23)01002-X/sb22
http://refhub.elsevier.com/S0950-7051(23)01002-X/sb22
http://refhub.elsevier.com/S0950-7051(23)01002-X/sb22
http://refhub.elsevier.com/S0950-7051(23)01002-X/sb23
http://refhub.elsevier.com/S0950-7051(23)01002-X/sb23
http://refhub.elsevier.com/S0950-7051(23)01002-X/sb23
http://refhub.elsevier.com/S0950-7051(23)01002-X/sb24
http://refhub.elsevier.com/S0950-7051(23)01002-X/sb24
http://refhub.elsevier.com/S0950-7051(23)01002-X/sb24
http://refhub.elsevier.com/S0950-7051(23)01002-X/sb25
http://refhub.elsevier.com/S0950-7051(23)01002-X/sb25
http://refhub.elsevier.com/S0950-7051(23)01002-X/sb25
http://refhub.elsevier.com/S0950-7051(23)01002-X/sb25
http://refhub.elsevier.com/S0950-7051(23)01002-X/sb25
http://refhub.elsevier.com/S0950-7051(23)01002-X/sb25
http://refhub.elsevier.com/S0950-7051(23)01002-X/sb25
http://refhub.elsevier.com/S0950-7051(23)01002-X/sb25
http://refhub.elsevier.com/S0950-7051(23)01002-X/sb25
http://refhub.elsevier.com/S0950-7051(23)01002-X/sb26
http://refhub.elsevier.com/S0950-7051(23)01002-X/sb26
http://refhub.elsevier.com/S0950-7051(23)01002-X/sb26
http://refhub.elsevier.com/S0950-7051(23)01002-X/sb26
http://refhub.elsevier.com/S0950-7051(23)01002-X/sb26
http://refhub.elsevier.com/S0950-7051(23)01002-X/sb26
http://refhub.elsevier.com/S0950-7051(23)01002-X/sb26
http://refhub.elsevier.com/S0950-7051(23)01002-X/sb27
http://refhub.elsevier.com/S0950-7051(23)01002-X/sb27
http://refhub.elsevier.com/S0950-7051(23)01002-X/sb27
http://refhub.elsevier.com/S0950-7051(23)01002-X/sb27
http://refhub.elsevier.com/S0950-7051(23)01002-X/sb27
http://refhub.elsevier.com/S0950-7051(23)01002-X/sb27
http://refhub.elsevier.com/S0950-7051(23)01002-X/sb27
http://refhub.elsevier.com/S0950-7051(23)01002-X/sb28
http://refhub.elsevier.com/S0950-7051(23)01002-X/sb28
http://refhub.elsevier.com/S0950-7051(23)01002-X/sb28
http://refhub.elsevier.com/S0950-7051(23)01002-X/sb29
http://refhub.elsevier.com/S0950-7051(23)01002-X/sb29
http://refhub.elsevier.com/S0950-7051(23)01002-X/sb29
http://refhub.elsevier.com/S0950-7051(23)01002-X/sb29
http://refhub.elsevier.com/S0950-7051(23)01002-X/sb29
http://refhub.elsevier.com/S0950-7051(23)01002-X/sb29
http://refhub.elsevier.com/S0950-7051(23)01002-X/sb29
http://refhub.elsevier.com/S0950-7051(23)01002-X/sb30
http://refhub.elsevier.com/S0950-7051(23)01002-X/sb30
http://refhub.elsevier.com/S0950-7051(23)01002-X/sb30
http://refhub.elsevier.com/S0950-7051(23)01002-X/sb30
http://refhub.elsevier.com/S0950-7051(23)01002-X/sb30
http://refhub.elsevier.com/S0950-7051(23)01002-X/sb31
http://refhub.elsevier.com/S0950-7051(23)01002-X/sb31
http://refhub.elsevier.com/S0950-7051(23)01002-X/sb31
http://refhub.elsevier.com/S0950-7051(23)01002-X/sb31
http://refhub.elsevier.com/S0950-7051(23)01002-X/sb31
http://refhub.elsevier.com/S0950-7051(23)01002-X/sb32
http://refhub.elsevier.com/S0950-7051(23)01002-X/sb33
http://refhub.elsevier.com/S0950-7051(23)01002-X/sb34
http://refhub.elsevier.com/S0950-7051(23)01002-X/sb34
http://refhub.elsevier.com/S0950-7051(23)01002-X/sb34
http://refhub.elsevier.com/S0950-7051(23)01002-X/sb34
http://refhub.elsevier.com/S0950-7051(23)01002-X/sb34
http://refhub.elsevier.com/S0950-7051(23)01002-X/sb35
http://refhub.elsevier.com/S0950-7051(23)01002-X/sb35
http://refhub.elsevier.com/S0950-7051(23)01002-X/sb35
http://refhub.elsevier.com/S0950-7051(23)01002-X/sb35
http://refhub.elsevier.com/S0950-7051(23)01002-X/sb35
http://refhub.elsevier.com/S0950-7051(23)01002-X/sb36
http://refhub.elsevier.com/S0950-7051(23)01002-X/sb36
http://refhub.elsevier.com/S0950-7051(23)01002-X/sb36
http://refhub.elsevier.com/S0950-7051(23)01002-X/sb37
http://refhub.elsevier.com/S0950-7051(23)01002-X/sb37
http://refhub.elsevier.com/S0950-7051(23)01002-X/sb37
http://refhub.elsevier.com/S0950-7051(23)01002-X/sb37
http://refhub.elsevier.com/S0950-7051(23)01002-X/sb37
http://refhub.elsevier.com/S0950-7051(23)01002-X/sb38
http://refhub.elsevier.com/S0950-7051(23)01002-X/sb38
http://refhub.elsevier.com/S0950-7051(23)01002-X/sb38
http://refhub.elsevier.com/S0950-7051(23)01002-X/sb38
http://refhub.elsevier.com/S0950-7051(23)01002-X/sb38
http://refhub.elsevier.com/S0950-7051(23)01002-X/sb39
http://refhub.elsevier.com/S0950-7051(23)01002-X/sb39
http://refhub.elsevier.com/S0950-7051(23)01002-X/sb39
http://refhub.elsevier.com/S0950-7051(23)01002-X/sb39
http://refhub.elsevier.com/S0950-7051(23)01002-X/sb39
http://refhub.elsevier.com/S0950-7051(23)01002-X/sb40
http://refhub.elsevier.com/S0950-7051(23)01002-X/sb40
http://refhub.elsevier.com/S0950-7051(23)01002-X/sb40
http://refhub.elsevier.com/S0950-7051(23)01002-X/sb41
http://refhub.elsevier.com/S0950-7051(23)01002-X/sb42
http://refhub.elsevier.com/S0950-7051(23)01002-X/sb42
http://refhub.elsevier.com/S0950-7051(23)01002-X/sb42
http://refhub.elsevier.com/S0950-7051(23)01002-X/sb43
http://refhub.elsevier.com/S0950-7051(23)01002-X/sb43
http://refhub.elsevier.com/S0950-7051(23)01002-X/sb43
http://refhub.elsevier.com/S0950-7051(23)01002-X/sb44
http://refhub.elsevier.com/S0950-7051(23)01002-X/sb44
http://refhub.elsevier.com/S0950-7051(23)01002-X/sb44
http://refhub.elsevier.com/S0950-7051(23)01002-X/sb44
http://refhub.elsevier.com/S0950-7051(23)01002-X/sb44
http://refhub.elsevier.com/S0950-7051(23)01002-X/sb45
http://refhub.elsevier.com/S0950-7051(23)01002-X/sb45
http://refhub.elsevier.com/S0950-7051(23)01002-X/sb45
http://refhub.elsevier.com/S0950-7051(23)01002-X/sb45
http://refhub.elsevier.com/S0950-7051(23)01002-X/sb45
http://refhub.elsevier.com/S0950-7051(23)01002-X/sb46
http://refhub.elsevier.com/S0950-7051(23)01002-X/sb46
http://refhub.elsevier.com/S0950-7051(23)01002-X/sb46
http://refhub.elsevier.com/S0950-7051(23)01002-X/sb46
http://refhub.elsevier.com/S0950-7051(23)01002-X/sb46
http://arxiv.org/abs/1708.06816
http://refhub.elsevier.com/S0950-7051(23)01002-X/sb48
http://refhub.elsevier.com/S0950-7051(23)01002-X/sb48
http://refhub.elsevier.com/S0950-7051(23)01002-X/sb48
http://refhub.elsevier.com/S0950-7051(23)01002-X/sb48
http://refhub.elsevier.com/S0950-7051(23)01002-X/sb48

	SDFormer: A shallow-to-deep feature interaction for knowledge graph embedding
	Introduction
	Related Work
	Translational Distance Models
	Semantic Matching Models
	Neural Network-Based Models

	Methodology
	Problem Formulation
	Outline of SDFormer
	Vector Tokenization
	Feature Interaction
	Score Prediction

	Training and Optimization

	Experiments and Analysis
	Datasets
	Evaluation Metrics
	Experimental Implementation
	Comparison Models
	Link Prediction Results
	Ablation Study
	Effectiveness of Each Module in SDFormer
	Effect of the Number of Tokens
	Effect of Multi-Scale Convolution
	Effect of Negative Sampling Method

	Parameter Sensitivity Analysis

	Conclusion and Future Work
	CRediT authorship contribution statement
	Declaration of competing interest
	Data availability
	Acknowledgments
	References

