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 A B S T R A C T

Gaze estimation technology is crucial for enhancing the effectiveness and safety of applications in human–
computer interaction, intelligent driving, virtual reality, and medical diagnosis. With advancements in deep 
learning, gaze estimation methods using deep neural networks have been extensively researched and applied. 
However, existing methods have yet to address the anisotropic characteristics of eye features. Based on the 
discovered anisotropic characteristics, we propose an Anisotropic Gaussian Label Distribution Learning Network 
for Gaze Estimation (ADGaze). ADGaze is capable of catching neighboring information by taking advantage 
of coarse-to-fine methodology and the anisotropic soft label construct. The coarse-to-fine framework initially 
performs classification tasks for gaze estimation, grouping gaze images with small variations into the same 
category, followed by regression tasks for each category. The construction of anisotropic Gaussian label 
distributions adopts methods based on data statistics and feature similarity. Extensive experimentation on 
public datasets has been carried out to substantiate the efficacy of this model. Our code is publicly available 
at https://github.com/dacilab/ADGaze.
1. Introduction

Gaze estimation (GE) has increasingly attracted scholarly interest 
as a crucial technology in human–computer interaction and virtual 
reality in recent years [1]. Initial methodologies predominantly re-
lied on model-based gaze estimation strategies [2,3] focusing on 2D 
or 3D modeling of the eye based on critical features like corneal 
reflections, the pupil’s center, the Purkinje image’s center and iris 
outlines, leveraging these biological characteristics to ascertain the 
gaze orientation. While model-based methods can furnish precise gaze 
angles, they require auxiliary sensor equipment to attain substantial 
estimation accuracy, leading to practical operational distances being 
restricted by the limits of the hardware’s reach. Due to this con-
straint, researchers have introduced feature-learning-driven gaze esti-
mation methodologies, principally divided into geometry-based [4,5] 
and appearance-based methods [6,7]. Geometry-based methods no-
tably offer a significant decrease in parameter calibration; nonetheless, 
their effectiveness is largely contingent upon the amount of training 
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data and the model’s potency. Conversely, appearance-based meth-
ods have continually faced challenges in improving accuracy, which 
could be enhanced by the scarcity of datasets in gaze estimation and 
the constraints of contemporary feature extraction methodologies. In 
gaze estimation technologies, model-based approaches aim to precisely 
simulate individual eye structures. These methods are computationally 
intensive and usually require personalized adjustments to account for 
individual differences. Furthermore, they are especially sensitive to 
variations in lighting conditions. Geometry-based gaze estimation relies 
on accurately identifying and localizing key features of the eye, such as 
the pupil center and eye corners. While this method does not demand 
significant computational power, it can be limited by occlusions, blinks, 
and is less effective when dealing with large head pose variations. 
Appearance-based gaze estimation offers robust resistance to lighting 
variations, yet if the training data lacks adequate diversity, the models 
trained might capture dataset-specific features instead of generalizable 
gaze patterns. However, in recent years, with the increasing number 
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Fig. 1. The anisotropy of gaze estimation. In the Pitch and Yaw directions, the feature distributions of gaze images at various angles exhibit significant differences, a phenomenon 
we term as anisotropic characteristics. Specifically, we define each 3-degree interval as a Bin, within which features from different angles display high similarity and clustering. This 
implies that within small angular variations, gaze image features remain relatively consistent, a property that enhances classification and prediction accuracy in gaze estimation 
tasks.
of datasets collected in gaze estimation and the rapid development 
of deep learning technology in computer vision [8,9], recommender 
system [10–12], knowledge graph [13,14] and automatic driving [15]. 
The appearance-based methods [16] can use deep learning to extract 
more gaze features and improve the accuracy of models. However, in 
the in-depth study of a large number of gaze estimation datasets, we 
have discovered two key characteristics as follows.

The first characteristic in Fig.  1: images exhibit striking similarity 
when gaze angles change slightly, displaying minimal differentiation. 
This makes it challenging for models to directly fit and regress the 
gaze angles of these images, hindering the attainment of accurate 
estimates. Existing gaze estimation methods mainly include model-
based approaches [2,3,17] and appearance-based approaches [7,18,
19]. Model-based methods rely primarily on 2D or 3D modeling of the 
eyeball, determining the direction of gaze by analyzing key features 
such as corneal reflection and the center of the pupil. Although this 
approach can provide accurate gaze angles, it requires additional sensor 
equipment, limiting its application scenarios. With the development 
of deep learning, appearance-based methods have gradually become 
mainstream, the deep learning-based gaze estimation methods adopt a 
direct regression strategy, which struggles to extract features relevant 
to the gaze estimation task when the similarity of image features is 
high, leading to difficulty in improving the accuracy of gaze estimation. 
This makes it challenging for models to directly fit and regress the 
gaze angles of these images, hindering the attainment of accurate esti-
mates. Accordingly, this paper proposes a coarse-to-fine methodology, 
initiating a classification stage for gaze estimation, clustering images 
with insignificant angle changes into shared categories, followed by 
regression tasks for each classified group. Effectively, the gaze estima-
tion process is divided into two phases, categorization and regression, 
to augment the efficiency and precision of the estimation process. 
Partitioning the full spectrum of gaze angles into multiple categories 
and performing more meticulous regression assessments within these 
narrower bands can significantly heighten gaze estimation accuracy. 
Classification within these compact categories facilitates the model’s 
identification of the target’s broad range or category, diminishing the 
search scope for subsequent regression and enhancing the model’s 
operational efficiency. Moreover, conventional classification tasks often 
utilize one-hot encoding schemes (hard labels), where each image’s 
category is indicated by either 0 or 1. Since hard labels consider each 
class independently, they do not convey the similarities or distinctions 
among categories, hindering the model’s capacity to grasp more com-
plex category hierarchies. To address this problem, we introduce Label 
Distribution Learning (LDL, or soft labels) [20] into gaze estimation. 
LDL is an advanced machine learning approach designed to convert 
the single label of each sample into a probability distribution, captur-
ing subtle differences and correlations among samples. This method 
2 
demonstrates particular strengths in fields like age estimation [21] 
and head pose estimation [22] by enabling a finer depiction of con-
tinuous variations in data and offering better adaptability to class 
imbalance issues. Conventional approaches typically process the label 
distributions of all classes uniformly, potentially failing to capture the 
nuanced differences between various classes. In gaze estimation, eye 
features vary significantly across different angles, yet traditional LDL 
methods find it challenging to effectively model these variations, thus 
inadequately accounting for the anisotropic nature of eye features. To 
tackle these challenges, we utilize both data statistical information and 
feature similarity independently to construct label distributions. Soft 
labels offer probabilistic distributions across categories, signifying the 
likelihood of a sample falling into each class. Such probability data 
enriches the model with supplementary insights into the ambiguity 
related to the target class, ensuring that during learning, the model 
endeavors beyond mere rigid categorization, aiming instead to forecast 
a probability distribution. This facilitates the model’s comprehension 
of inter-category resemblances, thereby bolstering its generalization 
performance on unseen data.

Inspired by the work of Zhao et al. [9], we found the second 
characteristic in Fig.  1 through further observation: gaze angles show 
varying feature distributions in the yaw and pitch dimensions. This 
is illustrated in Fig.  1(c), where a similarity computation network 
assesses the likeness between (0◦, 0◦) and the chosen images, high-
lighting disparities in the feature spreads of various gaze angles along 
both pitch and yaw orientations. We denote this observation as the 
anisotropic nature of gaze estimation concerning yaw and pitch angles. 
Consequently, crafting more tailored soft label distributions becomes 
essential to adequately model gaze features along divergent directional 
axes.

In addressing these challenges, this work presents ADGaze, a fine-
grained gaze estimation method based on Anisotropic Gaussian Label 
Distribution Learning. Initially, by adopting the concept of classifica-
tion preceding regression, the problem domain is divided into more 
compact subsets, thereby simplifying and enhancing the precision of 
subsequent regression tasks. Furthermore, we propose an anisotropic 
soft label distribution to learn the distinctions in gaze estimation fea-
tures along vertical and horizontal orientations, constructing soft labels 
employing two distinct similarity metrics grounded in statistical and 
feature-based analyses. The primary contributions of this work are 
summarized as follows:

• Two essential characteristics revealed: (1) Intra-class similarity: 
Images with gaze angles varying within a narrow range ex-
hibit high similarity, with minute differences between them. (2) 
Anisotropy of gaze angles: Distinct feature distributions exist 
along gaze angles’ horizontal and vertical orientations.
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• We propose multi-loss networks with anisotropic soft label distri-
bution learning to model gaze estimation through a classification-
first-then-regression approach. Iteratively extracting subtle fea-
tures from gaze images in a coarse-to-fine manner significantly 
enhances the model’s accuracy.

• To better capture the anisotropy of gaze estimation in pitch and 
yaw, we construct label distributions for different directions using 
statistical and feature-based similarity approaches. This enables 
the network to grasp richer contextual information, extracting 
more refined gaze estimation features.

• Experimental Validation and Results:Extensive evaluations on 
widely-used gaze estimation datasets, demonstrate that our pro-
posed method outperforms existing approaches. Additionally, vi-
sualizations further affirm the efficacy of the proposed anisotropic 
Gaussian label distribution strategy.

The subsequent sections of this paper are organized as follows: 
Section 2 provides a concise review of the relevant literature on gaze 
estimation. Section 3 presents a detailed exposition of our proposed 
ADGaze model. Section 4 offers an in-depth analysis and discussion of 
the experimental results. Finally, Section 5 summarizes the document 
and draws conclusive remarks.

2. Related work

2.1. Gaze estimation

Advancements in gaze estimation technology have contributed sig-
nificantly to the field of pattern recognition. A method for 3D gaze 
estimation without requiring explicit personal calibration was pro-
posed, utilizing complementary gaze constraints and center priors along 
with learned generic facial information to achieve accurate gaze esti-
mation while reducing dependency on annotated data specific to test 
subjects [23], thus enhancing generalization capabilities. To address 
issues of poor generalization due to data bias, another study introduced 
a method for appearance-debiased gaze estimation through stochastic 
subject-wise adversarial learning, incorporating novel loss functions 
and training strategies to improve the accuracy and generalization 
of gaze estimation [24]. The application of Transformers in cascaded 
learning enables simultaneous eye landmark detection, eye state de-
tection, and gaze estimation, capturing long dependencies and implicit 
associations to boost performance [25]. By introducing synthetic data 
and consistency supervision, a gaze estimation method that employs 
semi-supervised eye landmark detection as an auxiliary task tackles the 
issue of insufficient annotations in real-world datasets [1], enhancing 
performance and generalization. Gaze position detection by calculating 
three-dimensional facial positions and motions demonstrates accept-
able error rates in gaze position detection experiments [26]. In the 
realm of gaze stabilization within active vision, research has led to 
the development of phase-based vergence error extraction algorithms 
simplifying the matching process [27]. A gaze estimation method de-
pendent on gazing points utilizes dynamic virtual plane projection and 
a coarse-to-fine framework combined with offline and online parameter 
learning heuristics to significantly improve gaze estimation perfor-
mance [19]. However, in recent years, with the increasing number of 
datasets collected in gaze estimation and the rapid development of deep 
learning technology, appearance-based methods [16] can now leverage 
deep learning to extract more gaze features and improve the accuracy 
of models.

2.2. Appearance-based methods

In gaze estimation, appearance-based methods have proven effec-
tive by analyzing texture features in input images and learning their 
mapping to gaze directions. Yu et al.’s work [28] established a rela-
tionship between eye keypoint locations and gaze direction using 17 
3 
points and the pitch angle, demonstrating the potential for precise 
feature extraction in effective gaze estimation. Considering the influ-
ence of head pose, Wang et al. [16] introduced adversarial learning 
within convolutional neural network frameworks to capture variations 
in eye appearance and head pose, thereby improving the accuracy and 
generalization of gaze direction estimation. Inspired by the successful 
application of transformers [18] in the natural language processing 
field, Transformer has become a hot topic as a backbone in computer 
vision tasks. Appearance-based gaze estimation has also benefited from 
transformer-based approaches. GazeTR [6] first utilized pure transform-
ers and hybrid transformers for gaze estimation, finding that hybrid 
transformers significantly outperformed pure ones with fewer param-
eters. Given the inefficiency of transformers in real-time edge device 
applications, the GazeNAS-ETH [7] model addresses gaze estimation 
with precision and efficiency while featuring only around 1M param-
eters, facilitating its deployment in real-time applications. Considering 
that existing eye-tracking studies mainly focus on individual tasks such 
as pupil detection or gaze estimation, ignoring the implicit relationships 
between different tasks in eye-tracking. Gou et al. [19] employ trans-
formers to capture long-range dependencies encompassing explicit eye 
structure information and the implicit correlations across eye landmark 
detection, eye state detection, and gaze estimation tasks. However, 
these methods frame gaze estimation as regression, overlooking the 
minute eye movements and similarity in slight gaze variation images, 
leading to high complexity and poor data fitting. Hence, this paper in-
novatively suggests a coarse-to-fine strategy, categorizing small angular 
ranges before regression, ensuring efficient model convergence.

2.3. Label distribution learning

LDL [20], by converting single labels into a fixed distribution, offers 
a clear and nuanced method to describe relationships between in-
stances, effectively capturing correlations among neighboring samples. 
The LDL technique has shown remarkable performance in practical 
applications such as age estimation and head pose estimation. Geng 
et al. [22] analyzed different head poses and fitted their probabilities 
using Gaussian-based methods and training networks with constructed 
soft labels, which significantly improved classification performance. In 
age prediction [21], the adoption of soft label distribution learning, 
focusing solely on sensibly contiguous ages, outperforms other cur-
rent methods in accuracy. For multi-label classification tasks, Zhao 
et al. [29] introduced a scalable LDL approach that significantly en-
hances the capability to process large datasets, especially beneficial for 
classification issues in high-dimensional feature spaces. Regarding text 
classification, Zhao et al. [30] presented a variational continuous label 
distribution learning framework, enabling smooth adjustments in label 
distributions according to variations in input features, thus offering a 
flexible and robust solution for complex multi-label text classification 
tasks. In the domain of object detection, Hang et al. [31] demonstrates 
that employing Gaussian distributions to model label distributions en-
ables more precise capture of object location information in spherical 
images, particularly excelling in handling complex backgrounds or 
viewpoint variations. Furthermore, in medical image segmentation, Li 
et al. [32] investigated a curriculum-based label distribution learning 
method that efficiently tackles the training challenges posed by imbal-
anced data by progressively adjusting the learning process according 
to sample difficulty levels. To our knowledge, compared to traditional 
deep learning approaches, LDL has significant advantages in feature 
capture: it seizes correlations among neighboring class labels, providing 
richer neighborhood information, thereby reinforcing the network’s 
robustness, effectively addressing class imbalance, and enabling con-
tinuous prediction rather than being confined to discrete classifications. 
These strengths of LDL make it particularly suitable for understanding 
and learning the intricate relationships in human eye images. Building 
anisotropic label distributions allows for a more meticulous depiction of 
interactions and continuous changes among visual elements, enhancing 
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Fig. 2. Pipeline of our AFDNet model. The ADGaze model is primarily divided into three parts: Feature Extractor, Coarse Classification, and Fine Classification. Initially, facial 
images are fed into the Feature Extractor for gaze feature extraction. Subsequently, both classification and regression steps are utilized to compute the loss function, culminating 
in gaze direction prediction.
the network’s capability to acquire neighborhood information. Con-
sequently, in this work, we pioneer the integration of LDL into the 
task of gaze estimation and, further considering the anisotropy of gaze 
estimation, employ distinct distributions to fit accurate class labels, 
thereby narrowing the solution space of the model.

3. Proposed ADGaze model

In this section, we outline our model’s overarching framework, 
delve into the specifics of each component, and ultimately elucidate 
the process by which the model is resolved.

3.1. Outline of ADGaze

The proposed ADGaze model, depicted in Fig.  2, comprises four 
main components: Feature Extractor, Coarse Classification, Fine Clas-
sification, and Regression. It begins with facial images being fed into 
the Feature Extractor, initiating the process by extracting gaze-related 
features. This is succeeded by a dual process of classification and 
regression to ascertain the loss function, concluding with the prediction 
of the gaze direction itself. In the feature extraction phase, ResNet50 is 
adopted as the primary feature extractor. Following extraction, features 
are bifurcated into two subsets corresponding to yaw and pitch angle 
characteristics, implementing a foundational design where classifica-
tion precedes regression, effectively embodying a coarse-to-fine (CF) 
feature refinement approach. Within the Coarse stage, Cross Entropy 
Loss is supplanted by a distribution similarity loss function (𝐾𝐿), fully 
harnessing the characteristics of proximal labels. During the Fine phase, 
we estimate the expected value for every output angle per input bin 
and then perform a refined regression utilizing 𝑀𝑆𝐸. Ultimately, the 
𝐾𝐿 and 𝑀𝑆𝐸 losses are combined with consideration of their assigned 
weights.
4 
3.2. Feature extractor

To address common challenges encountered during the training 
of deep networks and ensure high precision and stability, we opted 
for ResNet50 as our main feature extractor. In gaze estimation, deep 
learning architectures like Convolutional Neural Networks (CNNs) are 
paramount for extracting informative features. By scrutinizing eye 
images, these mechanisms distill essential cues, including eyeball place-
ment, ocular texturing, pupil dimensions and placement, periocular 
skin tone, as well as aspects of head orientation and facial gestures. 
These collective features facilitate precise gaze direction determina-
tion. The essence of feature extraction resides in hierarchical data 
abstraction, going beyond the mere retrieval of rudimentary features. 
Following extensive testing of several backbone architectures, this work 
settles on ResNet50 as the chosen feature extractor. ResNet50’s layer-
wise extraction of local image characteristics creates a hierarchical 
depiction, enabling a more profound understanding of complex ocular 
imagery, thus augmenting the precision of gaze directional forecasts.

3.3. Coarse classification

To enhance the feature extraction capability of the model under 
conditions of highly similar features, the coarse classification mod-
ule introduces anisotropic features into the gaze estimation model 
to improve classification accuracy. Focusing on the yaw angle fea-
ture as an illustrative example, the process commences in the Coarse 
stage with the feature passing through the Anisotropic Soft Label 
Construct module. Here, hard categorical assignments are transformed 
into probability-weighted ‘truth’ soft labels by leveraging Gaussian 
distribution principles. The compatibility of the two resultant label dis-
tributions is then quantified using KL divergence, forming the basis of 
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Fig. 3. The data distribution of the different datasets. The data distribution of the Gaze360 and MPIIFaceGaze datasets shows a quasi-Gaussian distribution in the Pitch and Yaw 
directions.
the classification loss calculation. In the context of MPIIFaceGaze, gaze 
direction images are systematically categorized into 56 distinct groups 
during the initial Coarse phase. Unique soft labels are devised for both 
pitch and yaw angles, drawing upon statistical proximity and feature-
based similarities. Departing from the conventional SoftMax loss, KL 
divergence is strategically adopted to fine-tune the congruence among 
label distributions, amplifying the precision of classification outcomes. 
This meticulous design capitalizes on the intrinsic relationships among 
neighboring labels, thereby substantively refining the overall accuracy 
of classification results.

3.3.1. Anisotropic soft label construct based on data statistics
As shown in Fig.  3, the data distribution of the two most common 

datasets in the field of gaze estimation, Gaze360 and MPIIFaceGaze, is 
calculated at 1-degree intervals. The statistical range of the Gaze360 
dataset spans from −180◦ to +180◦, whereas the angle range of the 
MPIIFaceGaze dataset is from −84◦ to +84◦. Statistical results reveal 
that the gaze angles of the Gaze360 and MPIIFaceGaze datasets are pre-
dominantly distributed within ±50◦ and ±20◦, highlighting the extreme 
imbalance in gaze angle distribution, particularly for extreme angles. 
However, a highly imbalanced distribution of training samples can 
significantly reduce the accuracy of gaze estimation models. Therefore, 
a label distribution learning strategy is proposed to enhance the model’s 
learning of facial images by incorporating additional knowledge from 
facial images at various angles, thereby improving the learning of target 
images. Label distribution allows the model to leverage facial images 
at adjacent angles, providing supplementary information when learning 
specific angles. This approach assigns each facial image a label distribu-
tion instead of a single true pose label. This label distribution not only 
aids the model in learning the true angle of the facial image but also 
in learning adjacent angles. This section employs two distinct Gaussian 
label distributions to represent facial samples in yaw and pitch angles, 
thereby enhancing the overall learning process. Specifically, analysis of 
gaze angle data distribution suggests that the gaze distribution follows 
a quasi-Gaussian pattern, making Gaussian distribution suitable for 
constructing gaze estimation label distributions. The process of map-
ping angle labels to the gaze estimation label distribution 𝐝 through a 
mapping function constitutes the construction of the label distribution. 
Assume a training set E =

{(

𝑋0,𝐝0
)

,
(

𝑋1,𝐝1
)

,… ,
(

𝑋𝑛,𝐝𝑛
)}

, where 𝐝𝒊 =
{

𝑞 , 𝑞 ,… , 𝑞
} is the single true label value of 𝑋 , and 𝑛 represents the 
0 1 𝑛 𝑖

5 
batch size. In any dimension, the proportion of each angle component 
in a gaze estimation label distribution is represented by: 

𝐝𝑖 =
1

√

2𝜋𝜎
exp

(

−

(

𝑋𝑖 − 𝜇
)2

2𝜎2

)

. (1)

The labels in the two dimensions of Yaw and Pitch can both be 
represented by a single formula. Here, the Gaussian label distribution 
is illustrated using the Yaw angle. Given a facial image 𝑋𝑖 and a set of 
complete yaw angle labels 𝐲 =

{

𝑦1, 𝑦2,… , 𝑦𝑛
}

, if its yaw angle label is 
𝑦𝑖, 𝑖 = 1, 2,… , 𝑛, then the corresponding yaw angle label distribution is 
𝐝𝑦𝑖𝑋𝑖

=
{

𝑑𝑦1𝑋𝑖
, 𝑑𝑦2𝑋𝑖

,… , 𝑑𝑦𝑛𝑋𝑖

}

, where the 𝑚th dimension is as follows: 

𝑑𝑦𝑚𝑋𝑖
= 𝑓 yaw𝑋𝑖

= 1
√

2𝜋𝜎𝑦
𝑒𝑥𝑝

⎛

⎜

⎜

⎝

−

(

𝑥 − 𝜇𝑦
)2

2𝜎2𝑦

⎞

⎟

⎟

⎠

, (2)

where 𝑖 represents the 𝑖th bin classification of the yaw angle, 𝑦𝑖 rep-
resents the same gaze estimation label as 𝑞𝑖, and 𝜇𝑦 and 𝜎𝑦 represent 
the mean and variance of the Gaussian function in the yaw angle, 
respectively. Therefore, 𝐝𝑦𝑖𝑋𝑖

 represents the extent to which the label 
describes the example under constraint ∑𝑛

𝑘=1 𝐝
𝑦𝑖
𝑋𝑖

= 1, indicating that 
the label set 𝑦 completely describes the example.

The label distribution for the other angle follows the same definition 
but with different parameter constraints. 𝐝𝑝𝑋𝑖

=
{

𝑑𝑝1𝑋𝑖
, 𝑑𝑝2𝑋𝑖

,… , 𝑑𝑝𝑛𝑋𝑖

}

 can 
be obtained through a set of pitch angle labels of 𝑋𝑖. 

𝑑𝑝𝑖𝑋𝑖
=

𝑝𝑦𝑖𝑋𝑖
∑𝑛

𝑘=1 𝑝
𝑦𝑖
𝑋𝑖

, (3)

𝑝𝑦𝑖𝑿𝑖
= 𝑓pitch𝑿𝑖

= 1
√

2𝜋𝜎𝑝
𝑒𝑥𝑝

⎛

⎜

⎜

⎝

−

(

𝑥 − 𝜇𝑝
)2

2𝜎2𝑝

⎞

⎟

⎟

⎠

, (4)

according to the distribution curves fitted by similarity, the parameters 
are set as variances 𝜎𝑦 = 0.9, 𝜎𝑝 = 0.8, and 𝜎𝑦 = 0.7, 𝜎𝑝 = 0.2, with the 
mean set as 𝜇𝑦 = 𝜇𝑝 = 0 for the MPIIFaceGaze and Gaze360 datasets, 
respectively.

3.3.2. Anisotropic soft label construct based on feature similarity
Considering the varying feature similarities between different cate-

gories, we further construct anisotropic Gaussian feature distributions 
using feature similarity calculation methods. To accurately measure the 
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similarity between adjacent images, we introduced the cosine function 
to calculate the Gaze Pose Similarity (GPS) between image features. In 
this process, we use a simple five-layer pre-trained network and extract 
the output of its last fully connected layer as the gaze features of the 
images. Fig.  1(c), the central image 𝑋0 has an angle of (0◦, 0◦). An 
image is taken every 3◦ in the Pitch direction, with an example image 
at (0◦, 3◦) shown in Fig.  1(c). This paper uses a pre-trained five-layer 
network to extract the features of images 𝑋0 and 𝑋1, outputting the 
feature arrays through the last layer of the grid. The calculation process 
of GPS is formally described as follows: 

GPS
(

𝑋0, 𝑋1
)

=
𝐹𝑉

(

𝑋0
)

∗ 𝐹𝑉
(

𝑋1
)

|𝐹𝑉
(

𝑋0
)

| ∗ |𝐹𝑉
(

𝑋1
)

|

, (5)

where 𝐹𝑉  represents the feature vector of the last layer. Eq. (5) is used 
to measure the similarity of images with the same angle change in the 
Pitch or Yaw direction.

To utilize anisotropic Gaussian feature distribution, this paper intro-
duces Gaussian distributions for both Pitch and Yaw angles. Suppose 
the range of the pitch angle for the selected instance object is 0 to 
55. Then, the label of an instance object can be defined as 𝐝𝑦𝑋𝑖

=
{

𝑑𝑦1𝑋𝑖
, 𝑑𝑦2𝑋𝑖

,… , 𝑑𝑦𝑛𝑋𝑖

}

, which satisfies two conditions: (1) the probability 
distribution should ensure that the probability value of its true label is 
the highest; (2) the sum of all values is 1, with each value between 0 
and 1. Assuming the true Pitch category is 𝛼, its Gaussian function is 
defined as: 

GAUS
(

𝐝𝑦𝑖𝑋𝑖
∣ 𝛼; 𝜎

)

=

1
𝜎
√

2𝜋
exp

(

−

(

𝑦𝑖 − 𝛼
)2

2𝜎2

)

∑GAUS
(

𝐝𝑦𝑖𝑋𝑖
∣ 𝛼; 𝜎

) . (6)

Similarly, the Gaussian distribution for the Yaw angle can also be 
obtained using Eq. (6).

3.4. Fine classification

To synergize with the preceding classification tasks and achieve 
more accurate gaze angle predictions, a fine-grained classification and 
regression module is introduced. Taking the input Yaw angle feature as 
an example, the Yaw angle feature passes through the Coarse module 
and then the Fine module to obtain the predicted hard label angle value 
of the yaw angle. Then, the predicted hard label value and the true 
hard label value are measured using Mean Squared Error (𝑀𝑆𝐸) loss. 
Finally, the Kullback–Leibler (𝐾𝐿) loss and MSE loss are weighted and 
summed together for joint optimization.

3.5. Optimization

Considering the incorporation of prior distributions in gaze esti-
mation, our model employs Maximum A Posteriori (MAP) estimation 
instead of Maximum Likelihood Estimation (MLE) to identify the op-
timal parameters. This approach enables the model to leverage both 
current data and prior knowledge, thereby enhancing the accuracy and 
reliability of parameter estimation. Gaze estimation consists of a coarse 
classification component and a fine regression component. Taking the 
MPIIFaceGazes dataset as an example, we first construct the coarse clas-
sification component of gaze estimation. Based on the dataset, we select 
the range of straight-line angle changes. Assuming the selected Pitch 
angle in the gaze ranges from −99 to +99, with 3-degree intervals, it 
forms 56 bins, representing 56 categories. The classification component 
outputs a 66-dimensional vector, which undergoes a Softmax operation 
to produce a label vector that sums to 1: 

𝐝𝑦𝑖𝑋𝑖
= softmax

(

𝑋𝑖
)

= 𝑒𝑋𝑖
∑𝑛

𝑗=1 𝑒
𝑋𝑗

, (7)

where 𝐝𝑦𝑖𝑋𝑖
 represents the probabilistic value of the 𝑖th label vector, and 

𝑛 represents the classification category.
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Because a prior distribution is included in gaze estimation, this 
model should use Maximum A Posteriori (MAP) estimation instead 
of Maximum Likelihood Estimation (MLE) to find the parameters. 
Specifically, assume a set of full-face images 𝑋 and their constructed 
one-dimensional Pitch or Yaw angle Gaussian distribution 𝐝. MAP 
estimation seeks to find the set of neural network parameters that 
maximizes the posterior probability given 𝑋 and 𝐝. The parameters of 
the neural network are solved as follows: 
𝜽∗ = arg max 𝑀 (𝑋,𝐝|𝜽) , (8)

According to Bayes’ theorem, Eq. (8) can be further written as: 

𝜽∗ = 𝑎𝑟𝑔 𝑚𝑎𝑥
𝑀 (𝑋,𝐝|𝜽) ⋅𝑀 (𝜽)

𝑀 (𝑋,𝐝)
, (9)

where 𝑀 (𝑋,𝐝|𝜽) 𝐝∣ is independent of (𝑋,𝐝) 𝐝, 𝑀 (𝑋,𝐝|𝜽) 𝐝∣ can be 
considered a constant, allowing Eq. (9) to be simplified to: 
𝜽∗ = arg max 𝑀 (𝑋, 𝐝|𝜽) ⋅𝑀 (𝜽) . (10)

By leveraging the monotonicity of the logarithmic function, Eq. (10) 
can be expressed as: 
𝜽∗ = arg max (log 𝑀 (X,𝐝|𝜽) ⋅ log 𝑀 (𝜽)) , (11)

Eq. (11) requires the construction of two probability density functions. 
𝑀 (𝑋,𝐝|𝜽) 𝐝∣ represents the distance between the predicted distribution 
and the true distribution. The 𝐾𝐿 (Kullback–Leibler) divergence is com-
monly chosen to measure the distance between the two distributions. 
The aforementioned probability densities can be expressed as: 

𝑀 (X,𝐝|𝜽) =
∑

𝑡
𝐝t ln

𝐝𝑡
𝐝∗𝑡

, (12)

where 𝐝∗ represents the predicted label. For the prior term, in neural 
networks, it follows a normal Gaussian distribution, and the probability 
density is expressed as: 

𝑀 (𝜽) = 1
√

2𝜋𝛿2
𝐸𝑥𝑝

(

− 𝜃2

2𝛿2

)

. (13)

Therefore, the solution formula for parameter 𝜽∗ can be further 
written as: 

𝜽∗ = arg min

(

∑

𝑡
𝐝𝑡 ln

𝐝𝑡
𝐝∗𝑡

+ 𝜆 ∥𝜽 ∥22

)

. (14)

In the loss function section, the Gaussian distribution loss is defined 
as: 
𝐾𝐿 =

∑

𝑡
𝐝t ln

𝐝𝑡
𝐝∗𝑡

+ 𝜆 ∥𝜽 ∥22 , (15)

where 𝜆 is the coefficient of 𝐿2 regularization.𝐾𝐿 represents the 
Kullback–Leibler Divergence.𝐿2 regularization is incorporated to pre-
vent excessive growth of training parameters, thereby avoiding overfit-
ting of the model. Then, construct the regression component, calculate 
the category based on the regression component, restore each category 
to the predicted angle, and compute the mean squared error loss 
between the predicted angle and the true angle. The mean squared error 
is calculated as follows: 

𝑀𝑆𝐸 (𝑦, 𝑦̂) = 1
𝑁

𝑁
∑

𝑖=0

(

𝑦𝑖 − 𝑦̂𝑖|𝑥𝑖,𝜽
)2, (16)

Finally, the two components are balanced using 𝛼 and 𝛽 to obtain 
the total loss : 
 = 𝛼 ⋅𝐾𝐿

(

𝐝, 𝐝̂
)

+ 𝛽 ⋅𝑀𝑆𝐸 (𝑦, 𝑦̂) . (17)

4. Experiments

4.1. Generally setting

4.1.1. Datasets
To thoroughly validate the proposed unconstrained appearance-

based gaze estimation method, the network model undergoes experi-
mental training and validation on the MPIIFaceGaze [33] and Gaze360
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[34] gaze estimation datasets. The dataset was first introduced in [35] 
and named the MPIIGaze dataset, initially containing only eye im-
ages and not facial images. In subsequent research [33,36], the au-
thors added facial images and landmark annotations to the original 
dataset to create the MPIIFaceGaze dataset. Based on prior work on 
MPIIFaceGaze [36,37], we employ a leave-one-person cross-validation 
strategy to evaluate the performance of each method. Additionally, we 
adhere to the standard evaluation split of the MPIIFaceGaze dataset 
and report the performance of each model. As the MPIIFaceGaze and 
Gaze360 datasets comprise a large number of images from varied back-
grounds, illumination conditions, head positions, and gaze directions, 
this diversity ensures that the model can be thoroughly tested under 
various real-world conditions, enhancing the algorithm’s generalizabil-
ity.

• MPIIFaceGaze [33]: The MPIIGaze [35] dataset is the first to 
provide unconstrained data for gaze estimation in the wild. This 
dataset includes 15 subjects (9 males, 6 females, and 5 glasses 
wearers) in various daily laptop usage scenarios, where the target 
occasionally appears at random positions on the screen. The 
recorded data encompasses diverse environmental conditions, in-
cluding indoor and outdoor settings, lighting variations, head 
poses, and positional changes, as well as overall recording qual-
ity. Given that the MPIIGaze [35] dataset provides cropped eye 
regions, this study uses its improved version, MPIIFaceGaze [33], 
which provides 3000 normalized full-face images for each subject.

• Gaze360 [34]: A large-scale dataset for unconstrained 3D gaze 
estimation, Gaze360 uniquely incorporates a wide range of gaze 
and head poses, 3D gaze annotations, various indoor and outdoor 
settings, and diverse subjects categorized by age, gender, and 
race. The dataset comprises 172,000 images from 238 partici-
pants, with each image resolution being 3382 × 4096 pixels. The 
dataset was collected across 5 indoor locations (53 participants) 
and 2 outdoor locations (185 participants). The dataset comprises 
58% female and 42% male participants. This dataset enables gaze 
estimation to push the boundaries of eye visibility, in some cases 
corresponding to a gaze yaw of ±140◦.

• EyeDiap [38]: Participants sat facing a Kinect depth camera, 
tracking a randomly moving ping-pong ball with their eyes, which 
was manipulated by an experimenter. The entire process was 
recorded using the depth camera. Post-collection, eye and ball 
positions were annotated on RGB videos, mapped onto the 3D 
point cloud from the depth camera, and their difference yielded 
the gaze direction. Sessions for participants 14, 15, and 16 were 
recorded twice under varied conditions (A and B) including date, 
lighting, and distance from the camera. To assess robustness 
against head pose variations, participants were instructed to gaze 
at targets while keeping their head still (Static, S) or moving 
it (Dynamic, M). Sixteen participants took part, comprising 12 
males and 4 females. Files include frame-wise head pose, eye 
and ball position data in both 2D and 3D, screen coordinates, 
and calibration parameters for RGB Kinect, depth, and RGB HD 
cameras. 

4.1.2. Evaluation metrics
Angular error 𝜀 is utilized as a performance metric for the model, 

indicating the angular difference between the predicted and actual gaze 
directions. It intuitively quantifies the deviation between the predicted 
and actual directions. The smaller the angular error, the greater the 
accuracy of the algorithm. The specific method of calculation is as 
follows: 

𝜀 = 1
𝑛

𝑛
∑

𝑖
arccos

⟨𝐠𝑖, 𝐠̂𝑖⟩
|

|

𝐠𝑖|| ||𝐠̂𝑖||
, (18)

where 𝜀 denotes the three-dimensional gaze angular error, 𝐠𝑖 is the 
actual gaze direction, and ̂𝐠  is the model’s predicted gaze direction. The 
𝑖
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Table 1
Performance of the different backbone on the MPIIFaceGaze, Gaze360 and EyeDiap 
datasets.
 Methods MPIIFaceGaze Gaze360 EyeDiap

 ResNet18 [42] 5.06 12.79 6.59  
 ResNet152 [42] 4.87 11.85 6.36  
 Vit [43] 6.77 15.32 6.72  
 Swin-transformer [44] 4.61 12.35 5.77  
 𝐑𝐞𝐬𝐍𝐞𝐭𝟓𝟎 [42] 𝟑.𝟖𝟑 𝟏𝟎.𝟔𝟔 𝟒.𝟖𝟑  

three-dimensional gaze direction is derived from the two-dimensional 
gaze direction, and the method of calculation is as follows: 
𝐠𝑖 =

(

−cos𝜶𝑖 × sin 𝜷𝑖,− sin𝜶𝑖,−cos𝜶𝑖 × cos 𝜷𝑖
)

, (19)

𝐠̂𝑖 =
(

−cos 𝜶̂𝑖 × sin 𝛽𝑖,− sin 𝛼̂𝑖,−cos 𝛼̂𝑖 × cos 𝛽𝑖
)

, (20)

where 𝜶𝑖 and 𝜷𝑖 respectively denote the pitch and yaw angles of the 
actual two-dimensional gaze direction, while 𝜶̂𝑖 and 𝜷̂ 𝑖 represent the 
pitch and yaw angles of the model’s predicted two-dimensional gaze 
direction.

4.1.3. Training details
In this work, we employ ResNet-50 [39] as the backbone network 

of the model. We train the network using the Adam optimization 
algorithm [40], starting with an initial learning rate of 0.0001, which is 
further reduced by a factor of 10 every 10 epochs. Our network archi-
tecture is implemented using Pytorch [41] and runs on a workstation 
equipped with an Nvidia RTX 8000 GPU, which boasts 48 GB of VRAM. 
The batch sizes used for training on the MPIIFaceGaze and Gaze360 
datasets are set at 32 and 16, respectively.

4.2. Effect of different backbone

As shown in Table  1, ResNet18 [42], ResNet50 [42], ResNet152
[42], and Transformer [43] were chosen as the backbone networks for 
feature extraction. Training and testing were conducted on the MPI-
IFaceGaze and Gaze360 datasets. The results indicate that ResNet50 
has strong feature extraction capabilities and performs excellently, 
whereas the Transformer model, as the backbone network, shows poor 
gaze estimation accuracy. Transformer models typically have a large 
number of parameters and complex structures, making it difficult for 
them to effectively learn and generalize from the relatively small 
datasets commonly used in gaze estimation scenarios. In contrast, 
convolutional neural networks like ResNet, with their local receptive 
fields and weight-sharing properties, can more effectively learn features 
and avoid overfitting. ResNet18, with its shallow network depth, has 
limited expressive power and feature extraction capabilities, resulting 
in poor performance in gaze estimation. Conversely, ResNet152, due 
to its excessive depth, has a large model capacity, making it prone to 
overfitting. Therefore, ResNet50, compared to ResNet18, has a deeper 
network extraction capability, enabling it to extract more complex 
features and enhance the model’s expressive power, and it does not 
have excessive redundant parameters that increase the computational 
cost, as seen in ResNet152. Experimental results show that ResNet50 
performs better as a backbone for feature extraction. Therefore, this 
study selects ResNet50 as the backbone for gaze feature extraction.

4.3. Accuracy analysis of coarse classification

To further explore the efficiency of the internal classification mech-
anism of the Coarse Model, the training results on two public datasets 
were collected during the training process. For the MPIIFaceGaze 
dataset, the same strategy was adopted, and the results are shown 
in Fig.  4(a). It can also be found that overall, the accuracy of each 
class is relatively high, but class 41 is slightly lower. For the Gaze360 
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Fig. 4. Experimental results of Coarse Classification on the different dataset.
Table 2
Performance of the ADGaze method on the MPIIFaceGaze, Gaze360 and EyeDiap 
datasets.
 Methods MPIIFaceGaze Gaze360 EyeDiap

 Mnist [35] 6.39 N/A 7.37  
 FullFace [33] 4.93 14.99 6.53  
 RT-Gene [45] 4.66 12.26 6.02  
 RCNN [46] 4.1 11.23 5.43  
 Dilated-Net [47] 4.42 13.73 6.19  
 Gaze360 [34] 4.06 11.04 5.36  
 GazeNet [36] 5.76 N/A 6.79  
 CA-Net [48] 4.27 11.20 5.27  
 GazeTR-Pure [49] 4.74 13.58 5.72  
 GTiT-Hybrid [50] 4.11 11.20 5.35  
 SAZE [24] 3.89 N/A 𝟒.𝟒𝟐  
 ADGaze_S 3.83 10.66 4.83  
 ADGaze 𝟑.𝟔𝟐 𝟏𝟎.𝟔𝟑 4.67  

dataset, with its 90 classification categories, the data under the Pitch 
angle was also collected, as shown in Fig.  4(b). It can be seen that 
although the overall accuracy is lower than the previous two datasets, 
the misclassified categories are distributed around the correct cate-
gories, which indicates that ADGaze learns the differences in different 
angle directions through anisotropic label distribution and can also 
fully utilize surrounding instance information to improve the model’s 
prediction ability, making the predicted labels as close to the true labels 
as possible.

4.4. Performance comparison

The primary aim of this section is to validate the effectiveness 
of the ADGaze model in gaze estimation tasks by conducting a com-
prehensive comparison with the eight latest gaze estimation methods. 
Including Euler angle regression methods(FullFace [33], RT-Gene [45], 
Gaze360 [34]), RCNN [46], extra information-utilized methods (Mnist
[35], GazeNet [36], Dilated-Net [47], CA-Net [48], GazeTR-Pure [49], 
GTiT-Hybrid [50], SAZE [24]), and alternative ways to use Transformer 
(GazeTR [49]). This comparison encompasses not only direct bench-
marks of performance indicators such as accuracy and robustness but 
also assesses the model’s capability to handle various data types and 
complex scenarios. Through this series of comparative analyses, the 
goal is to showcase the advantages of the ADGaze model within the 
field of gaze estimation. These advantages likely include higher pre-
diction accuracy, enhanced generalization capabilities, and robustness 
to various challenging conditions such as occlusions, extreme poses, 
and illumination changes. By comparing with some advanced gaze 
estimation methods on two publicly available gaze estimation datasets, 
the results demonstrate that the adaptive feature disentanglement gaze 
estimation network proposed in this work exhibits strong performance.

We use two commonly utilized public datasets, attempting both 
the statistical label distribution method (ADGaze_S) and the feature 
similarity-based label distribution method (ADGaze). These methods 
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are compared against other approaches. Overall, this method demon-
strates good performance on some datasets. Specifically, as shown 
in Table  2, it achieves an average angular error of 3.62◦ on the 
MPIIFaceGaze dataset and an average angular error of 10.63◦ on the 
Gaze360 dataset. Overall, the ADGaze_S model shows improvement 
over the backbone model on public datasets. Specifically, on the MPI-
IFaceGaze dataset, the ADGaze model has the smallest error, at 3.62◦, 
making it the best-performing model among all.

It should be noted that the performance comparison of different 
models is influenced by many factors, such as the size and diversity of 
the dataset, the complexity of the model, and the parameter settings. 
Therefore, in practical applications, it is necessary to choose the most 
suitable model and parameter settings based on the specific situation. 
In this experiment, the ADGaze model performed well on both the 
MPIIFaceGaze and Gaze360 datasets, making it an effective method for 
eye gaze prediction.

4.5. Effect of Anisotropism Soft Label Construct (ASLC) model

To verify the effectiveness of the ASLC model, an ablation exper-
iment was conducted. As shown in Table  3, after removing the ASLC 
Model, the ASLC model achieved an error of 3.92◦ on the MPIIFaceGaze 
dataset, an error of 10.72◦ on the Gaze360 dataset and an error of 5.47◦
on the EyeDiap dataset. When adding the statistical label distribution 
to the base model, the ADGaze_S model achieved an error of 3.83◦ on 
the MPIIFaceGaze dataset, an error of 10.66◦ on the Gaze360 dataset 
and an error of 4.83◦ on the EyeDiap dataset. We found that even 
if the statistical data (e.g., quantity) of two categories are the same, 
their distribution in the feature space can be very different. Feature 
similarity can account for the shape of this distribution, whereas sta-
tistical methods cannot. Therefore, the ADGaze model, which uses 
feature similarity-based label distribution, performs better, achieving 
an error of 3.62◦ on the MPIIFaceGaze dataset, an error of 10.63◦ on 
the Gaze360 dataset and an error of 4.67◦ on the EyeDiap dataset. 
Compared to the base model, both ADGaze_S and ADGaze achieved 
optimal results. This further indicates that directly fitting gaze angles 
make it difficult for the model to learn an effective feature representa-
tion. However, using the coarse-to-fine feature extraction framework 
proposed in this paper can effectively reduce the search efficiency 
and computational complexity of the solution space, obtaining a small 
angular search space through classification and then achieving more 
accurate gaze estimation through regression. This improves the model’s 
accuracy on one hand while also reducing the model’s computational 
complexity on the other (see Table  3).

4.6. Loss function discussion

To evaluate which loss functions can more effectively capture the 
relationships between neighboring samples when dealing with highly 
similar ocular images, thereby improving the accuracy of gaze esti-
mation, we conducted comparative experiments with other commonly 
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Table 3
Ablation experiment of different components on MPIIFaceGaze, Gaze360 and EyeDiap 
datasets.
 Methods MPIIFaceGaze Gaze360 EyeDiap 
 Baseline 5.24 13.95 5.79  
 𝑤∕𝑜ASLC 3.92 10.72 5.47  
 ADGaze_S 3.83 10.66 4.83  
 ADGaze 𝟑.𝟔𝟐 𝟏𝟎.𝟔𝟑 𝟒.𝟔𝟕  

Table 4
Ablation experiment of different loss functions on MPIIFaceGaze, Gaze360 and EyeDiap 
datasets.
 Loss function MPIIFaceGaze Gaze360 EyeDiap 
 𝐶𝑟𝑜𝑠𝑠 − 𝐸𝑛𝑡𝑟𝑜𝑝𝑦 4.27 11.08 5.23  
 𝐽𝑆 4.13 10.91 5.27  
 𝐾𝐿 𝟑.𝟔𝟐 𝟏𝟎.𝟔𝟑 𝟒.𝟔𝟕  

used loss functions, such as Jensen–Shannon divergence (JS diver-
gence) and Cross-Entropy loss. Our experimental results indicated that 
the Kullback–Leibler divergence (KL divergence) yielded superior out-
comes. As shown in Table  4, these findings highlight the effectiveness 
of KL divergence in enhancing the precision of gaze estimation under 
conditions of high ocular image similarity. This investigation under-
scores the importance of selecting an appropriate loss function to refine 
model training, especially in tasks requiring nuanced differentiation 
between closely related data points. The presented results in Table  4 
provide a detailed comparison, offering insights into the advantages of 
utilizing KL divergence over alternative loss functions for this specific 
application.

4.7. Parameter discussion

In the ADGaze model, the loss is obtained by weighting the total 
loss, which supervises the model’s training. Thus, the choice of pa-
rameters will affect the training results. When selecting experimental 
schemes, the general dataset training and testing division standards 
for gaze estimation were adopted, and multiple batches of experiments 
with different parameters were conducted on two public datasets. As 
shown in Fig.  5, it can be observed that on the MPIIFaceGaze dataset, 
when the total loss weights are 𝛼 = 1.5 and 𝛽 = 0.5, on the Gaze360 
dataset, when the total loss weights are 𝛼 = 1 and 𝛽 = 0.75, the 
ADGaze_S model achieved optimal performance, and on the EyeDiap 
dataset, when the total loss weights are 𝛼 = 0.75 and 𝛽 = 1.0, the 
ADGaze_S model achieved optimal performance. As shown in Fig.  6, 
the performance of ADGaze with different 𝛼 and 𝛽 values after the 
same number of iterations is illustrated on two public datasets. Fig. 
6(a) shows that when 𝛼 = 1 and 𝛽 = 1, the CF model performs best 
on the MPIIFaceGaze dataset; Fig.  6(b) shows that when 𝛼 = 0.8 and 
𝛽 = 0.6, the ADGaze model performs best on the Gaze360 dataset. 
Experiments show that under the default parameters 𝛼 = 1 and 𝛽 = 1; 
and Fig.  6(c) shows that when 𝛼 = 0.75 and 𝛽 = 1.5, the ADGaze model 
performs best on the EyeDiap dataset. Experiments show that under 
the default parameters 𝛼 = 1 and 𝛽 = 1, adjusting the values of the 
hyperparameters 𝛼 and 𝛽 can improve the model’s performance. This 
is consistent with the analysis of the datasets in this paper, as the data 
distribution, while generally consistent, varies due to differences in the 
quantity, collection methods, and quality of different datasets. How-
ever, the distribution parameters are not necessarily identical, which is 
why the hyperparameters of the composite loss are not necessarily the 
same.

4.8. Visualizations

To further test the effectiveness of the model, this section visualizes 
the gaze directions estimated by the ADGaze_S and ADGaze models, as 
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shown in Fig.  7(a). The experimental results show that the ADGaze_S 
model can provide predicted angles very close to the true values 
when processing both normal images and images affected by various 
distortions. Especially when dealing with complex situations such as 
occlusions, extreme angles, and lighting changes, the ADGaze_S model 
still maintains high accuracy and strong robustness, which is partic-
ularly important in gaze estimation tasks, as real-world application 
scenarios are often full of uncertainties and challenges. The ADGaze 
results are shown in Fig.  8, where the red lines indicate the predicted 
direction and the green lines indicate the true gaze direction. Fig. 
7(b)(1), (2), and (3) are images selected from the MPIIFaceGaze [21] 
dataset, where it can be seen that the sample images are greatly 
affected by lighting, especially Fig.  7(b)(4), which is in a very dark 
environment. However, during the actual prediction process, it was 
found that the ADGaze model showed relatively robust results in such 
harsh environments. Fig.  7(b)(4), (5), and (6) are images selected from 
the Gaze360 [20] test set, where the image clarity is low. Fig.  7(b)(4) 
shows very low image clarity, Fig.  7(b)(5) shows an extreme gaze 
direction, and Fig.  7(b)(6) shows not only a blurry image but also a 
more challenging gaze direction compared to Fig.  7(b)(5). It is worth 
mentioning that in Fig.  7(b)(4), (5), and (6), although the eye features 
are severely affected by the pixel and angle of the test camera, the final 
gaze estimation results are still relatively close to the true values. Even 
when the test set images are blurry, severely affected by lighting, and 
have challenging gaze angles, this study captures neighborhood infor-
mation by utilizing gaze anisotropy, thereby enhancing the robustness 
of gaze direction prediction.

To further explore the reasons for the robustness of the feature 
extraction by the model, this paper uses Grad-CAM [51] to visualize 
the entire face image. It can be observed that for the same person, 
the corresponding areas of the heatmap are concentrated near the eye 
region. When the angles are different, the activation areas may vary; 
when facing forward, the activation areas are in the double-eye region, 
and when sideways, the activation areas are in the single-eye region. 
This indicates that the model extracts effective regional features during 
training, ignoring irrelevant areas such as image contours, thereby 
enhancing the model’s performance and reducing errors. As shown in 
Figs.  8 and 9, the features of the ADGaze_S and ADGaze models are 
mainly concentrated on one or both eyes. Specifically, as shown in Fig. 
9(b), some sample heatmaps of the ADGaze model on the Gaze360 
dataset show that in Fig.  9(b)(4), the model focuses on the double-
eye region but extracts features from the right eye more strongly. In 
Fig.  9(b), the gaze is skewed, with significant feature extraction from 
the left eye and nose region. In Fig.  9(b) (6), with a large head pose 
variation, features from both the nose and left eye regions are extracted. 
As shown in Figs.  8(a) and 9(a), ADGaze_S focuses more on the single-
eye region, whereas ADGaze focuses on both the single-eye region and 
other areas. Therefore, the ADGaze model can capture more neighbor-
hood information. The heatmap effect of some samples of the ADGaze 
model on the MPIIFaceGaze dataset is shown in Fig.  9(a)(4) and (b)(5), 
where the samples are wearing glasses. However, the features extracted 
by the ADGaze model vary with the gaze direction; in Fig.  9(a)(6), it 
focuses only on the right eye region, while in Fig.  9(a)(5), it focuses 
on the double-eye region but with greater attention to the right eye. 
Fig.  9(a)(6) also shows feature extraction from both eyes, along with 
information from the cheek and head pose-related areas. Although the 
model is designed to handle highly similar eye images and, in most 
cases, the feature regions are concentrated around the eyes, under 
extreme head poses, such as in Figs.  8(c)(5) and 9(c)(5), even slight 
changes can lead to errors in the classification or regression stages. 
This results in the heatmap regions not focusing on the eye areas but 
rather on the nose area. Although the model encounters challenges 
with feature extraction region shifts under extreme head poses, our 
future work will focus on augmenting the dataset with more samples of 
extreme head poses, either by collecting real-world examples or gener-
ating synthetic ones using generative models. From the above figures, 
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Fig. 5. Experimental results of ADGaze_S under varying 𝛼 and 𝛽 settings on the different dataset.

Fig. 6. Experimental results of ADGaze under varying 𝛼 and 𝛽 settings on the different dataset.

Fig. 7. Visualization results of methods on different datasets.

Fig. 8. Grad-CAM results generated by ADGaze_S method for different samples.

Fig. 9. Grad-CAM results generated by ADGaze method for different samples.
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it can be seen that even when there are issues such as blurriness and 
lighting in the data, the proposed method can utilize domain feature 
information, so the extracted gaze features are concentrated in the 
eye region, further enhancing the model’s robustness.  From the above 
figures, it can be seen that even when there are issues such as blurriness 
and lighting in the data, the proposed method can utilize domain 
feature information, so the extracted gaze features are concentrated in 
the eye region, further enhancing the model’s robustness.

5. Conclusion

This study introduces ADGaze, an anisotropic Gaussian label distri-
bution learning framework to address the problem of gaze estimation. 
By analyzing eye images and utilizing the cosine similarity function, 
ADGaze reveals the anisotropic relationship between gaze directions. 
The framework’s coarse-to-fine regression approach effectively exploits 
this characteristic by first predicting the coarse range of gaze direction 
and then fine-tuning the estimation within this range to improve pre-
diction accuracy. Our experiments on two public datasets demonstrate 
that ADGaze outperforms state-of-the-art methods in terms of accuracy. 
However, one limitation of this work is its focus solely on gaze direction 
while overlooking variations in head pose, which may restrict the 
model’s ability to generalize to more complex head poses. Despite this 
limitation, the proposed approach offers a novel perspective on gaze 
estimation by emphasizing the anisotropic nature of eye movements. 
Future research will aim to address this issue by developing a more 
comprehensive anisotropic distribution model that incorporates both 
gaze direction and head pose. This improvement is expected to broaden 
ADGaze’s applicability to more diverse scenarios. Additionally, the find-
ings have potential applications in areas such as attention tracking and 
intelligent human–computer interaction, providing valuable insights 
for designing gaze estimation models in real-world applications.
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