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TAG: Teacher-Advice Mechanism With Gaussian
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Abstract— Reinforcement learning (RL) still suffers from the
problem of sample inefficiency and struggles with the exploration
issue, particularly in situations with long-delayed rewards,
sparse rewards, and deep local optimum. Recently, learning
from demonstration (LfD) paradigm was proposed to tackle
this problem. However, these methods usually require a large
number of demonstrations. In this study, we present a sample
efficient teacher-advice mechanism with Gaussian process (TAG)
by leveraging a few expert demonstrations. In TAG, a teacher
model is built to provide both an advice action and its associated
confidence value. Then, a guided policy is formulated to guide the
agent in the exploration phase via the defined criteria. Through
the TAG mechanism, the agent is capable of exploring the
environment more intentionally. Moreover, with the confidence
value, the guided policy can guide the agent precisely. Also,
due to the strong generalization ability of Gaussian process, the
teacher model can utilize the demonstrations more effectively.
Therefore, substantial improvement in performance and sample
efficiency can be attained. Considerable experiments on sparse
reward environments demonstrate that the TAG mechanism can
help typical RL algorithms achieve significant performance gains.
In addition, the TAG mechanism with soft actor-critic algorithm
(TAG-SAC) attains the state-of-the-art performance over other
LfD counterparts on several delayed reward and complicated
continuous control environments.

Index Terms— Gaussian process, reinforcement learning (RL),
teacher-advice mechanism.

NOMENCLATURE
M Markov decision process (MDP).
S, A State space and action space in an MDP.
s State in environments.
a Action.
P(-|s,a) State transition probability under s, a.
r Reward function.
y Discount factor.
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Ty Policy parameterized with 6.

o (s) Action given by my at state s.

(- | 8) Action distribution of 7, at state s.

0 Parameters of a function.

P Initial state distribution in an MDP.

T Trajectory.

Py, (7) Probability of a trajectory 7 under my.
Sometimes, P, (7) is abbreviated as my(7).

R(7) Discounted cumulative reward of t.

J(6) Expected episode return under 6.

vz State value function under policy .

o7 State—action value function under policy .

)3 Covariance matrix.

gpr Gaussian process model.

k(-1 Kernel function.

K Kernel matrix.

Var(s) Variance of s.

Cov(s,s’) Covariance between s and s’.

f(s) Suggested action given by GP at state s.

a’(s) Maximum variance given by GP at state s.

D Dataset.

anz Noise level in GP.

I Identity matrix.

U(-1]-) Uniform distribution.

& Random variable from U.

Bs(s) Neighborhood of s.

Ty Teacher policy (model).

né’ Hybrid policy (the guided policy).

Top Threshold for the confidence of the suggested
action with GP.

Teu Threshold for the confidence of the suggested
action with Euclidean distance.

T, Threshold for the average episode return.

Kk (19) Average episode return of 7y in a test
environment.

B Threshold for sampling action in 7.

nﬁh o Hybrid policy with Euclidean distance.

Qy(s, a) Estimation of the Q parameterized with ¢.

o Policy network parameterized with 6. It is
the neural network version of 7y.

S, Set of state—action pairs from 7.

Sng> Sn Sets of normal state—action pairs.

T, Set of trajectories from 7.

I. INTRODUCTION

EINFORCEMENT learning (RL), especially deep RL
(DRL), enables intelligent agents to make smart decisions
in environments and learn specific skills by interacting with
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Fig. 1. Brief overview of the TAG for DRL.

environments. Therefore, DRL has been employed in a
wide range of scenarios, e.g., games [1], [2], recommender
systems [3], [4], [5], robot control [6], [7], autonomous
driving [8], and financial trade [9].

Generally, typical RL algorithms can be divided into two
categories: policy-based methods (e.g., REINFORCE [10] and
policy gradient (PG) [11]) and value-based methods (e.g.,
Q-learning [12]). For PG, to reduce the estimated variance
during the sampling, the baseline technique was introduced
into PG, and the vanilla PG (VPG) was proposed [13].
In addition, with the aim of improving the training stability
of the policy network, Schulman et al. [14] proposed the
trust region policy optimization (TRPO) algorithm, where
Kullback-Leibler (KL) divergence was employed to constrain
the update of the policy network. After that, an efficient
version of TRPO was proposed named proximal policy
optimization (PPO) [15], in which the gradient truncation
mechanism was applied in the training stage. On the
other hand, with the popularity of deep learning, deep
neural networks were introduced into Q-learning, and deep
Q-network (DQN) was put forward by Mnih et al. [16].
In DQN, human-level control in Atari games was achieved.
Then, many improved versions of DQN have been proposed
successively, such as double-DQN [17] and duel-DQN [18].
Lillicrap et al. [19] extended DQN to the continuous action
space and proposed the deep deterministic PG (DDPG).
In addition, Fujimoto et al. [20] put forward an improved
version of DDPG, named twin delayed DDPG (TD3), aiming
to alleviate the problem of dramatically overestimating the Q
values. Moreover, soft actor-critic (SAC) [21] was proposed
almost simultaneously with TD3, characterized by maximum
entropy regularization.

Despite the significant success, efficient exploration is still
a challenging problem in typical DRL, particularly when
an environment is characterized by large state spaces, long-
delayed rewards, sparse rewards, and deep local optimum.
To tackle this problem, in recent years, there has been
an increasing interest in learning from demonstration (LfD)
methods. For the LfD paradigm, one intuitive idea is to
train the policy network with the demonstrations directly
[22], [23], [24]. However, limited by supervised learning
manner, these methods usually cannot make full use of
the demonstrations and may not work well in complex
sequential decision tasks. To address this deficiency, some
researchers utilized the idea from generative adversar-
ial networks (GANs) [25] and proposed a variety of
generative adversarial imitation learning (GAIL) methods
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[26], [27], [28], [29]. This type of method aims at minimizing
the distance of the distributions between expert demonstrations
and the policy, and it achieves good results in many control
tasks. In addition, there are also methods that combine RL with
demonstrations (RLfD) [30], [31], [32], [33], [34]. Different
from the GAIL-style methods, this kind of method can not
only learn from the environment with reward signals but also
learn from the demonstration data. This combination manner
can be split in three major ways: 1) put the demonstrations
into the replay buffer; 2) combine the loss function of RL
and supervised learning; and 3) mimic the expert behaviors
by reward shaping. However, inappropriate combinations may
have the opposite effect on the training of RL algorithms.
In addition, methods that just put expert demonstrations into
the replay buffer do not make full use of demonstrations.
Hence, they will also encounter the problem of low sample
efficiency.

In this article, we proposed a sample efficient teacher-advice
mechanism with Gaussian process (TAG), which can be used
in typical DRL algorithms. The framework is shown in Fig. 1.
With demonstrations, a teacher model is built using a Gaussian
process model. The role of the teacher model is to give a
suggested action. Meanwhile, the corresponding confidence
value will be output. Then, the guided policy selects an
action between the advice action and the action given by
the policy, based on a set of criteria. Hence, the proposed
model is essentially a teacher-advice framework [35]. With
the help of the powerful data generalization ability of the
Gaussian process model, the TAG mechanism can make full
use of demonstrations, and the sample efficiency is improved.
In addition, equipped with the characteristics of being able to
give the confidence value, the TAG mechanism can guide the
agent accurately in the exploration phase and make the agent
possess a greater preference to explore high-reward states.
Therefore, better exploration can be achieved by direct and
accurate guidance, which makes the DRL algorithm be trained
faster in complex environments. The main contribution of this
work is summarized as follows.

1) We formalize the TAG mechanism, which can directly
intervene in the exploration process of an agent and
enable the agent to have a better exploration for
the high-reward states, i.e., with a higher probability.
Thus, better performance is achieved through better
exploration.

2) To fully use and generalize the demonstration data,
a Gaussian process is utilized to model the data, which
can be used as a teacher model to guide the agent’s
exploration. The teacher model can not only give the
advice action but also give the corresponding confidence
so that it can guide the agent more accurately.

3) We theoretically prove that compared with the existing
ordinary policies, the proposed guided policy in the
TAG mechanism will collect high-reward samples with
greater probability. Thus, the guided policy can enable
RL algorithms to converge faster.

4) We evaluate the TAG mechanism on empirical exper-
iments, which demonstrates that our mechanism can
significantly improve the training efficiency for many
DRL algorithms, such as VPG, PPO, DDPG, and SAC.
In addition, compared with the existing LfD methods,
e.g., soft actor-critic from demonstration (SACID),
GAIL-SAC, and VAIL-SAC, the TAG mechanism with
soft actor-critic algorithm (TAG-SAC) can achieve the
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best performance and the fastest convergence rate in
several complex control environments.

The rest of this article is structured as follows. In Section II,
we describe the related work. In Section III, preliminaries
about RL, Gaussian policy, and Gaussian process are
introduced. Section IV gives the detail of the proposed TAG
mechanism and the corresponding TAG with DRL algorithms.
In Section V, experiments are carried out in several different
environments. Finally, the conclusion and discussion are
summarized in Section VI.

II. RELATED WORK
A. Learning From Demonstration

LfD also known as imitation learning is a learning paradigm
designed to make agents learn from expert demonstra-
tions [36]. Behavioral cloning (BC) [22] is a common method
in imitation learning, in which demonstrations are directly
used to train the policy in a supervised manner. However,
for sequential decision problems, due to the cumulative
error caused by distribution shift [37], BC only tends to
perform well when enormous demonstrations are available.
To solve this problem, many interactive imitation learning
methods were proposed, such as DAgger [23] and Deeply
AggreVaTeD [24], where the distribution shift problem is
solved by expanding the dataset interactively and labeling
novel states.

On the other hand, based on GAN [25], GAIL was put
forward by Ho and Ermon [26]. In GAIL, two networks, a gen-
erator network and a discriminator network, are employed to
reduce the distribution difference between the data obtained
by the agent and the data in expert demonstrations. The
goal of the discriminator network is to distinguish whether
the data come from the demonstrations or the agent, while
the generator network aims to confuse the discriminator
network. However, GAIL is sensitive to environmental noise,
which makes GAIL’s training unstable. Therefore, variational
adversarial imitation learning (VAIL) [27] was proposed,
where the information bottleneck (IB) was introduced to avoid
the vanishing gradient in the generator network. Subsequently,
Zhang et al. [28] introduced the f-divergence into GAIL and
proposed the f-GAIL. Afterward, Ghasemipour et al. [29]
unified this kind of adversarial imitation learning algorithm
into a new framework named f-MAX.

B. RL With Demonstrations

Another type of LfD method is to combine RL with
expert demonstrations. Hester et al. [30] proposed deep
Q-learning from demonstration (DQNfD) method, in which the
demonstration data were put into the experience replay buffer.
Moreover, to make better use of the demonstrations, mean
squared error (mse) and L2 regularization loss were added to
the loss function of the Q-network. With a similar scheme,
Nair et al. [31] proposed OERL methods, achieving good
performance in several robot manipulation tasks. Different
from the DQNfD, OERL adopted the DDPG as the backbone
DRL model, and a reset mechanism was used to make
sure that the expert demonstrations could be utilized in
long-horizon tasks. In addition, Kang et al. [32] proposed
policy optimization with demonstrations (POfD) method,
where they adopted the reward shaping technique by inserting
a divergence item to the original reward, enforcing the
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occupancy measure to match between the policy and expert
demonstrations. Furthermore, other methods that incorporate
the supervised learning paradigm into RL include Soft-
RLfD [33] and DAC [38].

C. Teacher-Advice Framework

The teacher-advice framework is usually used in safe
RL [35], in which a teacher model is built to guarantee
that no harmful action is performed by the agent in risk-
sensitive tasks. Alshiekh et al. [39] put forward the shielded
RL, in which manually defined rules were modeled as a finite-
state machine, and the finite-state machine was considered as
the teacher model. Cheng et al. [40] proposed an end-to-end
safe RL algorithm based on the teacher-advice framework,
where a control barrier function (CBF) was used to build
the teacher model. For CBF, the specific function needs to be
formulated before training, e.g., linear functions or quadratic
functions. In addition, Neider et al. [41] also constructed a
teacher model with a finite-state machine and proposed the
AdvisoRL algorithm.

In addition, Radac and Precup [42] proposed a virtual
reference feedback tuning method that is used to obtain a
stabilizing nonlinear state-feedback controller as an initial
controller for DRL, in which a teacher model is built by
initial random exploration samples to guide the subsequent
exploration of the agent in a more efficient style.

In this article, we propose the teacher-advice mechanism
based on Gaussian process to overcome the problem of
sample inefficiency and accelerate the training process in DRL
algorithms.

III. PRELIMINARIES

A. Reinforcement Learning

In RL, problems are usually modeled as a Markov decision
process (MDP). An MDP can be represented by a tuple
M= (S, A, P,r,y), where S and A denote the state space
and action space, respectively. The state transition probability
P : S§SxAxS — [0,1] describes the probability of
transition from state s, to next state s,,; under action a,.
r: S x A — Ris the reward function. y € [0, 1] is the
discount factor.

In an MDP, a policy is defined as a function 7y : S x A —
[0, 1]. Thus, the policy function parameterized by @, denoted
by mg(a|s), describes the probability of performing action a
at state s. p : § — [0, 1] gives the occurrence probability
of the initial state s. In addition, an episode corresponds to
a trajectory t = {so, @, §1, @i, ...}. Then, in an MDP, the
probability of a trajectory can be defined as

T

Pr,(2) = p(so) [ [ ratacls) P(siyalsi, a). (1)
t=0

The goal of an MDP is to find a policy 7y that can maximize
the expected episode return

J(0) =E.~p, [R(7)] 2
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Fig. 2. Tllustration of the proposed TAG mechanism for DRL algorithms.

where R(t) = Z?:o y'r(s;, a,). Therefore, the gradient of
J(0) can be written as

Vo J(0) = VoE.~p, [R(7)]
= E~p,, [V log Pr, (T)R(7)]

|
A v E Vy log P, (7)) R(7;) 3)
i=1

where the subscript represents the ith trajectory. The objective
function J(@) is usually optimized by gradient ascent
repetitively, i.e., 8 <« 6 + «aVpJ(6), where « denotes
the step size. This iterative process will eventually make 6
converge [10].

In addition, the state value function V7(s) and the
state—action value function Q7 (s, a) are introduced in RL to
evaluate the performance of a policy 7. They are defined as

S0=S:|

So=S¢§
a((’):a}. (5)

T
Vi(s) =B, [Zy'r(s,, a,) “)
t=0

T
Q" (s,a) = E, [Zy’r(sz, a,)
t=0

B. Gaussian Policy

The Gaussian policy is usually employed in environments
with continuous state space and action space. It endows the
agent with random exploration ability. A Gaussian policy can
be written as

exp{—1(a — 114()) =" (@ — o (5))}
Qmym2Z|'2

(6)

mo(als) =

where 1y may be a neural network parameterized by 6, X is
the covariance matrix, and m is the dimension of the action
space.

C. Gaussian Process

A Gaussian process model can be specified by a mean
function m(s) and a covariance function k(s,s’) [43].
Then, a Gaussian process model can be written as
QP(m(s), k(s, s’)). Normally, we set m(s) = 0. In addition,
k(s,s’) is a kernel function. In this article, we adopt the
squared exponential function

d*(s, s
2]2

where d(s,s’) is the Euclidean distance between s and s’
and [/ is a length-scale parameter, which can be seen as a
hyperparameter. Matern kernel [43] is also used in this article,
which is defined as

(@d(s s/))v NG
I ’ 2v ,
O Kv( ; d(s,S)) ®)

k(s,s)) = exp(— @)

k(s,s) =

where I'(-) is the gamma function, K, is a modified Bessel
function, and v is a hyperparameter specifying the smoothness
of the function.

Given a dataset D = {s;,a;}i=12....» and a new s, that
does not appear in the dataset, the predictive value and the
corresponding variance and covariance of s, are

£(s.) =k(s.) (K+021) 'y 9)
Var(sy) = Cov(sy, S4) (10)
Cov(s.,s) = k(s s) —k(s.) (K+020) k(s)  (11)

where k(s,) = [k(si, i), k(s2, 8%), ..., k(s,, 5:)]". K is the
kernel matrix generated by k(s;, s;). o refers to the noise
level in the dataset, and y = [a;, ay, ..., a,]’.

IV. METHODOLOGY

In this section, we first describe the overview of the
proposed method. Then, the teacher model built with
demonstrations using the Gaussian process is presented. Third,
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we introduce the details of the guided policy. Then, we analyze
the advancement of the guided policy for typical DRL
methods.

A. Overview of TAG

In this article, we aim to use demonstration data to
accelerate the training process of normal DRL algorithms in
complicated environments.

The overview of the proposed TAG mechanism is shown in
Fig. 2, which mainly includes a teacher model and a guided
policy. The two of them form the teacher-advice mechanism.
The teacher model is constructed by a Gaussian process to
output two critical elements, i.e., an advice action and the
corresponding confidence value. As an action selector, the
guided policy is used to choose an action from the teacher
model and the policy network through the defined criteria.
Then, the selected action is executed by the agent to interact
with the environment.

In our framework, a neural network is modeled as the policy,
named policy network, whose input is the state, and the output
is the action. The optimization goal of the policy network is to
maximize the agent’s cumulative reward. In addition, to assist
in the optimization of the policy network, a critic network
is constructed, which is used to evaluate the performance of
the policy. For the critic network, the input is also the state,
and the output is a real number that represents the cumulative
reward of the policy at a state. The optimization goal of the
critic network is to minimize the mse between the predicted
cumulative reward and the real cumulative reward. Thus, the
data collected from interacting with the environment will be
used to train the policy network and the critic network. The
details of the teacher model, the guided policy, and the teacher-
advice mechanism for DRL algorithms will be described in
Sections IV-B-IV-E.

B. Teacher Model With Gaussian Process

The teacher model is used to give an advice action to
the agent, and it is constructed on demonstration data with
Gaussian process. By utilizing the Gaussian process, states
and actions that do not appear in the dataset are predicted
according to the existing demonstration data. Meanwhile, the
variance of the prediction will be given, which is used to
illustrate the confidence of the prediction.

The superiority of leveraging Gaussian process is that it
can provide the teacher model with considerable generalization
ability. In addition, the variance output by the Gaussian process
can help to guide the agent more accurately.

The Gaussian process is a nonparametric model, but the
parameters of its kernel function can still be learned by the
training data D = {s;, a;}i=1.2,...»- To optimize the parameters
of the kernel function such that the probability of occurrence of
all a; is maximized given all s;, the objective can be designed
to maximize the likelihood function

log p(y|S, 0) ITIC1 11 K,| — Zlog27  (12)
0 0)=—3 —-lo | — = log2m
g Py 2y y ¥ ) g 1y ) g
where K, = K+O’n21 and y = [ay, a2, ...,a,]". S is a matrix
composed of inputs of the dataset, i.e., S = [s[, §2, ..., sal'.
0 is the hyperparameter in the kernel function. The derivation
of (12) can refer to in [43, Eq. (2.30)]. The objective function
can be optimized using gradient-based methods. Then, we can
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predict the action at state s and its corresponding variance
by (9) and (10).

Demonstrations contain a series of state—action pairs,
denoted by D; = {s;,a;}i=1... ., where the subscript
i represents the ith sample. Therefore, we can use the
demonstration data to build the teacher model. However,
because the advice action output by the teacher model is
multidimensional, we model each component of action a =

[a®,a@®, ... a"™]T with a Gaussian process model. As a
consequence, the teacher model is framed as
1
aV = fis)  [al) = var(s)

a® = fi(s)

al) = Vars(s)
(13)

a(m) — fm(s) a((:?) = Var,, (s)

where a((fz) represents the prediction variance for a'). Then,
we denote the action and the corresponding maximum variance
output by the teacher model as

[ £ = [£i(8), f2(8)s ooy frn()]T

02(s) = max{Var(s), Vary(s), ..., Var, (s)}. (14)

Then, we can define that the advice action is sampled from
a uniform distribution parameterized by f(s) and a vector &,
where §; € (0, 1) is a small real number

a~U(f(s) =8, f(s)+9)

which means that the advice action belongs to a neighborhood
of f(s). The neighborhood is denoted as Bs(s), and it can be
definedas Bs(s) ={ac A | |la'— fi(s)| <68,i=1,2,...,m}.

(15)

C. Guided Policy

The guided policy 7157 is a hybrid policy, which is composed
of a teacher model ms(s) ~ U(f(s) — 8, f(s) +95) and a
Gaussian policy my(s), as shown in the following equation:

wi(s), o%(s) < Ty, & < B,k(mg) < T,

my(s), else (16)

Ty (s) =

where o%(s) is the maximum variance of state s predicted by
the teacher model, which is used to indicate the confidence of
the advice action. Ty, is a threshold for this confidence.

Remark 1: From (16), we can know that when the variance
of the action given by the teacher model is large, i.e.,
o%(s) > Typ, the agent will not adopt the suggestion of the
teacher model but choose its own action. This means that when
the teacher model does not have enough confidence in the
advice action, and the agent will give up the suggestion.

In addition, £ is a sample from a uniform distribution
U,1), and B € (0,1) is also a threshold for £ to make
sure that the teacher model guides the agent with a certain
probability. This setting aims to enhance the exploration of
the agent. x(7p) = 1/M Zfil R(7;) is defined as the average
episode return of 7y in the test environment. 7, is a threshold
to guarantee that when the performance of the agent is good
enough, the teacher model does not give advice to the policy
my. This setting guarantees that the agent is not restricted by
the teacher model during the optimization process.

Therefore, we can obtain the probability of performing
action a at state s under policy ﬂah- When «(7y) < T,, we have
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the following probability density function:

5 (als)

o(s) > Ty

o(s) < Typ, a € Bs(s)

02(s) < Typ, a ¢ Bs(s)
am

o (als),
=1 (1= B)me(als) +
(1 - B)mg(als),

P
1Bs(s)1’

where |Bs(s)| = (28)™ represents the Lebesgue measure
of Bs(s) and m represents the dimension of a. When
o?(s) > T,p, the suggested action given by the teacher model
has low confidence. Thus, the agent executes the original
policy. The action distribution in this case is mg(als). When
0%(s) < Ty, the confidence of the action given by the teacher
model is high. However, the agent will still not take the
suggested action with probability 1 — 8. Thus, when a ¢ Bs(s),
which means that the action is not the suggested action, the
probability density of the action a should be (1 — B)my(als).
When a € B;s(s), there are two possibilities: 1) the action
is directly sampled in Bs(s), whose probability density is
(B/Bs(s)), and 2) the action is selected from the original
policy, but it happens to belong to Bs(s), whose probability
density is also (1 — B)mg(als). Thus, the final probability
density is (1 — B)my(als) + (B8/|Bs(s)|). In addition, when
k(mwy) > T,, we have
ni(als) = my(als). (18)
According to (17) and (18), when «(my) < 7, and
02(s) < Ty, we have

n _ _ B
/Ang (a|s)da = /BA(S)[(I B)my(als) + IBg(s)I]da

+/ (1 — B)mo(als)da
A\Bs (s)

B
= 1— d di
/A( Ao als)da +~/Bg(s) |Bs(s)] ¢
=1-B8+8=1 (19)
and when « (79) > T, or %(s) > Ty, we have
/ né’(als)da =/ my(als)da = 1. (20)
A A

Therefore, we get that f A né’ (a|s)da = 1.

D. ng for Policy-Based DRL

Consider the case where «(mwy) < T,. It can be seen
from (17) that the state—action pairs (s, @) under the guided
policy né’ can be divided into three categories.

1) S, ={(s,a)lo*(s) < Ty, a € Bs(s)}.

2) Spe = (5. @)|02(5) < Typ. a ¢ Bs(s)).

3) S = {(s, a)|02(s) = Tgp»a = my(als)}.

Lemma 1: For a Gaussian policy my(als), if § < (1/2)
V27| 21072m then |Bs(s)|my(als) < 1,Vs € S, Va € A.

Proof: For a Gaussian policy, we have

als) < —————.
mo(als) = Qr )" 2[5 | 12
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Fig. 3. General view of how (22) works. In sparse reward environments, it is
difficult for the agent to collect high-reward trajectories in the early stage of
training, resulting in an unfavorable gradient Vg J(#). The guided policy neh
can increase the probability of the high-reward trajectories, so the obtained
gradient is more helpful to train .

Hence, we can get

IBs(®)lmo (als) = 1B iz

=Q28)" —————
(29) Qm)m2|z|1/2

1 | 1
<2x =V2r|Z|) ————
= QX VB e
=1.
O
Lemma 2: When k(my) < T, if (s,a) € S; and
8 < (1/2)4/27|2|1/2™ | then né‘(a|s) > mg(als) holds.
Proof: By (17), for (s, a) € S,, we have
h
g (als) = (1 — B)mg(als) +
’ ’ |Bs ()|
1
= my(als) +( - (als))ﬁ
’ Bss)|
> my(als) (by Lemma 1).
O

It is worth noting that samples in S, can be seen as favorable
pairs that are beneficial to gradient updates. This is because
actions in S, are from the teacher model. Moreover, actions
given by the teacher model can be seen as potentially high-
reward pairs. Thus, state—action pairs in S, have a beneficial
effect on optimizing the parameters of the policy. From
Lemma 2, we can know that favorable actions will appear
in né’ with a greater probability than my.

Consider a trajectory T = {s;, @,},—0,1,... that satisfies the
following properties: every (s, a) in T belongs to S, and we
define the set of this kind of trajectory as 7,, which can be
written as

Ty ={t| (51, @) € S} 2L

As before, an action @ in T, is from the teacher model,
so trajectories in T, will be helpful to optimize the parameters
of the policy. To simplify the notations, we denote Py, (7) as

79 (7). Then, we have the following proposition.
Proposition 1: V1 € T, né’ (t) = my(7) holds.
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Proof: By (1), we have
T
i (x) = p(so) [ | 7 @ls) P(siiilsi, ar)

t=0
T

= p(so) [ [7o(@ils:) P(sirilsi @) (by Lemma 2)
t=0

= my (7).

O
Remark 2: From Proposition 1, we can know that compared

with the ordinary policy 7y, the hybrid guided policy J'ré1 will
collect high-reward samples with a greater probability.

In complicated environments, such as sparse reward and
delayed reward environments, the useful reward signal given
in the environment is very sparse. In this case, when the agent
interacts with the environment, the low-reward and even zero-
reward trajectories will account for the vast majority, while
favorable trajectories, i.e., trajectories with larger positive
rewards, will be in the minority. Therefore, the real useful
gradient direction does not dominate in VgJ(#). As a
result, the policy network converges slowly. To alleviate this
drawback, our intuition is to increase the probability of high-
return trajectories. As a result, we consider replacing my(7)
with 7/ () in (3), so we can get

Vel (0) = /nél(t)vo log Ty (t) R(T)dr. (22)
T

From Proposition 1, it can be concluded that (22) can
increase the probability of occurrence of 7 € 7,. As a
consequence, using (22) to update the parameters 6 of the
policy can accelerate the training process to a certain extent.
For policy-based RL algorithms, we adopt (22) to update the
parameters of the policy network using gradient ascent. Fig. 3
shows a general view of the advantages of using VyJ'(0) for
gradient ascent.

It is worth mentioning that without importance sampling,
(22) is biased. However, importance sampling usually brings
huge variance. Therefore, there is a tradeoff between
unbiasedness and convergence rate. When B = 0, the teacher
model does not guide the agent, so the gradient is unbiased,
but the convergence is slow. When S increases, the gradient
direction becomes biased, but the more favorable trajectories
are collected, achieving faster convergence speed.

Proposition 2: 1If we use VyJ'(0) to update the parameters
0 with 6,4 < 0; + o;VeJ'(0;), where > °o; = 0o and
Z?o oeiz < o00. During the iteration, once @ satisfies the
condition 7, < k(my), then @ will eventually converge to a
local optimum 6,.

Proof: When 6 satisfies the condition 7, < «k(mp),
according to (18), we have n£(a|s) = my(als). Thus, we get
that

VoJ (0) = /ng(r)v,, log 775 (T) R(7)dt

= /710(7:)% log my(T)R(7)dt
= VyJ(0).

Therefore, according to [10], @ can converge to a local
optimum. |
According to Proposition 2, the optimality of the TAG
mechanism for policy-based DRL is guaranteed. From the
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Algorithm 1 TAG for Policy-Based DRL

Input: Demonstration data D,. Initialize parameters 6 of the
policy network and ¢ of the critic network. Initialize « (7y),
T, Typ, B, and a data buffer D.

Procedure:

1: Build the teacher model with D,.
2: for each epoch do

3 /I Collect data

4 for each step do

5: Observe state s.
6

7

8

9

Sample from U (0, 1) and get &.
Get o%(s) and get a, with Eq. (14,15).
if k(p) < T,, 0%(s) < T, and & < B then

: Let a = a,. > Adopt teacher’s suggestion
10: else
11: Sample from g (-|s) and get a,.
12: Let a = a,. > Action from the original policy
13: end if
14: The agent takes action a.
15: Get next state ', reward r, and done signal d.
16: Store (s, a,r,s’,d) into D.
17: end for

18: // Update the policy

19: Calculate VyJ'(0) using data in D.

20: Update # with gradient ascent.

21: Update ¢ using MSE loss with gradient descent.
22: Clear buffer D.

23: Test my in the test environment and get « (p).
24: end for

Output: 7y.

above, we can combine the proposed TAG mechanism and
policy-based DRL methods using Vg J'(#), which is shown in
Algorithm 1.

E. JTgh for Value-Based DRL

In this section, we introduce the TAG mechanism into value-
based DRL algorithms. For value-based DRL algorithms, the
goal of the policy network is to find a policy that can maximize
the Q value

max Es[Qy (s, 1o (5))]. (23)

According to Proposition 1, with the TAG mechanism,
trajectories in T, will appear in the replay buffer with
a greater probability. Hence, the teacher-advice mechanism
will also benefit the training process of value-based DRL
algorithms. In addition, in the process of Q-iteration, it directly
iterates on the optimum Q value, which is independent of
the policy [44]. Therefore, for value-based DRL algorithms
with the TAG mechanism, the estimation of the value function
is still unbiased. In addition, to achieve better performance,
we also introduce a reward-shaping technique into the TAG
mechanism, which is designed as

rt(s,a) =r(s, a)

+cx1{o?(s) < Ty, & < B k() <T,} (24
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Algorithm 2 TAG for Value-Based DRL

Input: Demonstration data D,. Initialize parameters 6 of the
policy network and ¢ of the Q network. Initialize «(iy),
T., Typ, B, and a data buffer D.
Procedure:

1: Build the teacher model with D,.

2: for each epoch do

3: /I Collect data

4: 715‘ interacts with the environment and get a mini-batch

data d = {s;, @;}i=12,...

5: Reshape rewards in d using Eq. (24).
6: Store data d in D.
7: /I Update the policy
8: Sample a batch data from D to train 6 and ¢.
9: Test my in the test environment and get k (77p).
10: end for
Output: my.

where ¢ is a constant used to reward the agent for taking
favorable actions. From the above, the pseudocode is shown
in Algorithm 2.

V. EXPERIMENTS

In this section, we evaluate the TAG mechanism in two
types of environments: sparse-reach and delayed reward
robot locomotion environments. The former are characterized
by sparse reward, and the latter are characterized by
delayed reward and complicated locomotion control. In these
environments, the proposed TAG mechanism is critical. From
the experiments, we aim to investigate the following research
questions (RQs).

1) RQI: Can the proposed TAG mechanism effectively
accelerate the training process of different DRL
algorithms?

2) RQ2: Under the same demonstration data, can our
method attain better performance versus the counterparts
(e.g., existing LfD methods) that also utilize demonstra-
tion data?

3) RQO3: What is the key ingredient in our method that
introduces better empirical results? Is the introduction
of Gaussian process necessary?

4) RQ4: Can our method achieve better results in complex
environments, such as delayed reward robot locomotion
environments?

A. Experimental Configuration

1) Environment: The sparse-reach environment, shown in
Fig. 4, is a 2-D target approaching environment. The ultimate
goal of the agent is to reach the target point. The key elements
in the environment are defined as follows.

1) State: A 4-D vector represents the location of the target

point and the location of the agent.

2) Action: A 2-D vector denotes the step size in x- and
y-directions. The step length cannot exceed 1.

3) Reward: The positive reward is very sparse. Only when
the agent reaches the target point, can the agent receive a
positive reward signal. Otherwise, the agent will receive
a negative reward —0.5 x step length.
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Fig. 4. In this environment, the agent’s goal is to approach the target with
the shortest number of steps. The reward in the environment is sparse, and
the agent can only receive a positive reward when reaching the goal. The size
of the environment can be changed to vary the difficulty of reaching the goal.

In addition, the mujoco environment [45], a physics engine
aiming to facilitate research in robotics, was also used to test
the performance of algorithms. In particular, modified versions
of several continuous control environments in mujoco, named
delayed-mujoco, were leveraged in this article. In delayed-
mujoco, the reward signal is given to the agent only after a
specific number of steps.

2) Hyperparameter: For sparse-reach environments, the
hyperparameters of the guided policy are given as follows:
B = 05,Ty, = 0.04, and 7, = 80. For delayed-mujoco
environments, the hyperparameters of the guided policy are
B =0.5,Typ =0.0025, and T, = 0.8 X rmax, Where ry,y is
the maximum estimated episode return in the demonstrations
in an environment. In all RL algorithms, y = 0.99, and the
number of steps in an epoch is ten times the max episode
length of the environment. For all networks, the optimizer is
selected as Adam [46] with a learning rate of 0.001.

3) Implementation: For a fair comparison, policy net-
works of different methods in each comparative experiment
have the same hidden layer structure. For sparse-reach
environments, demonstration data were collected manually.
Only 50 state—action pairs were collected for demonstrations.
For delayed-mujoco environments, demonstration data were
collected by the best-trained agent in the dense reward setting.
Only 1000 state—action pairs were used to build the teacher
model. In addition, the squared exponential kernel was used in
sparse-reach environments, and the Matern kernel was used in
delayed-mujoco environments. Moreover, all experiments were
carried out on a workstation with Intel Xeon Gold 6240 CPU,
NVIDIA RTX 3090 GPU, and 256-GB RAM. PyTorch,
a machine learning framework, was used to implement the
training of neural networks [47].

B. Sparse-Reach Experiment

RQI: To answer the first question, we applied the
proposed TAG mechanism to four existing state-of-the-art
DRL algorithms, i.e., VPG [13], PPO [15], DDPG [19], and
SAC [21], in sparse-reach environments; they are named TAG-
VPG, TAG-PPO, TAG-DDPG, and TAG-SAC, respectively.
In addition, the experimental results were compared with
the above four original DRL methods without the TAG
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Fig. 5. Average episode return per epoch of the proposed TAG mechanism with four benchmark algorithms versus the benchmark algorithms in five different
sizes of sparse-reach environment. The size of the environment is 10 x 10, 20 x 20, 30 x 30, 40 x 40, and 50 x 50. (al-a5) Comparison of VPG and VPG
with TAG. (b1-b5) Comparison of PPO and PPO with TAG. (c1-c5) Comparison of DDPG and DDPG with TAG. (d1-d5) Comparison of SAC and SAC

with TAG.
TABLE I
AVERAGE EPISODE RETURN COMPARISON OF TAG MECHANISM WITH FOUR BENCHMARK DRL ALGORITHMS
VERSUS THE BENCHMARK DRL ALGORITHMS IN FIVE DIFFERENT SIZE SPARSE-REACH ENVIRONMENTS
Task \ VPG TAG-VPG \ PPO TAG-PPO \ DDPG TAG-DDPG \ SAC TAG-SAC
SR-S10 97.68+0.95 97.604+1.03 48.184+49.87 95.68+7.28 20.89+43.78 92.974+9.42 24.99+39.77 93.10+16.12
SR-S20 94.97+2.06 94.884+1.90 29.99432.97 92.21+4.91 -2.35+17.09 94.77+4.56 -0.58+0.11 88.941+16.18
SR-S30 88.06+7.77 92.1242.96 42.99419.54 86.621+9.45 -8.09+11.50 91.324+7.74 -1.21+0.05 90.85+11.45
SR-S40 70.304+15.05 89.414+3.82 21.12416.68 88.71+4.06 -26.09+16.02 88.92+12.41 -1.6740.18 89.49+ 6.92
SR-S50 56.531+19.10 86.921+4.99 19.46+14.22 87.05+5.05 -35.75+5.63 89.16+4.69 -2.2540.52 87.38+10.38

mechanism. Moreover, five different sizes of the sparse-reach
environment were used to evaluate the effectiveness of the
TAG mechanism. Fig. 5 shows the result of this setting.
In Fig. 5, after each epoch of training, we evaluate the policy
network 1y in the test environment and get ten trajectories.
Then, the average episode return of these ten trajectories was
calculated as the evaluation result, corresponding to the y-axis
in the figure.

It can be observed from Fig. 5 that for VPG, it has
almost the same learning curve as TAG-VPG when the
environment size is 10 x 10, as shown in Fig. 5(al).
As the environment size increases, the convergence rate of

both VPG and TAG-VPG decreases to different degrees,
as shown in Fig. 5(a). However, the convergence rate of
VPG dropped significantly. The reason for this phenomenon
is that, as the size of the environment becomes larger,
it becomes more difficult for the agent to reach the target point.
More specifically, the positive rewards in the environment
are very sparse. As the size of the environment increases,
the probability of the agent getting high rewards from the
environment becomes smaller, and the favorable gradient
directions become less obvious, causing the convergence
rate to become slower. However, compared to VPG, the
convergence rate of TAG-VPG decreases to a much lesser
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extent. This is because, due to the intervention of the teacher
model, during the exploration process, the probability of
obtaining a high-reward trajectory is higher. As a consequence,
the direction of the favorable gradient is still dominant, which
makes the algorithm converge faster. Consequently, TAG-VPG
is less sensitive to the size of the environment.

For PPO, due to the gradient truncation mechanism, the
training speed of PPO is inferior to VPG, as shown in
Fig. 5(b). In the experiment, we discovered that for mini-
batch data with high-reward trajectories, its gradient would
be clipped by the truncation mechanism. On the contrary,
for those general batch data, PPO will update normally. The
above are the main reasons for the slow training process of
PPO. Likewise, same as VPG, as the size of the environment
increases, the convergence rate of PPO also decreases.
Furthermore, TAG-PPO also suffered from the same problem
as PPO that the training speed is slower than its counterpart
TAG-VPG. In addition, the gradient clip mechanism also leads
to a greater variance of the agent’s performance, as shown in
Fig. 5(b1)—(b3) and Table I.

For DDPG, it cannot achieve good performance in any size
of sparse-reach environment, shown in Fig. 5(c). Intuitively,
the primary reason is that in DDPG, the Q value is estimated
with single-step rewards, i.e., r, + y max, Q(s, a), which
means that the variance is small, but the estimate is biased.
Furthermore, in the sparse-reach environment, when the agent
does not reach the goal, at each step, it receives a negative
reward signal as a penalty. Therefore, most of the reward
signals are negative in the replay buffer. This feature makes the
Q value estimated inaccurate. Under such circumstances, the
agent tends to move with a very short step to avoid negative
rewards, which can be shown in Fig. 5(c2) and (c3), where the
performance approaches 0. However, in VPG or PPO, the critic
is estimated with multistep rewards, e.g., ZzT:O y'r,, which
is unbiased. Therefore, the performance of VPG and PPO
will slowly improve until convergence. As for TAG-DDPG,
with the intervention of the teacher model, many high-reward
state—action pairs appear in the replay buffer. The performance
of the TAG-DDPG improves rapidly in the training process,
as shown in Fig. 5(c).

For SAC, it suffers from the same problem as in DDPG.
In order to maximize the episode return and avoid penalty,
the agent tends to move with a short step length, and
the performance ultimately converges to O, which can be
seen in Fig. 5(d). This means that SAC falls into a local
optimum solution. However, equipped with the teacher-
advice mechanism, TAG-SAC helps the policy network
jump out of the local optimal solution and almost reach
the optimal solution by better exploration. In addition, the
convergence speed of TAG-SAC is even faster than that of
TAG-DDPG.

From the above, we can conclude that the TAG mechanism
can accelerate the training process of different DRL algorithms
in the sparse-reach environment with varied sizes by better
exploration. Table I shows the performance of each method
in the last epoch of training. It can be observed that the
TAG mechanism greatly improves the performance of the
DRL algorithms in the sparse-reach environment. Furthermore,
algorithms with the TAG mechanism have a smaller variance
in most cases.

RQ2: To answer the second question, we compared the
TAG-SAC method with other existing algorithms, including
the following.
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1) SAC [21]: A state-of-the-art DRL method based on the
maximum entropy RL.

2) SACfD: This method combines the SAC and LfD
mechanisms that are utilized to employ demonstration
data in DQNfD [30] and OERL [31].

3) GAIL [26] With SAC: A classic imitation learning
method based on GAN, which clones the expert behavior
by matching the occupancy measure between the expert
policy and the learned policy. For a fair comparison, the
generator part is selected as SAC.

4) VAIL [27] With SAC: An improved version of GAIL, the
IB, is introduced to avoid the discriminator dominating
during the training process, causing the gradient passed
to the generator that is close to 0. For a fair comparison,
the generator part is selected as SAC.

The results of the comparative experiment are shown in
Fig. 6. It can be observed that in the sparse-reach environment
with a size of 10, TAG-SAC, VAIL, GAIL, and SACID achieve
a certain effect, while TAG-SAC attains the best performance,
as shown in Fig. 6(a). However, as the size of the environment
becomes larger, the performance of these algorithms decreases
to varying degrees, as shown in Table II.

For SAC, in small size environments, such as SR-S10 and
SR-S20, the learning curve rises in the early stages of training.
However, as the number of interactions increases, the agent
is inclined to avoid punishment, causing the learning curve to
decline. Furthermore, for larger size environments, the learning
curve converges to 0. For SACID, it suffers from the same
problem as SAC. As the training progresses, the learning
curve in SACfD has a certain drop, which can be seen in
Fig. 6(a)—(c). For VAIL with SAC and GAIL with SAC,
because of the introduction of IBs, VAIL achieved better per-
formance than GAIL in these five sparse-reach environments.
Due to the limited demonstration data, as the size of the
environment increases, the performance of both methods drops
drastically, as shown in Fig. 6(c)—(e). In addition, it can be
seen from Table II that VAIL with SAC outperforms SACfD
in small-size environments, such as SR-S10, SR-S20, and SR-
S30. However, for larger size environments, e.g., SR-S30 and
SR-S40, SACID outperforms VAIL with SAC. A reasonable
explanation is that VAIL with SAC can only learn from
the demonstration data and discards the reward information
given by the environment. However, when confronted with
insufficient demonstration data, SACfD can also learn from
the agent’s exploration to achieve better performance.

As for TAG-SAC, it achieves the best performance in
sparse-reach environments of different sizes. Due to the
powerful generalization ability of the Gaussian process,
the teacher model can guide the agent at more states.
Thus, as the environment size increases, the performance
of TAG-SAC does not decrease significantly, and it can
achieve better performance than its counterparts, which can be
shown in Table II. Therefore, we can conclude that TAG-SAC
outperforms its counterparts that also utilize demonstration
data.

RQ3: To answer the third question, we focused on the role
of the Gaussian process in our teacher-advice mechanism.
In order to verify the effectiveness of the Gaussian process,
we conducted an extra experiment, that is, we replaced the
Gaussian process with calculating the Euclidean distance
between states. More specifically, we judged whether a state s
should be guided by calculating the distance between state s
and all states in the demonstration data. Then, the new guided
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TABLE II
AVERAGE EPISODE RETURN COMPARISON OF THE TAG-SAC WITH OTHER BENCHMARKS ALGORITHMS
IN FIVE DIFFERENT SIZE SPARSE-REACH ENVIRONMENTS
Task SAC SAC from Demonstration GAIL with SAC VAIL with SAC TAG-SAC
SR-S10 24.99439.77 62.924+32.13 79.38+17.17 83.39+25.81 93.10+16.12
SR-S20 -0.58+0.11 39.12446.83 38.62436.55 39.33+£42.37 88.94+16.18
SR-S30 -1.2140.05 30.95440.94 12.50430.36 31.45+38.79 90.85+11.45
SR-S40 -1.67+£0.18 25.11434.29 0.43417.05 8.46+£26.18 89.4946.92
SR-S50 -2.254+0.52 15.08+31.85 1.67+21.18 2.08+24.45 87.38+10.38
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Fig. 6. Average episode return per epoch of the TAG-SAC versus the four benchmark algorithms in five different size sparse-reach environments. For a

clearer presentation, each curve was smoothed with a sliding window of length 3. (a—e) Comparison in sparse-reach environments with the size of 10, 20, 30,

40, and 50, respectively.

TABLE III

AVERAGE EPISODE RETURN COMPARISON BETWEEN

GP, SAC, TA

E-SAC, AND TAG-SAC

* GP SAC TAE-SAC TAG-SAC

1 98.76+0.89  24.99+39.77  69.11£32.66  93.10+16.12
2 | 97.22£2.00 -0.58+ 0.11  39.18+43.66  88.94+16.18
3 | 45.44449.86 -1.21£0.05 4.74£19.88  90.85+11.45
4 | 43.91£50.93 -1.67£0.18 1.08+14.31 89.49+ 6.92
5 | 22.131+46.88 -2.25+0.52 047+12.45  87.38£10.38

* The labels on the left represent the environment size of 10, 20, 30,

40, and 50, respectively.

policy using the Euclidean distance can be formulated as

he a,
Tty (s) =
7o (S),
where s¢ indicates the

i

miin ||s — sfl ||2 < Tea 25)
else

ith state in demonstration data,

i, =argmin; ||s — s?||2, and Ty, is a threshold.

We employed the Euclidean distance version of the
teacher-advice mechanism in SAC, named TAE-SAC, and
compared it with the original SAC and TAG-SAC in the
sparse-reach environment. The result is shown in Table III
It can be observed that in a small size environment,
the teacher-advice mechanism that calculates the Euclidean
distance can also achieve good results. However, as the size of
the environment increases, its effect gradually decreases. This
is because in large size environments, restricted by limited
demonstration data, the teacher model cannot guide the agent
adequately. Meanwhile, the teacher-advice mechanism that
uses the Gaussian process has little performance degradation
as the environment size grows. In addition, we also test
the teacher model, named GP, in the environment to observe
its performance. The result is shown in Table III. GP has
the best performance in small size environments, i.e., SR-S10
and SR-S20. This is because, for small size environments,
the demonstration is relatively sufficient for Gaussian process.
However, in large size environments, the performance of
the GP decreases due to the inability to learn from the
environment.
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Fig. 7. Average episode return per epoch of the TAG-SAC versus the four algorithms in three delayed-mujoco environments. For a clearer presentation, each

curve was smoothed with a sliding window. Each epoch contains 5000 steps.

TABLE IV

AVERAGE EPISODE RETURN COMPARISON OF THE TAG-SAC WITH OTHER BENCHMARKS ALGORITHMS
IN THREE DIFFERENT DELAYED-MUJOCO ENVIRONMENTS

Task ‘ SAC SAC from Demonstration GAIL with SAC VAIL with SAC TAG-SAC
Delayed-Hopper 1778.77+£36.17 3112.59+58.40 1085.04+£118.95 857.15+75.06 3465.86+121.20
Delayed-Walker2d 2666.27+91.66 3130.86+288.60 992.314+8.89 975.07+4.59 3450.20+79.49
Delayed-HalfCheetah 7820.57+399.70 8315.40+102.19 59.85496.15 -1.82+1.59 9441.17+456.89

Fig. 8. Delayed-mujoco locomotion environments. (a) Hopper, state-space
dimension |S| is 11 and action-space dimension |.A4] is 3. The delayed reward
interval h is 25 steps. (b) Walker2d, |S| = 17,|A] = 6, and h = 20.
(c) HalfCheetah, |S| = 17, |.A| = 6, and h = 10.

Therefore, we can conclude that with the help of powerful
data generalization capabilities, the Gaussian process plays
a vital role in our teacher-advice mechanism, which helps
the teacher model to make full use of the demonstrations.
Furthermore, RL algorithms endow the agent with the ability
to learn from environments, which makes TAG-SAC achieve
the best performance in larger size environments.

C. Delayed-Mujoco Locomotion Experiment

RQ4: To answer the fourth question, we also compared
the TAG-SAC with other benchmark algorithms in four
delayed-mujoco locomotion control environments, such as
delayed-hopper, delayed-walker2d, and delayed-halfcheetah.
Different from the dense rewards setting in default mujoco
locomotion control environments, the reward signal given by
the delayed version is also sparse. In these environments, the
agent cannot get a reward signal at every step but obtain
a reward after every h step. The experimental results are
shown in Fig. 7. The details of the environments are shown in
Fig. 8. Since only 1000 state—action pairs are utilized, neither
GAIL-SAC nor VAIL-SAC can achieve good performance in
these complicated control environments. Moreover, limited by
delayed rewards, SAC can only obtain poor results. However,
due to the introduction of expert demonstrations, compared

with SAC, SACID achieves better performance in these three
environments, especially in the delayed-hopper environment.
Finally, the TAG-SAC achieves the fastest convergence speed
versus its counterparts in these three control environments
shown in Fig. 7 and attains the best performance, which can
be shown in Table IV.

Hence, it can be concluded that the proposed method can
also achieve better results in complex delayed reward robot
locomotion control environments.

VI. CONCLUSION AND DISCUSSION

In this article, we proposed a TAG for RL algorithms,
which can make the agent learn skills efficiently with only
a small number of expert demonstrations. In TAG, a Gaussian
process is utilized to build a teacher model, and a guided
policy is introduced to select actions between the teacher
model and the original policy. Due to the TAG mechanism,
the agent is more inclined to explore high-return regions,
making the RL algorithm converge faster and attain better
performance. In addition, with the powerful generalization
capability of the Gaussian process, the teacher model can be
constructed with only a small number of demonstrations. Also,
the confidence value output by the teacher model makes the
guided policy guide the agent more accurately. Experimental
results on sparse reward environments illustrate that the TAG
mechanism can make normal DRL algorithms obtain better
performance and faster convergence speed. Moreover, the
proposed TAG-SAC attains the best performance over other
LfD counterparts on several delayed reward and complicated
locomotion control environments.

It is worth noting that the TAG mechanism processes the
properties of generality, which means that it can be combined
with common DRL algorithms and other techniques that
also utilize demonstrations. Therefore, the proposed TAG
mechanism can be applied in many industrial scenarios. For
example, DRL has been used to control robots [6], [7],
so our method can accelerate the process of robot skill
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acquisition. In addition, there are also cases of DRL in the
field of industrial scheduling, i.e., smart grid scheduling [48]
and logistics dispatch [49]. As a consequence, the TAG
mechanism is also helpful for these methods to obtain
intelligent scheduling policies.

Notably, introducing the TAG mechanism in the agent
exploration process will bring additional computation to get
the advice action and the corresponding confidence. When
the demonstration data are small, the extra computation
is usually acceptable. However, when the demonstration
data are large, it may be necessary to introduce the local
Gaussian process [50] to reduce the computational load
of the TAG mechanism. On the other hand, in our TAG
mechanism, the confidence threshold Ty, in the guided policy
is a hyperparameter that needs to be adjusted for different
environments. If Ty, is set too high, the agent may be misled by
the wrong actions given by the teacher model. On the contrary,
if it is set too low, the agent may not be guided by the teacher
model.

Further exploration of applying the TAG mechanism to a
real robot control task could be a new direction for future
work.

APPENDIX

A. Dataset Size Selection Guideline

To determine the appropriate number 7 of trajectories in the
demonstration according to different environments, this section
gives basic guidance.

Generally speaking, the higher the dimensionality of the
state space in the environment, the more demonstrations are
needed. If n is larger, the generalization ability of the Gaussian
process model will be stronger, but it will bring a larger
amount of computation. On the contrary, the computational
complexity of the model will be smaller, but the generalization
ability of the model will be reduced accordingly. A practical
scheme for determining the appropriate n according to the
environment is given as follows:

1) Use m demonstration trajectories to fit a Gaussian

process model GP.

2) Combine this GP model with a random policy into a
hybrid policy, as described in (16). Let this hybrid policy
explore in the environment and count the number of
times the agent has been guided. If the guided ratio
exceeds a certain threshold, such as 20%, the GP model
is considered to have a certain generalization ability,
and a suitable n is obtained. Otherwise, the number of
trajectories needs to be increased, and we need to go to
step 1.

B. TAG for More Complex Environments

In order to enable the proposed method to be used in more
complex environments, some further measures are listed as
follows.

1) For complex environments, the dimension of the state
space is usually higher. To make the teacher model more
effective, more demonstration data are usually needed to
build a more powerful Gaussian process model.

2) For more complex environments, it may be necessary
to introduce the local Gaussian process [50] to enable
the more powerful Gaussian process model to perform
faster calculations.
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Fig. 9. Flowchart of the process of collecting data.

C. Hyperparameter Selection Guideline

The basic principles for the selection of hyperparameters in
the TAG mechanism are given as follows.

T,,: This parameter is mainly related to the sensitivity of
state transitions in the environment to action perturbations.
If the state transition is more sensitive to action perturbations,
then Ty, should be smaller. To determine the value of Ty,
we can use the demonstrations to build a teacher model and
extract a trajectory from the demonstrations. Then, we can try
to make the teacher model roll out the trajectory. Then, we can
add noise to the input of the teacher model until the teacher
model cannot roll out the trajectory. At this time, we can know
that the value of Ty, should not exceed the given noise level.
Generally, Ty, should be set relatively small to ensure that the
teacher model can guide the agent correctly.

B: This parameter determines the probability that the agent
will adopt the teacher model’s suggestion when o?(s) <
Typ. The choice of B is related to the quality and quantity
of the demonstration data and the reward design in the
environment. If the average cumulative reward of trajectories
in the demonstration is high, 8 should become larger so that
the agent can be guided by the teacher model with a greater
probability. In addition, if the reward of the environment
is well-designed and easy to explore, this value should be
reduced accordingly to ensure that the agent can explore in
the environment with a higher probability.

T,: When the average cumulative reward obtained by
the agent exceeds 7,, the agent will no longer accept the
suggestions of the teacher model. Therefore, this parameter
determines when the agent chooses to explore in the
environment by itself to get higher rewards. To prevent the
teacher model from interfering excessively with the behavior
of the agent in the later stage of training, 7, can usually be
set to 0.8x the average cumulative reward of trajectories in
the demonstration data.
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y: The discount factor is usually set to a number close to 1
to ensure that future rewards are fully considered. However,
for the convergence of the RL algorithm, y cannot be set to 1.
Therefore, the discount factor is usually set to 0.99.

D. Flowcharts of the Proposed Algorithms

To further illustrate the structure of the presented algo-
rithms, we first give the subprocess for collecting data in
Fig. 9. Then, the flowcharts of the process of TAG for policy-
based and value-based DRL algorithms are shown in Fig. 10.
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