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A B S T R A C T

Existing benchmarks for Large Language Models (LLMs) mostly focus on general or specific
domain capabilities, overlooking structured output capabilities. We introduce SoEval, a bench-
mark for assessing LLMs’ ability to generate structured outputs like JSON, XML, and lists. SoEval
contains 3.7K entries in Chinese and English, covering 13 types of structured output tasks across
20 subjects. In experiments, we found that while current mainstream LLMs have deficiencies
in structured output, GPT-4 outperforms them in this aspect. GPT-4 achieved an average score
of 0.4 on SoEval, representing a 24% enhancement over the next best-performing model. At
the same time, the performance of current mainstream models on English tasks is also better
than on Chinese tasks. We also report the performance of mainstream large models on different
structured output types and task subjects. The benchmark construction code and SoEval dataset
are open-sourced at https://github.com/MoranCoder95/SoEval.

. Introduction

Large language models (LLMs) like Llama (Touvron et al., 2023), GPT-3.5 (OpenAI, 2022) and GPT-4 (OpenAI, 2023) are widely
tilized in various domains due to their outstanding capabilities. For example, text generation (Wang et al., 2024), sentiment
nalysis, and automatic question answering (Minaee et al., 2024) are some of the areas where these models excel. LLMs are
requently described as ‘‘black boxes’’ due to the complexity and opacity of their inner workings, making them challenging to
ully comprehend (Zhao, Yang, Lakkaraju, & Du, 2024). Specific benchmark tests are one of the most effective ways to assess
nd understand the capabilities of these ‘‘black box’’ models (Guidotti, Monreale, Turini, Pedreschi, & Giannotti, 2018). Assessing
he capabilities of the model through these tests allows for a deeper understanding of its strengths and weaknesses, as well as
dentification of potential use cases. For example, a LLM model that is trained on a wide range of standard texts may excel at
eneral language tasks, but struggle with more niche or specialized content, indicating a gap in the model’s capabilities in these
reas (Wayne Xin Zhao et al., 2023). Therefore, it is crucial to develop suitable evaluation benchmarks to gain a comprehensive
nderstanding and further enhance the capabilities of these LLMs (Chandran et al., 2024).
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Fig. 1. The example shows three responses from a large language model that summarize fashion trends and their origins according to a specific format. These
responses show varying degrees of adherence to the formatting requirements: one is incorrect in format, another is correct but redundant, and the last is both
correct and concise in format.

Table 1
Summary of some existing LLMs evaluation benchmarks.

Dataset Year Focus Types Size

C-Eval (Huang et al., 2024) 2023 Chinese evaluation General language task 13,948
Xiezhi (Gu et al., 2023) 2023 Comprehensive domain knowledge General language task 249,587
LLMEval3 (Zhang, Yu et al.,
2023)

2023 LLM evaluator General language task 200,000

SuperCLUE (Xu et al., 2023) 2023 Chinese evaluation General language task –
AGI Eval (Zhong et al., 2023) 2023 Human cognition General language task –
MMLU (Hendrycks, Burns, Basart
et al., 2021)

2021 Zero-shot/few-shot evaluation General language task 57 subjects

AQA-Bench (Yang, Zhao, & Xie,
2024)

2023 Sequential reasoning in algorithmic contexts General language task 3 algorithms

GSM8K (Cobbe et al., 2021) 2021 Multi-step mathematical reasoning Educational/mathematics 8.500
MATH (Hendrycks, Burns,
Kadavath et al., 2021)

2021 Challenging competition-level math problems Educational/mathematics 12,500

SuperCLUE-Math6 (Xu, Xue, Zhu,
& Zhao, 2024)

2024 Graded multi-step math reasoning in Chinese Educational/mathematics Over 2000

Human Eval (Chen et al., 2021) 2021 Program synthesis Code 164 problems
MBPP (Austin et al., 2021) 2021 Entry-level programming Code 1000 problems
Mercury (Du, Luu, Ji, & Ng,
2024)

2024 Code efficiency benchmark Code 1889 tasks

GAOKAO-bench (Zhang, Li et al.,
2023)

2023 Language understanding, logical reasoning Education/educational testing 2811

ARC (Clark et al., 2018) 2018 Science exam questions Education/educational testing Two partitions (easy,
challenge)

Flores (Goyal et al., 2021) 2021 Wikipedia sentences Machine translation 101 languages
COPA (Wang et al., 2019) 2020 Causal relation selection Causal inference task –
LawBench (Fei et al., 2023) 2023 Benchmarking legal knowledge Law 20 tasks

SoEval (ours) 2024 Structured output capabilities Output capabilities 13 structure-related types,
20 task-related subjects

Currently, the performance evaluation of LLMs relies heavily on specially designed benchmarks (Abdelali et al., 2024). These
benchmarks are capable of testing the models’ abilities in multiple languages and tasks. Widely-used evaluation benchmarks like
SuperGLUE (Xu et al., 2023), and MMLU (Hendrycks, Burns, Basart et al., 2021) cover a range of tasks from understanding to
generation, providing a standardized way to measure and compare the capabilities of different LLMs. As shown in Table 1, the main
benchmarks are primarily categorized into two types. The first type includes benchmarks assessing general language tasks, evaluating
performance across various tasks and general domain knowledge. For example, benchmarks like C-Eval (Huang et al., 2024) and
Xiezhi (Gu et al., 2023) test competencies in diverse fields including science, engineering, agronomy, medicine, and art. The
second type comprises benchmarks targeting specific downstream tasks, evaluating specialized capabilities and domain knowledge.
Examples include benchmarks like SuperCLUE-Math6 (Xu et al., 2024), which tests mathematical abilities, and Mercury (Du et al.,
2024), which evaluates coding abilities in LLMs.
2
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Table 2
Survey results on structured output capabilities of large language models among 100 respondents.

Question No. Description IT Education/Research Healthcare Tech services Finance Other Total

1 Your industry 20 25 15 18 12 10 100

2 Use of LLM in work
A. Often (frequently using LLM in work tasks) 15 20 10 14 8 5 72
B. Occasionally (using LLM in work tasks from time to time) 5 3 4 2 3 2 19
C. Rarely (seldom using LLM in work tasks) 0 2 1 1 1 2 7
D. Never (never using LLM in work tasks) 0 0 0 1 0 1 2

3 Importance of LLM’s structured output
A. Very important (LLM’s structured output is crucial for work tasks) 18 22 14 16 11 7 88
B. Important (LLM’s structured output plays a significant role in work tasks) 2 2 1 1 1 2 9
C. Somewhat important (LLM’s structured output is useful but not critical for work tasks) 0 1 0 1 0 1 3
D. Not important (LLM’s structured output has little to no impact on work tasks) 0 0 0 0 0 0 0

4 Satisfaction with LLM’s structured output
A. Very satisfied (highly content with the quality and utility of LLM’s structured output) 2 3 2 3 1 1 12
B. Satisfied (content with LLM’s structured output, though there may be minor issues) 2 4 2 2 2 2 14
C. Neutral (neither satisfied nor dissatisfied with LLM’s structured output) 6 8 5 6 4 3 32
D. Unsatisfied (discontent with the quality or utility of LLM’s structured output) 10 10 6 7 5 4 42

5 Structured output formats used (multiple choice)
A. JSON/XML 18 8 0 2 3 4 35
B. Table 10 22 14 16 11 8 81
C. List 17 24 15 16 9 9 90
D. Matrix 3 4 2 3 11 3 26
... other formats – – – – – – –

Note: The survey involved a total of 100 participants, selected through purposive sampling to ensure representation from various industries. The participants were chosen based on their professional
roles.

Existing evaluation benchmarks assess LLMs in general or specialized domains, but they often overlook the models’ ability to
roduce structured outputs. Structured formats, such as lists, JSON, and XML, provide an intuitive and effective way to understand
nd interact with LLMs. These formats not only aid in human comprehension and reading of information (Dagdelen et al., 2024),
ut also facilitate data handling in software development and other applications (Izquierdo & Cabot, 2014). As illustrated in Fig. 1,
hen invoking LLMs’ interfaces in software development, we require LLMs to output in specific formats to facilitate code processing.
owever, LLMs may not always output in the required format, leading to errors in downstream tasks. Additionally, LLMs may
roduce irrelevant context, which can increase token consumption even when the correct format is produced. At the same time, our
uestionnaire survey conducted among specific groups (as shown in Table 2) indicate that while there is a clear demand for diverse
ormat outputs among LLM users, the satisfaction levels regarding the structured output capabilities of LLMs during actual usage
re less than optimistic. This exposed deficiencies in the structured output capabilities of LLMs. Therefore, creating a benchmark to
valuate the structured output of LLMs is crucial to address a gap in evaluations and has significant practical importance.

In this paper, we have created a benchmark for assessing the structured output capabilities of LLMs. In terms of theory,
we initially analyze the prompt, assuming a separation between task-related instructions and structure-related instructions, and
construct a causal graph of the prompt. This causal graph analysis serves as a guide for the development of our entire benchmark.
In practical terms, we first define common forms of structured output and generate corresponding regular expressions. Then, based
on the patterns reflected in these regular expressions, we create structure-related instructions. Subsequently, we generate task-related
instructions by considering potential application scenarios. By combining these structure-related and task-related instructions, we
compose our final prompt, which undergoes rigorous human evaluation. When these prompts are presented to large models like
GPT-4, their responses can be compared against the regular expressions to calculate the model’s structured output score. Regarding
evaluation criteria, given the importance of practical applications that require both structured output and redundancy, our
evaluation criteria are designed with these aspects in mind.

1.1. Research objective

The primary objective of this research is to bridge the existing gap in evaluating large language models concerning their capability
to produce structured outputs. While current benchmarks effectively assess the general and domain-specific capabilities of LLMs,
they often overlook the importance of structured output formats which are crucial for a wide range of practical applications. Our
main contributions in this research are outlined as follows:

• Our focus is to evaluate the structured output capabilities of LLMs. By analyzing the causal graphs of prompt structures, we
provide a viable technical solution to the challenging problem of evaluating structured output capabilities. Our solution is
both scalable and practical.

• We have developed the SoEval dataset, which is the first dataset in the structured output evaluation domain. The dataset
includes 13 types of structured output tasks, covering 20 task subjects.

• We have tested several major language models using SoEval and reported their capabilities in structured output. Our
benchmark will help guide future improvements and research in the field of LLMs.

2. Related work

In this section, we examine the evolution of Large Language Models (LLMs) from basic statistical models to advanced systems
3
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2.1. Large Language Models (LLMs)

Large Language Models (Chang et al., 2023; Wu et al., 2024) such as Generative Pre-trained Transformer (GPT) (Floridi &
hiriatti, 2020) are trained on large datasets, enabling them to generate, translate, or summarize text with high accuracy. Early

anguage models, like N-gram models (Brown, Della Pietra, Desouza, Lai, & Mercer, 1992), used statistical methods to predict word
equences but struggled with long-range dependencies and complex language structures due to their reliance on immediate context.
ubsequently, the emergence of neural network-based models marked a significant advancement. For example, RNNs (Zaremba,
utskever, & Vinyals, 2014) and their variants LSTM (Hochreiter & Schmidhuber, 1997) networks improve the handling of sequential
ata by capturing longer-term dependencies in text. Despite this, these models face difficulties with very long sequences and require
ignificant data and computational resources. The introduction of transformer-based architectures (Vaswani et al., 2017), represented
y models like GPT (Floridi & Chiriatti, 2020; OpenAI, 2023) and BERT (Devlin, Chang, Lee, & Toutanova, 2018), brings a major
reakthrough. These models employ self-attention mechanisms to assess the importance of different parts of input data, allowing
hem to focus on relevant sections of text for predictions or text generation. This method greatly enhances language models’ ability
o understand context and subtleties in language.

The release of ChatGPT marks a significant moment in the evolution of transformer architecture-based LLMs, which are
haracterized by their enormous parameter sizes and strong alignment with human feedback. This alignment enhances their
daptability and accuracy in a wide range of language tasks (Wan et al., 2023). ChatGPT was built on the GPT-3.5 model and
et a new standard for dialog quality (OpenAI, 2022). The subsequent introduction of GPT-4 further enhanced the capabilities of
hese models, handling more complex tasks with increased accuracy and the innovative ability to analyze images and adjust tone. In
ddition to the renowned GPT series, a number of institutions have ventured to develop their own large-scale models. In particular,
oogle’s PaLM 2 (Bison-001) (Anil et al., 2023) excels in multilingual programming and complex logical reasoning, demonstrating

ts ability to be trained on large datasets. Similarly, Anthropic’s Claude (Claude, 2023) model focuses on creating AI assistants
hat are helpful, honest, and harmless, consistently outperforming in various benchmark tests. In addition, Alibaba’s Qwen series
Qwen-72B, Qwen-14B, and Qwen-7B) (Bai et al., 2023) have demonstrated impressive performance across a range of tasks. The
pread of these large language models (LLMs) not only shows a big step forward in technology but also sets the groundwork for
chieving general artificial intelligence.

.2. LLM evaluations

The evaluation of LLMs is a central aspect of modern AI research, serving as a window into their operational capabilities and
uiding the direction of future improvements (Ning et al., 2024). This complex process involves a variety of benchmarks and
ethodologies that have been carefully designed to investigate the various dimensions of LLM performance. For example, GAOKAO-
023 and MMLU (Hendrycks, Burns, Basart et al., 2021) are used to assess the models’ performance in academic settings, testing their
nderstanding of various topics. Meanwhile, datasets such as WiC (Pilehvar & Camacho-Collados, 2019) and TyDiQA (Clark et al.,
020) are crucial for assessing how well they understand and generate language, testing both their comprehension and linguistic
reativity. In addition, tools such as BoolQ (Clark et al., 2019) and NaturalQuestions (Kwiatkowski et al., 2019) provide insight
nto the models’ ability to process and apply knowledge, a key factor in their practical utility. Data sets such as C3 (Sun, Yu, Yu, &
ardie, 2020) and RACE (Lai, Xie, Liu, Yang, & Hovy, 2017), which focus on the models’ reading comprehension skills, are also used

or deeper text comprehension and critical analysis. Finally, benchmarks such as CMNLI (Xu et al., 2020) and PIQA (Bisk, Zellers,
ras, Gao, & Choi, 2019) play an important role in assessing the models’ logical, causal, and common sense reasoning skills, which
re essential for decision making and problem solving. These comprehensive assessment methods not only highlight the strengths
nd weaknesses of LLMs in different domains, but also directly guide the direction of AI progress.

Evaluating LLMs involves more than measuring performance. It also includes testing for robustness, ethics, bias neutrality, and
rustworthiness (Dong, Zhou, Yang, Shao, & Qiao, 2024; Yao et al., 2024). Robustness testing involves assessing how stable models
re with unexpected inputs, such as attacks or new scenarios. Ethical concerns are critical because LLMs can inherit and spread
iases or harmful content from their training data. Bias neutrality refers to the importance of ensuring that the outputs are not
nfluenced by hidden biases, which is crucial for building a fair artificial intelligence system (Sheng, Chang, Natarajan, & Peng,
021). Trustworthiness testing focuses on whether the model’s outputs are accurate, reliable, and meet user expectations, mainly
nvolving the issue of ‘‘hallucinations’’ in LLMs (Wang et al., 2023). Although newer versions like GPT-4 show improvements, they
lso have new vulnerabilities against advanced attacks (Chang et al., 2023). Therefore, integrating different datasets and various
valuation methods to comprehensively assess LLMs from multiple aspects is key to understanding the limitations of LLM capabilities.

. Preliminaries

In this section, we primarily introduce some fundamental principles of our benchmark design and utilize causal graphs to review
he structure of the prompt.

.1. Design principles

otivation: Large language models (LLMs), as emerging infrastructure technologies, are now widely used in various industries. In
4
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Table 3
Descriptions of different types of structured outputs.

Type Description Example

List Vertically arranges items, facilitating quick reading and referencing. 1. Apple, 2. Samsung, 3. Huawei
Table Organizes data in rows and columns for easy understanding and analysis. –
Headings & Subheadings Organizes and highlights document structure. –
Q&A Conversational layout of questions and answers. Q: Monthly budget? A: Track income and expenses.
Timeline Shows events in chronological order for tracking progress or history. 1914: War begins; 1918: War ends
Flowchart Graphical representation of steps, decisions, and processes. Step 1: Analysis; Step 2: Design
Key-Value Pairs Each key is associated with a value, used in data storage. Name: John, Age: 20, ID: 123456
JSON Format Formats for structured data, used in web and files. {‘‘title’’: ‘‘Book’’, ‘‘author’’: ‘‘Author’’}
Triples Describes information in a three-part structure. (Paris, is located in, France)
Attribute Graph Displays an object’s attributes. Phone Attributes: Model, Price, OS
Url Parameters Encodes data in URLs with key–value pairs, often in GET requests. ?category=books&price=low
XML Format Markup language for data description and storage, hierarchical. –
Formats Modify Converts data between different formats. –

Table 4
Subject categories across diverse task domains.

Number Subject

1 Business, Economics & Entrepreneurship
2 Social Sciences, Education & Human Rights
3 History, Geography & Cultural Studies
4 Environmental, Earth Sciences & Sustainability
5 Health, Wellness & Fitness
6 Religious Studies, Theology & Philosophy
7 Science & Technology
8 Literature, Arts & Performing Arts
9 Lifestyle, Personal Development & Languages
10 Fashion, Design & Arts and Crafts
11 Engineering, Architecture & Urban Studies
12 Astronomy, Space Exploration & Astrophysics
13 Travel, Tourism & Cultural Landmarks
14 Media, Communications & Digital Technologies
15 Agriculture, Forestry & Animal Care
16 Law, Legal Studies & International Relations
17 Social Issues, Environmental Policy & Human Rights
18 Economic Theories, Models & Political Systems
19 Mathematics, Statistics & Data Science
20 Other

development processes to increase efficiency and convenience. This need has been demonstrated by extensive surveys across various
industries (survey results can be found in Table 2). Despite their importance, our survey results indicate a general dissatisfaction
with the current capabilities of LLMs in this area. As shown in Table 2, our survey involved 100 respondents from various industries,
with the majority (91%) indicating frequent or occasional use of LLMs in their work. Notably, 97% considered structured output
capabilities to be very important or important. However, only 26% expressed satisfaction with current LLM performance in this
area, while 42% reported being unsatisfied. The most commonly used structured output formats were List (90 respondents), Table
(81 respondents), and JSON/XML (35 respondents). These results highlight the significant gap between the demand for structured
output capabilities and the current level of user satisfaction, underscoring the need for benchmarks to assess and improve LLM
performance in this critical area.

Types & subjects selection: Our research focuses on the structured output produced by LLMs, with particular emphasis on formats
such as lists and JSON, which are becoming increasingly important for improving business operations and facilitating smoother
integration with AI technologies. To address industry challenges, we have identified 13 structured output formats that are in high
demand, as detailed in the Table 3. These formats are expected to be of significant benefit to a wide range of future applications.
To demonstrate the broad utility of these structured formats, our study extensively explores 20 different task subjects, as outlined
in Table 4, highlighting the diverse applicability of our findings across different domains.

Dataset generation approach: To test the core abilities of LLMs, we have adopted an efficient method for generating datasets by using
LLMs themselves. Advanced models such as GPT 4.0 have been particularly useful in dataset construction (Chang et al., 2023). This
approach highlights the advantages of utilizing LLMs to create datasets, significantly reducing the time and manual effort involved.
It makes the process feasible and efficient. By using this strategy, we can quickly come up with a wide variety of prompts that have
specific structured output requirements, which is essential for evaluating and testing the capabilities of LLMs.

Attempting to mitigate data contamination: When building our dataset, we carefully avoid data contamination to ensure quality.
This is important because it prevents inflated performance metrics caused by models merely recalling information rather than
5
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Fig. 2. Causal graph of the prompt. (a) illustrates the process of constructing prompt based on task-related and structure-related instruction. In this causal graph,
the prompt (𝑃 ) is generated by integrating a structure-related instruction (𝑆) with a task-specific instruction (𝑇 ), influenced by the input (𝐼𝑛). (b) provides an
illustrative example derived from the causal diagram.

generating new content. Since there are currently no exclusive datasets for structured output in LLMs training, the problem of data
contamination can be avoided. Importantly, LLMs can exhibit an ‘‘echo effect’’ where they generate content that is more familiar or
easily accessible to them. This means that LLMs may prioritize generating content that frequently appears or is easily understood
in their training data, rather than completely novel or unique content. This property is actually beneficial for our research, as
we are focused on evaluating the structured output capabilities of these models, rather than the factual accuracy of the content
generated. The ‘‘echo effect’’ ensures that the prompts created by the LLMs are within their competence, providing a relevant basis
for evaluating their structured output performance.

3.2. Overview of prompt

Prompt engineering in the context of large language models (LLMs) involves the creation of well-designed prompts to guide the
model to produce the desired output. The skill of crafting such prompts is critical because it has a marked effect on the responses
generated by the model (Liu et al., 2023). As shown in Fig. 2, prompts are composed of two key components: instruction and input.
The instruction part clearly states the task, setting the tone for the model’s response, while the input provides necessary context
or specific examples. Moreover, instruction can be further divided into task-related instruction and structure-related instruction.
Task-related instruction define the specific task or question the model needs to address, while structure-related instruction shape
the format and structure of the LLM’s response.

In order to provide a more vivid illustration of the relationships among the aforementioned elements, we employ a causal graph
(as shown in Fig. 2) to visually depict the connections between task-related instruction (𝑇 ), structure-related instruction (𝑆), and
input (𝐼𝑛) in the generation of the final prompt (𝑃 ). The causal graph can intuitively show the internal structure of the prompt and the
causal relationship between its components, providing support for the theoretical basis of the prompt research. In constructing the
causal graph, we make specific assumptions, such as assuming that task-related instruction ((T)) and structure-related instruction
((S)) are independent of each other, and that they are equally important for the generation of instruction ((I)).To quantitatively
describe this relationship, we make use of a structural equation model (SEM) (Jöreskog & Sörbom, 1982), as demonstrated in the
following equation:

𝑃 ∶= 𝑓
(

𝐼, 𝐼𝑛
)

,

𝐼 ∶= ℎ (𝑇 , 𝑆) = 𝑓
(

ℎ(𝑇 , 𝑆), 𝐼𝑛
)

. (1)

The generation of the entire prompt 𝑃 is seen as a combination of functions 𝑓 and ℎ, given task-related instruction 𝑇 , structure-
related instruction 𝑆, and input contents 𝐼𝑛. In our work, functions (f) and (h) are both implemented by LLMs (GPT 4.0), with
the task-related instruction (T) being generated by the LLMs based on 20 predefined task domains (as shown in Table 4), and the
structure instruction (S) generated according to 13 predefined high-demand structured output formats (as listed in Table 3). By
decomposing the prompt into its constituent elements, a pipeline approach can be effectively implemented to assemble the final
prompt.

4. Methodology

To accurately assess the structured output capability of Large language models (LLMs), we employ a pipeline approach to generate
test prompts, as illustrated in Fig. 3. The process begins with the identification of 13 structured output types, which are derived from
extensive industry surveys to ensure the dataset’s relevance and practicality. Following this, regular expression (regex) generation
is used to define structured data formats. These defined regex patterns serve as the foundation for defining evaluation criteria in
subsequent steps. During the instruction construction phase, since instructions are categorized into structure-related instructions and
task-related instructions, we construct structure-related instructions using regex patterns and generate corresponding task-related
instructions randomly. As we primarily focus on the structured output capability of LLMs, the prompt solely comprises instructions,
excluding input elements from the causal graph. The final instructions are then manually verified and edited to ensure their quality.
In the testing phase, these final prompts are input into LLMs to automatically generate results, and by comparing the generated
results with the regex patterns, the outcome scores can be calculated. Next, we will discuss in detail how to construct the SoEval
dataset and introduce the evaluation criteria.
6
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Fig. 3. Pipeline overview for SoEval dataset construction. The pipeline includes key steps: defining structured output formats, constructing regular expressions,
developing structure-related and task-related instructions, creating final instruction prompts, and performing manual reviews.

4.1. Detailed methodology steps

Our methodology is meticulously designed as a structured pipeline, with each phase building on the previous to ensure a seamless
flow from conception to implementation. This pipeline approach not only enhances efficiency and coherence, but also ensures that
each component of our data set is created with precision and purpose. The following steps outline this pipeline and showcase the
detailed process of constructing our SoEval data.

• Step 1: Selection of Structured Output Types. To ensure the relevance of our dataset across industries, we carefully select
structured output tasks that are in high demand. For example, from our extensive surveys (refer to Table 2), we found that
JSON formatting is a frequently requested task in the IT and data analytics industries. Similarly, XML formatting is critical for
Web development and data exchange. By identifying such 13 high-demand structured output formats (refer to Table 3), we
aim to make our dataset an invaluable tool for real-world structured output generation challenges.

• Step 2: Generation of Regular Expressions (Regex). For each structured output types, we generate regex patterns that
precisely define the expected formats. For example, for JSON formatting tasks, we generate regex that validates the proper
structure of JSON objects, ensuring that they have properly quoted keys and valid value types. Similarly, for XML tasks,
the regex checks for well-formed tags and proper nesting. These patterns are essential for establishing objective, quantifiable
standards for evaluating the performance of LLMs in generating structured output, ensuring that our benchmarks are truly
applicable to practical applications.

• Step 3: Development of Instructions. As depicted in the causal graph in Fig. 2, instructions are divided into task-related
instructions and structure-related instructions. Task-related instructions specify the task or question to be addressed, while
structure-related instructions dictate the format and structure of the output. This division method ensures that the prompts
are comprehensive and effectively guide the LLMs to generate the desired outputs. Building upon the regular expressions
defined in previous steps, we construct the corresponding structure-related instructions 𝑆 using GPT 4.0. Similarly, we also
construct task-related instructions 𝑇 using GPT 4.0. To ensure diversity in our constructed data subjects, we randomly select
the subjects from predefined subjects (see Table 4) for generating task-related instructions.

• Step 4: Creating the Final Prompts. To create the final prompts 𝑃 , we merge the task-related instructions 𝑇 with the structure-
related instructions 𝑆. For instance, if 𝑇 is to list some summer ripe fruits, and 𝑆 is to display items in the format ‘‘- item1’’, ‘‘-
item2’’, etc., then the merged final prompt 𝑃 would be: List summer ripe fruits as ‘‘- Fruit1’’, ‘‘- Fruit2’’, etc. These prompts are
designed to test the LLM’s ability to perform structured output tasks. They are generated using a systematic pipeline approach
that ensures efficiency and consistency in prompt generation.

• Step 5: Manual Review and Quality Assurance. After prompts are generated, they undergo a careful manual review to ensure
their quality, accuracy, and relevance. This process involves two main aspects: semantic review of the generated prompts and
verification of the corresponding regular expressions and structured output requirements. The semantic review assesses the
7
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Table 5
Randomly selected examples from the SoEval dataset.

Id Type Instruction Subject

e862 Q & A Produce a Question & Answer discussing the future implications of sustainable
energy.

Environmental, Earth Sciences & Sustainability

e1109 Key-Value Pairs Describe the various types of traditional dances from around the world in
key–value pairs, where the key is the country and the value is the dance.

Lifestyle, Personal Development & Languages

e360 List Describe the features of a modern smartphone, presented as a list, with each
preceded by a hyphen.

Social Sciences, Education & Human Rights

clarity, fluency, and contextual appropriateness of the instructions, ensuring that they are easily understandable and aligned
with the intended purpose of the structured output task. The regular expression and structured output verification involves
examining the regex patterns associated with each prompt to ensure their accuracy and effectiveness in capturing the desired
structured output format.

4.2. Evaluation criteria

In the evaluation of LLMs for structured output tasks, our criteria are centered on the accuracy of the model-generated outputs
n relation to predefined regular expressions (regex) that represent the structural and formatting requirements of desired outputs
uch as JSON, XML, etc. This metric is defined as

𝑈 = 1
𝑁

𝑁
∑

𝑖=1

(

match_length
(

regex𝑖, output𝑖
)

total_length
(

output𝑖
)

)

, (2)

where 𝑁 is the total number of prompts, output𝑖 is the LLM’s structured output for the 𝑖th prompt, regex𝑖 represents the
corresponding regex pattern for the 𝑖th task, match_length(regex𝑖, output𝑖) calculates the matching segments’ length in output𝑖 to
regex𝑖, and total_length(output𝑖) denotes the 𝑖th output’s total length. This Evaluation Criteria focuses on the accuracy of structured
utput while also considering the redundancy of the output content. As illustrated in Fig. 1, LLMs may face challenges in generating
utputs that strictly adhere to the required structure and format. They may produce outputs with incorrect formatting or include
edundant information that does not directly contribute to the structured output. Our evaluation criteria takes both of these aspects
nto account. By calculating the ratio of the matching segment length to the total output length, we quantify the accuracy of the LLM’s
tructured output. A higher ratio indicates that a larger portion of the output matches the required structure and format defined
y the regex pattern. At the same time, by considering the total length of the output in the denominator, we indirectly account for
edundancy. If the LLM generates a lengthy output that contains a significant amount of irrelevant or redundant information, it will
esult in a lower overall score.

. The proposed SoEval dataset

In this section, we focus on the SoEval dataset that we have developed. Initially, we provide an overview of the dataset, followed
y a comprehensive discussion on its aspects of reliability and diversity.

.1. Dataset description

The SoEval dataset is a comprehensive resource tailored for evaluating the structured output capabilities of Large Language
odels (LLMs). It includes 13 unique structured output types designed to reflect a wide range of real-world data structuring needs.
hese types are presented in a variety of formats, including but not limited to JSON, XML, and structured lists, to reflect the diverse
ature of structured data handling. As illustrated in Fig. 4, the dataset shows the distribution of data entries across all the different
ormat types. Furthermore, the dataset is diversified across 20 different task subjects, with the proportion of data entries for each
ubject shown in Fig. 5. The total size of the SoEval dataset is 3.7K entries, making it a comprehensive benchmark for evaluating
LMs in structured data interpretation and generation tasks. To provide a practical insight into the composition of the dataset, Table 5
ontains randomly selected examples from the SoEval dataset, illustrating the variety and complexity of the tasks it contains.

.2. Reliability and consistency

The SoEval dataset has been meticulously crafted to ensure reliability and consistency in the evaluation of LLMs. Rigorous
rocedures were employed throughout, from the initial task design to the final dataset compilation. Firstly, prior to constructing the
ataset, thorough investigations were conducted to ascertain its research value. Secondly, the construction process heavily relied on
he GPT 4.0 model, leveraging its ‘‘echo effect’’ to ensure the dataset effectively evaluates the structured output capability of large
odels. Lastly, after formulating the testing instructions, manual checks and revisions were conducted to ensure the data aligns
ith real-world usage scenarios.
8
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Fig. 4. Number of entries by types.

Fig. 5. Percentage of subjects.

5.3. Coverage and diversity

The SoEval dataset possesses a significant coverage and diversity, making it a powerful tool for evaluating the structured output
capabilities of LLMs across various tasks. The dataset includes a variety of structured output types, carefully designed to encompass
different data formats such as JSON, XML, and structured lists. These types are chosen based on a thorough analysis of current
market trends and industry demands, ensuring the dataset’s relevance and applicability across diverse sectors. In addition to the
range of formats, the dataset contains task subjects that address different industry needs, reflecting the broad applications of LLMs
9
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Fig. 6. Example of zero-shot testing with SoEval dataset.

in real-world scenarios. Not only have we constructed the SoEval dataset, but we have also provided a convenient method for its
construction, facilitating the dataset’s future expansion.

5.4. Dataset extensibility

The SoEval dataset construction pipeline is designed with modularity and extensibility in mind, allowing researchers to
conveniently expand the dataset to include a wider range of structured output types and task subjects. The key to this extensibility lies
in the use of regular expressions to define the structure and leveraging large language models (LLMs) for data generation. Specifically,
researchers first define the structured output format and generate corresponding regular expressions using LLMs. Subsequently, based
on the regular expressions, the LLMs generate the relevant structure-related instructions. For specific task scenarios, LLMs can be
employed to generate task-related instructions. Finally, by combining the structure-related instructions and task-related instructions,
the ultimate instructions requiring structured output can be generated. Through manual inspection and modification, new test data
for other structured output types can be formed. By leveraging regex patterns, LLMs, and a modular pipeline, the SoEval dataset
construction method provides a convenient and efficient way to extend the dataset to encompass a diverse range of structured output
types. Considering the power of the community open-source platform, our project code is also hosted on the Hugging Face platform,
ensuring that our project can be noticed and used by more researchers and that our benchmark can maintain good usability over
time.

6. Benchmarking experiments

Our research below is focused on assessing different Large Language Models (LLMs) using the SoEval framework, examining
their effectiveness, and establishing benchmarks for subsequent applications of SoEval.

6.1. Task settings

The objective of our research is to accurately simulate real-world scenarios where the need for structured outputs from LLMs. In
our benchmarking experiments, we employed a wide array of tasks from the SoEval dataset. These tasks are specifically designed to
evaluate the ability of various LLMs to generate structured outputs in response to specific instructions. In our experimental setup,
uniform configuration settings were implemented across all models to ensure a level playing field in the evaluation process. The
randomness in predictions was controlled, allowing for a consideration of the top 80% most probable outcomes. We set a cap on the
output length at around 1500 units, ensuring that responses are concise yet comprehensive. To prioritize accuracy and relevance,
the randomness factor in the models’ responses was kept exceptionally low, near 0.01. Furthermore, we applied a repetition penalty
setting of 1.0, indicating no extra penalty for repeating words or phrases, which is vital in tasks where repetition is necessary for
clarity or emphasis. To further emphasize the capabilities of LLMs, we use a zero-shot evaluation approach to assess the structured
output capabilities of LLMs such as Llama and GPT-3.5. In these experiments, each LLM is given instructions without any prior
examples or training tailored to the specific task. A specific example can be seen in Fig. 6.

6.2. LLM models

To provide a thorough assessment of the ability of LLMs to generate structured output, we evaluate several state-of-the-art LLMs
from well-known companies. The selection criteria are based on the models’ industry presence and their reported capabilities. The
experimental models include notable ones developed by OpenAI and other famous open-source LLMs. A comparative description of
these models is as follows:
10
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Fig. 7. Average scores of different LLMs.

• GPT-4 (OpenAI, 2023) is a large multimodal model known for its reliability, creativity, and nuanced instruction handling,
with improved safety and factual correctness over previous models.

• GPT-3.5-Turbo (OpenAI, 2022) is specifically designed for chat-based applications, offering efficient processing and refined
language understanding at a lower cost.

• GPT-4o (OpenAI, 2024) is an optimized version of the GPT-4 model, specifically tailored for online interactions and real-
time applications. It boasts enhanced speed and responsiveness, making it ideal for scenarios requiring rapid processing and
immediate feedback.

• Llama Series (2-70B, 2-13B, 2-7B, 3-8B) (Touvron et al., 2023) includes models optimized for dialogue use cases, showing
high performance in benchmarks and human evaluations for helpfulness and safety.

• Baichuan Series (2-7B, 2-13B) (Baichuan, 2023) features extensive multilingual models excelling in math, coding, medical,
and legal domains, significantly outperforming their predecessor.

• Qwen Series (7B, 14B, 72B) (Bai et al., 2023) includes a range of foundational pretrained language models and chat models.
These models excel across multiple tasks and areas, showcasing remarkable capabilities.

• ChatGLM3-6B (Du et al., 2022) offers a smooth dialogue experience and low deployment threshold, supporting multi-turn
dialogues, code execution, and complex agent tasks in diverse scenarios.

6.3. Evaluation measure

The evaluation of LLMs is based on the metrics defined in the 4.2 section. The primary criteria are the match with the regex
pattern and the redundancy level of the LLM output content, offering quantitative insights into each model’s performance. The
evaluation aims to quantify the models’ performance, allowing for a comparative analysis across different LLMs based on this
standardized measure.

6.4. Results and discussion

Overall Results Analysis. The average scores obtained by various LLMs in our structured output benchmark experiments can be
seen in Fig. 7. Our experiments has provided an intriguing perspective on the structured output generation capabilities of various
LLMs, with the data indicating that a lower score is indicative of better performance. Among all the models, GPT-4 has the lowest
score of 0.40, indicating superior alignment with the precision and constraints necessary for structured outputs. This performance
may be attributed to its advanced training and nuanced understanding of complex instructions. The Llama Series, although highly
proficient in other benchmarks, did not perform as well in this structured output task. Llama 2-13B and Llama 2-7B scored 0.83 and
0.81, respectively. This indicates that the models’ dialogue optimization may not directly translate to structured output proficiency.
The Baichuan Series and Qwen Series models have moderate scores in adhering to structured formats, with the Qwen 7B scoring
0.72. These scores indicate decent but not optimal performance. It is worth noting that the Baichuan Series models have multilingual
capabilities. GPT-3.5-Turbo achieved a score of 0.53, which is commendable. However, there is room for improvement in structured
output tasks. The varied scores across different models highlight the nuanced nature of model performance, suggesting that the
ability to generate structured outputs is a distinct skill set within the broader spectrum of language processing capabilities.

Performance Analysis Across Different Language Tasks. Analyzing the benchmarking results depicted in Fig. 8 from the SoEval
framework, a distinct pattern of performance across various language tasks becomes evident. The bar chart’s two sections highlight
11
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Fig. 8. Average scores of different LLMs on Chinese and English tasks.

a disparity between tasks in Chinese and English, with lower scores indicating superior performance. In tasks involving the chinese
language, LLMs generally achieved higher scores, suggesting difficulty with the intricacies of the language, with the Llama 2-7B
model achieving the highest score at 0.93. Conversely, these same models exhibited notable enhancements in tasks involving the
english language. Noteworthy is the outstanding performance of GPT-4 across both languages, particularly excelling in english with
a top score of 0.27, highlighting its adaptability and finesse in generating structured outputs. These results indicate that the linguistic
complexity and training of models on specific language datasets significantly influence their ability to produce accurate structured
output, emphasizing the importance of tailored training and optimization for proficient multilingual LLM performance.

Comparing the Performance of Different Sized Models. Our research reveals fascinating correlations between the size of the model
and its effectiveness. Contrary to the common assumption that larger models invariably yield better outcomes, our findings suggest a
more nuanced reality. In tasks requiring structured output, we find that the larger Llama_2_13b model does not outperform its smaller
7b counterpart. This suggests that the distillation process for Llama models may have overlooked the importance of structured output
capabilities. However, for the Qwen series of models, the ability to produce structured output consistently improves as model size
increases. This comparison highlights a potential oversight in current research on large language models with respect to the ability
to produce structured output.

Detailed Performance Analysis by Category and Subject. By analyzing the distribution of performance on structured output types
and task subjects, as shown in Figs. 9 and 10, we can gain a more detailed understanding of the capabilities of LLMs within the
SoEval framework. Each types and subjects present its unique challenges, with lower scores indicating superior model performance.
The analysis shows that models like GPT-4 and GPT-4o excel particularly in handling ‘‘XML Format’’, ‘‘JSON Format’’, and ‘‘Formats
Modify’’ tasks, achieving impressive performance in these areas. However, in more complex types such as timeline and keyValue,
even advanced models such as GPT-4 show some scope for improvement. As shown in the figures, common models have the
lowest compliance with zero-shot structured output instructions in ‘‘Attribute Graph’’, ‘‘Key-Value Pairs’’, and ‘‘Timeline’’. From the
perspective of task subjects, models excel in areas such as ‘‘Science & Technology’’ and ‘‘Environmental Studies’’ due to the emphasis
on accuracy and facts. This might be because such topics are more prevalent in the training data of these models. However, they face
challenges in subjects like ‘‘Social Sciences’’ and ‘‘Human Rights’’, where concepts are more abstract, leading to higher complexity.
Overall, these findings underscore the need for targeted enhancements in model training, particularly in structured output types
and task subjects where performance currently lags.

7. Discussion and analysis

In this part, we primarily provide a comprehensive analysis of the experimental results. Simultaneously, we discuss the possible
consequences of our study in theoretical and practical implications.

7.1. Results analysis

In this study, we introduce SoEval, a new benchmark designed to comprehensively evaluate the structured output capabilities
of large language models. By applying standardized tasks and metrics, we can objectively compare models like GPT-4, GPT-3.5-
Turbo, the Llama Series, the Baichuan Series, the Qwen Series, and ChatGLM3-6B in terms of their ability to generate structured
12
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Fig. 9. Performance of different LLMs by structured output types.

Fig. 10. Performance of different LLMs by task subjects.

outputs across different languages, task types, and subjects. The experimental results show that GPT-4 has the best performance in
generating structured outputs that align with the required precision and constraints, achieving the lowest average score of 0.40. In
contrast, Llama 2-13B and Llama 2-7B have higher scores of 0.83 and 0.81, respectively, indicating that their advantages in dialogue
optimization may not directly translate to exceptional performance in structured output tasks. The Baichuan Series and Qwen Series
models exhibit moderate performance, with Qwen 7B scoring 0.72. GPT-3.5-Turbo achieves a commendable score of 0.53, but there
is still room for improvement in structured output tasks. Furthermore, we observe that large language models generally achieve
higher scores on Chinese tasks, while showing significant improvements on English tasks. In particular, GPT-4 excels in English
tasks, achieving the highest score of 0.27. In addition, the performance of different large language models varies across different
13
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structured output types and task subjects, providing specific directions for future improvements in the structured output capabilities
of large models.

7.2. Implications

Theoretical implications. This study’s exploration into evaluating Large Language Models (LLMs) for their structured output
capabilities offers significant theoretical contributions. By dissecting the prompt structure into task-related and structure-related
components, we provide a novel theoretical framework for understanding how prompts influence LLMs’ output. This approach
not only enhances our comprehension of the interaction between various components of a prompt but also provides a methodical
framework for prompt design, enabling more precise control over the LLM’s output. Moreover, the introduction of regular expressions
as a tool to define and assess structured outputs enriches the theoretical underpinnings of LLM evaluation, providing a quantifiable
and systematic approach to measure models’ adherence to desired output formats. Overall, our study contributes to the theoretical
understanding of how LLMs can be more effectively evaluated, designed, and utilized for tasks requiring structured outputs.

Practical Implications. From a practical standpoint, our benchmark and its underlying methodology have profound implications for
industries that rely on LLMs for data structuring and processing tasks. By providing a clear metric for structured output capabilities,
SoEval enables developers and organizations to make informed decisions when selecting LLMs for specific applications, whether for
content creation, data analysis, or automated reporting. In addition, for companies developing LLMs, our research emphasizes the
importance of evaluating the structured output capabilities of large models, encouraging improvements from the data source and
training methods to enhance these capabilities. Overall, our methodology holds significant practical value for both individuals and
companies.

Research Implications. For the research community, This study makes significant contributions to the research field of evaluating
LLMs’ structured output capabilities. By developing the SoEval benchmark, we establish a standardized framework for assessing
and comparing the performance of various models in generating structured outputs, laying the foundation for future research in
this area. Moreover, our modular and automated pipeline for dataset construction, which leverages regular expressions and LLMs
for data generation, offers a scalable and efficient approach that can inspire novel dataset construction techniques across various
research fields. Overall, the research field of structured output capabilities in LLMs has been largely overlooked, and the introduction
of SoEval aims to inspire more related research and enhance the structured output abilities of LLMs.

8. Conclusion and limitations

This paper introduces a new benchmark designed to evaluate the ability of Large Language Models (LLMs) to produce structured
outputs, an aspect that is often overlooked but crucial. Initially, we analyze the structure of prompts and create a corresponding
causal diagram, emphasizing the significance of both task-related instructions and structure-related instructions within the prompt.
The SoEval dataset is developed with GPT-4.0 as the foundational tool for generating the initial dataset. This process is facilitated by
a comprehensive pipeline starting from defining structured output formats and extending to manual verification and data editing.
The dataset comprises 3.7K entries in both Chinese and English, encompassing 13 types of structured output tasks across 20 task
subjects. During the experimental phase, we conduct a comparative analysis to evaluate the performance of current leading LLMs on
the SoEval benchmark, presenting detailed performance metrics for each model. This research aims to enhance the understanding
and advancement of structured output capabilities in LLMs.

While our benchmark sets a new standard for evaluating LLMs’ ability to generate structured outputs, it has some shortcomings.
One significant limitation is its narrow coverage of structured output formats. Moreover, the models assessed are mostly trained
on English and Chinese datasets, potentially limiting their performance evaluation in diverse, multilingual contexts. Additionally,
the complexity of tasks in SoEval varies, and some may not fully reflect real-world application complexities requiring structured
outputs. Addressing these limitations in future research could improve the benchmark’s comprehensiveness and relevance, offering
more nuanced insights into LLMs’ capabilities in generating structured outputs.
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