
DDASR: Deep Diverse API Sequence Recommendation

SIYU NAN and JIAN WANG, School of Computer Science, Wuhan University, Wuhan, China
NENG ZHANG, School of Computer Science and Hubei Provincial Key Laboratory of Artificial
Intelligence and Smart Learning, Central China Normal University, Wuhan, China
DUANTENGCHUAN LI and BING LI, School of Computer Science, Wuhan University,
Wuhan, China

Recommending API sequences is crucial in software development, saving developers time and effort. While
previous studies primarily focus on accuracy, often recommending popular APIs, they tend to overlook less
frequent, or “tail,” APIs. This oversight, often a result of limited historical data, consequently diminishes the
diversity of recommender systems. In this article, we propose DDASR, a framework for recommending API
sequences containing both popular and tail APIs. To accurately capture developer intent, we utilize recent
Large Language Models for learning query representations. To gain a better understanding of tail APIs, DDASR
clusters tail APIs with similar functionality and replaces them with cluster centers to produce a pseudo ground
truth. Moreover, a loss function is defined based on learning-to-rank to achieve an equilibrium in accuracy and
diversity due to the inherent tradeoff between them. To evaluate DDASR, we conduct extensive experiments
on Java and Python open source datasets. Results demonstrate that DDASR significantly achieves the best
diversity without sacrificing accuracy. Compared to seven state-of-the-art approaches, DDASR improves
accuracy metrics BLEU, ROUGE, MAP, and NDCG and diversity metric coverage by 108.28%, 67.30%, 88.59%,
and 45.83%, respectively, on the Java dataset, as well as 9.83%, 2.45%, 8.06%, and 8.03%, respectively, on the
Python dataset.

CCS Concepts: • Software and its engineering→ API languages; Automatic programming;

Additional Key Words and Phrases: API Sequence Recommendation, Long-tail Distribution, Clustering,
Diversity

ACM Reference format:
Siyu Nan, Jian Wang, Neng Zhang, Duantengchuan Li, and Bing Li. 2025. DDASR: Deep Diverse API Sequence
Recommendation. ACM Trans. Softw. Eng. Methodol. 34, 6, Article 162 (July 2025), 39 pages.
https://doi.org/10.1145/3712188

This work is supported by the National Key Research and Development Program of China (No. 2022YFF0902701), the
National Natural Science Foundation of China (No. 62032016), and the Shenzhen Science and Technology Program (No.
CJGJZD20230724091659002).
Authors’ Contact Information: Siyu Nan, School of Computer Science, Wuhan University, Wuhan, China; e-mail:
siyunan@whu.edu.cn; Jian Wang (corresponding author), School of Computer Science, Wuhan University, Wuhan, China;
e-mail: jianwang@whu.edu.cn; Neng Zhang, School of Computer Science and Hubei Provincial Key Laboratory of Artifi-
cial Intelligence and Smart Learning, Central China Normal University, Wuhan, China; e-mail: nengzhang@ccnu.edu.cn;
Duantengchuan Li, School of Computer Science, Wuhan University, Wuhan, China; e-mail: dtclee1222@whu.edu.cn; Bing
Li (corresponding author), School of Computer Science, Wuhan University, Wuhan, China; e-mail: bingli@whu.edu.cn.
Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee
provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the
full citation on the first page. Copyrights for components of this work owned by others than the author(s) must be honored.
Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires
prior specific permission and/or a fee. Request permissions from permissions@acm.org.
© 2025 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM 1557-7392/2025/7-ART162
https://doi.org/10.1145/3712188

ACM Transactions on Software Engineering and Methodology, Vol. 34, No. 6, Article 162. Publication date: July 2025.

https://orcid.org/0000-0001-7771-4392
https://orcid.org/0000-0002-1559-9314
https://orcid.org/0000-0001-8662-5690
https://orcid.org/0000-0003-2902-7365
https://orcid.org/0000-0002-2165-2636
https://doi.org/10.1145/3712188
mailto:permissions@acm.org
https://doi.org/10.1145/3712188
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3712188&domain=pdf&date_stamp=2025-07-02

162:2 S. Nan et al.

1 Introduction
An API is a software interface that encapsulates underlying functionalities. Reusing APIs can
significantly enhance development efficiency and reduce associated costs [49, 52, 66]. However,
with the proliferation of APIs, developers often find it challenging to familiarize themselves with
all APIs in the libraries. A survey by Ko et al. [33] indicates that selecting the appropriate API poses
a significant learning barrier in user programming systems. Moreover, fulfilling user requirements
often necessitates more than just a single API. Developers typically need to look up API sequences
to solve tasks. For instance, to address a query like “Calculates covariance matrix needed assumes
an interpolation smoothing for now linear interpolation only diagonal propagates error correctly,” as
shown in Figure 1, a sequence of six APIs, including “scipy.searchsorted,” “scipy.sqrt,” “scipy.zeros,”
“scipy.diag_indices_from,” “scipy.matrix,” and “scipy.roll,” needs to be invoked.

It is a challenging problem to find appropriate API sequences from the vast array of APIs according
to developer requirements [61]. Recently, several approaches have been proposed to recommend
APIs for developers. These approaches fall into two major categories: information retrieval-based
approaches [26, 59, 72, 73, 80] that search for the most relevant solutions from the historical question
repository, and deep learning-based approaches [14, 21, 46] that adopt the Sequence-to-Sequence
(Seq2Seq) model to recommend API sequences generatively. Gu et al. [21] adopted a Recurrent
Neural Network (RNN) encoder-decoder and Elnaggar et al. [14] adopted a Transformer encoder-
decoder to obtain the results of the API sequence. Martin and Guo [46] applied CodeBERT [16] for
the task due to the improved performance of Large Language Models (LLMs). However, existing
API recommendation approaches usually recommend popular APIs, neglecting less frequently
used ones. Information retrieval-based API recommendation approaches [26, 72] usually match
new queries with historical queries in the historical database based on similarity, taking the most
similar historical query’s ground truth as the solution for the new query. Due to the sparse presence
of queries whose ground truths contain APIs with low individual frequencies in the historical
database, retrieval-based approaches have limitations in recommending APIs with low individual
frequencies [62, 76]. Deep learning-based API recommendation approaches [14, 21, 46] often
remove infrequently appearing words from the vocabulary or treat them as <UNK> tags, making
it challenging to recommend infrequently occurring APIs. In the example in Figure 1, information
retrieval-based API recommendation approaches like BIKER [26] and DGAS [72], as well as deep
learning-based methods such as DeepAPI [21], CodeBERT [46], and CodeTrans [14], all fail to hit
tail APIs. DeepAPI [21] generates the <UNK> tag, which holds no practical value for developers.

The long-tail effect [4, 54] occurs when APIs with low individual frequencies collectively consti-
tute a substantial portion. As shown in Figure 2, the long-tail distribution that is objectively present
in API libraries can be observed in two open source datasets: a Java dataset [21] and a Python
dataset [46]. In the two datasets, APIs occurring twice or less are categorized as tail APIs, whereas,
the rest are non-tail APIs. This distinction aligns with the previous deep learning-based approaches
[14, 21, 46]. There is a similar distribution pattern in Figure 2(a) and (b). Tail APIs account for a
substantial proportion of APIs used in software engineering, representing more than 65% in the
open source Java dataset and over 40% in the Python dataset. Zhong and Mei [85] observed that
fewer than 10% of APIs are frequently invoked, based on an analysis of over 2 million lines of code
in J2SE. Similarly, Ma et al. [45] found that only about 20% of J2SE’s APIs are commonly used after
examining 39 Java projects. Frequently occurring non-tail APIs are clustered in a small portion at
the head, while tail APIs, despite their low individual occurrence frequency, cover a large scale in
quantity. The high proportion of tail APIs indicates the developers’ need for specific functionali-
ties, underscoring the importance of recommending these APIs in daily programming tasks [11].
From a cognitive perspective, developers are generally more familiar with commonly used APIs

ACM Transactions on Software Engineering and Methodology, Vol. 34, No. 6, Article 162. Publication date: July 2025.

DDASR: Deep Diverse API Sequence Recommendation 162:3

Fig. 1. An example query that needs to be addressed using an API sequence in Java.

Fig. 2. Long-tail distribution of APIs in the datasets. (a) Distribution in the Java dataset, and (b) distribution
in the Python dataset.

(i.e., non-tail APIs) [61], making tail APIs more challenging to learn and use due to the scarcity of
existing code samples [85]. This emphasizes the necessity of supporting developers in efficiently uti-
lizing less common, yet essential, APIs. Despite their infrequent appearance, tail APIs may be crucial
for developers to solve specific tasks [33, 85]. For instance, as shown in Figure 1, two SciPy APIs,
“scipy.diag_indices_from” and “scipy.roll,” are tail APIs that play important roles in computing the
covariance matrix, which accounts for errors in linearly interpolated data. “scipy.diag_indices_from”
is used to access and set the diagonal elements of a square array, while “scipy.roll” shifts the elements
of an array circularly around the specified axis. These functions are indeed key to calculating a
covariance matrix that accurately reflects the propagation of errors through a linear interpolation

ACM Transactions on Software Engineering and Methodology, Vol. 34, No. 6, Article 162. Publication date: July 2025.

162:4 S. Nan et al.

process. Additionally, from the perspective of API designers, even though tail APIs are seldom
invoked, they are often essential for other APIs and have the potential to become more popular in
the future [85]. Hence, learning the representation of tail APIs is essential for API recommendation.
However, this is challenging due to the sparse historical usage data of tail APIs [55].

Increasing the aggregated diversity of API sequence recommendation systems, which refers to
the variety of different APIs included in the result set generated by the recommendation system
[1, 2, 4, 32, 76], can alleviate dependence on popular APIs and enhance the utilization of tail APIs
[61, 76]. This, in turn, contributes to the healthy development of the software ecosystem [85]. In
addition to expanding the variety of APIs, the balance between the accuracy and diversity of the
recommender system should also be considered. As a result, both non-tail and tail APIs must be
represented in the recommendation results. However, accuracy and diversity are contradictory
metrics, and balancing them becomes another challenge.

To address these issues, we propose a Deep Diverse API Sequence Recommendation
(DDASR) framework, which can recommend both non-tail and tail APIs and increase diver-
sity without sacrificing accuracy. To better capture developer requirements, we leverage the recent
advancements in LLMs. Due to the lack of historical data for tail APIs, their features cannot be ade-
quately acquired. To alleviate the sparsity, we cluster tail APIs with a similarity matrix and substitute
them with cluster centers. This strategy helps us establish a pseudo ground truth that includes both
non-tail and tail APIs. The similarity matrix is built by calculating the similarity through the de-
scription and name of tail APIs. In addition, given that accuracy and diversity are two contradicting
indicators, a loss function based on the Learning-to-Rank (LTR) technique is defined to optimize
the ranking of recommendations while maintaining a balance between accuracy and diversity.

To demonstrate the effectiveness of DDASR, five state-of-the-art API recommendation ap-
proaches, i.e., DeepAPI [21], BIKER [26], DGAS [72], CodeBERT [46], and CodeTrans [14], as well
as GPT-3.5 and GPT-4, are selected as baselines, with Bilingual Evaluation Understudy (BLEU),
Recall-Oriented Understudy for Gisting Evaluation (ROUGE), Mean Average Precision
(MAP), Recall-Oriented Understudy for Gisting Evaluation (ROUGE) and Normalized Dis-
counted Cumulative Gain (NDCG) as accuracy evaluation metrics, and coverage as the diversity
evaluation metric. Two open source datasets, a Java [21] dataset and a Python [46] dataset, as well
as a diverse Java dataset derived from the Java dataset, are employed for evaluation. We evaluate the
performance of DDASR utilizing three architectures: RNN encoder-decoder, Transformer encoder-
decoder, and LLM encoder-decoder. The RNN and Transformer encoder-decoder architectures
aim to reproduce the approaches proposed by Gu et al. [21] and Elnaggar et al. [14]. For the LLM
encoder-decoder model, we use the recent five LLMs, such as CodeBERT [16] and GraphCodeBERT
[23]. Overall performance is the best when using CodeBERT. In terms of accuracy metrics BLEU,
ROUGE, MAP, and NDCG, DDSAR outperforms the baselines by an increase of 63.90%, 34.88%,
46.70%, and 128.60%, respectively, on the original Java dataset, 108.28%, 67.30%, 88.59%, and 207.37%,
respectively, on the diverse Java dataset, and 9.83%, 2.45%, 8.06%, 3.26%, respectively, on the Python
dataset. Regarding the diversity metric coverage, DDSAR surpasses the baselines by an increase
of 45.83% on the diverse Java dataset and 8.03% on the Python dataset. The results indicate that
DDASR can significantly increase diversity in recommended API sequences without compromising
accuracy. The replication package of DDASR is released at GitHub.1

The main contributions of our work are as follows:

—We propose DDASR, a novel framework for recommending API sequences, striking a balance
between accuracy and diversity.

1https://github.com/WHU-AISE/DDASR

ACM Transactions on Software Engineering and Methodology, Vol. 34, No. 6, Article 162. Publication date: July 2025.

https://github.com/WHU-AISE/DDASR

DDASR: Deep Diverse API Sequence Recommendation 162:5

—We focus on the long-tail distribution in API sequence recommendation. We cluster tail APIs
with functional similarity and construct a pseudo ground truth by replacing tail APIs in the
original ground truth with cluster centers, effectively mitigating the sparsity of historical
usage data for tail APIs.

—We conduct extensive experiments to evaluate DDASR using open source Java and Python
datasets. A diverse Java dataset is also constructed for further evaluation. The experimental
results show that our approach achieves significant diversity without reducing accuracy.

The rest of the article is organized as follows. We present related work in Section 2. We describe
the technical details of DDASR in Section 3. We describe our experimental setup and the evaluation
results in Section 4. We discuss threats to validity in Section 5. Finally, we conclude the article and
put forward future work in Section 6.

2 Related Work
Recommender systems have been extensively studied and applied in software engineering to aid
developers in resolving issues of development requirements [20, 61]. This section mainly discusses
the literature on recommender systems closely related to this article, including API recommendation,
sequence recommendation, and diverse recommendation.

2.1 API Recommendation
API recommendations generally start from developers’ requirement queries. Recent research in
API recommendation primarily relies on two frameworks: information retrieval and deep learning.

Information Retrieval-Based Approaches. API recommendation approaches based on information
retrieval typically perform similarity calculations from the historical library to match existing
solutions. Zhong et al. [86] proposed MAPO to mine API usage patterns with sequential rules
between APIs. McMillan et al. [47] proposed Portfolio, a tool for finding relevant functions based
on PageRank from an extensive archive of C/C++ source code. Chan et al. [8] improved Portfolio
using the API graph search algorithm. Raghothaman et al. [58] presented SWIM, an approach
designed to find APIs related to the query from user click data and then locate API sequences
by extracting and matching structured API sequences from GitHub. RACK [59] recommends
APIs by exploiting keyword-API associations from Stack Overflow. Zhang et al. [80] proposed
RASH to recommend APIs based on API specifications and the resolution of historical questions.
Huang et al. [26] proposed BIKER, which combines historical questions and answers in Stack
Overflow with API descriptions. Wei et al. [73] proposed CLEAR, which utilizes BERT sentence
embeddings and contrastive learning to capture the semantic information. DGAS [72] utilizes
documentation-guided cross-modal attention and documentation-guided cross-modal matching to
bridge the gap between text and API. Information retrieval-based API recommendation systems
typically operate by matching the current query with historical queries in the database based on
similarity, considering the API sequence from the most similar historical query as the solution for
the current query. However, due to the sparsity of data in the historical database for queries that
tail APIs can resolve, these systems struggle to capture the relevance between queries solvable
by tail APIs and the current new query [62, 76]. This limitation makes it difficult for information
retrieval-based systems to recommend tail APIs effectively.
Deep Learning-Based Approaches. Deep learning-based generative API recommendation may

produce creative results [37]. Niu et al. [50] extracted multiple features and employed LTR to recom-
mend APIs and code examples. DeepAPI [21] builds an open source dataset and customizes the RNN
encoder-decoder neural language model for API sequence recommendation. Martin and Guo [46]

ACM Transactions on Software Engineering and Methodology, Vol. 34, No. 6, Article 162. Publication date: July 2025.

162:6 S. Nan et al.

developed a Transformer-based neural architecture with CodeBERT [16], an encoder-only pre-
trained model, for API sequence learning. CodeTrans [14] uses both supervised and self-supervised
tasks to build a language model, which has been applied to API sequence recommendation with the
Transformer encoder-decoder architecture. Unfortunately, models such as DeepAPI and CodeTrans
often split a complete API into multiple word or symbol fragments, potentially resulting in incorrect
API recommendations.

2.2 Sequence Recommendation
A solution to a query involving development requirements often consists of a series of APIs.
Classic sequence recommender systems adopt a Markov chain [60] to mine frequent patterns in
sequence data. With the development of neural networks, RNN and its variants, such as Gated
Recurrent Unit (GRU) [24], Long Short Term Memory (LSTM) [75], and hierarchical RNN
[56], are recognized as beneficial for sequence recommendation. A few works [65, 79] applied
convolutional neural networks to sequence recommendation. By adapting attention and self-
attention mechanisms, researchers have recently developed many approaches, including NARM
[39], SASRec [31], and ATTRec [82]. Recently, researchers have begun exploring the use of LLMs
for sequence recommendation tasks [17]. LLMs can be adapted to user data collection, feature
engineering, and feature encoder [42]. When applying LLMs, it is important to consider whether to
fine-tune them during the training phase. For instance, models like TransRec [18], UNBERT [81],
and LMRecSys [83], benefit from fine-tuning during the training phase. In contrast, models such as
ChatGPT [13, 25, 43, 64] are designed to operate without the necessity for task-specific fine-tuning
during the training phase.

2.3 Diverse Recommendation
Typical approaches for enhancing recommendation diversity can be classified into three categories:
pre-processing, in-processing, and post-processing.
Pre-Processing Approaches intervene in the recommendation system before the model train-

ing. DCF [12] regards the diverse recommendation as an end-to-end supervised learning task
and constructs ground truth labels to explicitly idealize the optimization target. ART [36] lever-
ages a strategy of pre-defining user types to enhance the diversity of recommendations. DGCN
[84] includes two pre-defined sampling strategies for diversified recommendations with Graph
Convolutional Networks. In addition, the studies [53, 78] utilized long-tail items directly for rec-
ommendations. Kim et al. [32] clustered long-tail items to predict a ranked list containing general
and diverse items in the next item recommendation.

In-Processing Approaches are applied during the model training process. Wasilewski and Hurley
[71] explored the use of regularisation to enhance the diversity of recommendations. Li et al. [40]
utilized factorized category features based on matrix factorization. Zhou et al. [87] adapted the
Simpson’s Diversity Index and considered the evenness of the number of the items’ classes.

Post-Processing Approaches re-rank recommended items based on certain diversity metrics. MMR
[7] uses a model that treats relevance and diversity as independent metrics. Ziegler et al. [88]
presented topic diversification to balance and diversify recommendation results. Adomavicius and
Kwon [1] eliminated variations in popularity by assigning different weights to items. Jiang et al.
[29] explicitly modeled sub-topics to retrieve diverse results. DDP [10, 74] employs a unified model
to assess differences among items in a set-wide way.

3 Approach
Figure 3 shows the overall framework of DDASR, which consists of four main components:

ACM Transactions on Software Engineering and Methodology, Vol. 34, No. 6, Article 162. Publication date: July 2025.

DDASR: Deep Diverse API Sequence Recommendation 162:7

Fig. 3. Overall framework of DDASR.

(1) Data Pre-Processing (cf. Section 3.1). We obtain query-APIseq pairs, which contain queries
and corresponding API sequences. The non-tail and tail APIs are determined by figuring out
how frequently they occur. Moreover, we crawl descriptions of tail APIs from the official API
documents.

(2) Pseudo Ground Truth Building (cf. Section 3.2). We calculate the functional similarity among
tail APIs with their descriptions and names. A pseudo ground truth, which contains both
non-tail and tail APIs, is established by clustering tail APIs and substituting them with cluster
centers.

(3) Model Training (cf. Section 3.3). Our model applies two techniques: Seq2Seq (cf. Section 3.3.1)
and LTR (cf. Section 3.3.2). The Seq2Seq model is used to translate a given natural language
query to a ranked list of possible API sequences. LTR calculates a loss function and ranks
these API sequences. We integrate LTR within the Seq2Seq architecture to balance accuracy
and diversity in the recommended API sequences. Lastly, Beam Search [34] is utilized to
suggest relevant API sequences for developer queries.

(4) Online Recommendation. When developers input a query, DDASR can recommend an appro-
priate API sequence solution.

3.1 Data Pre-Processing
As shown in Figure 4, for query pre-processing, we use the NLTK package [6] to remove stop words
and extract the backbone of query terms. In previous generation-based studies [14, 21, 46], an API is
typically divided into multiple fragments, where each fragment is a symbol or word representing the
class or method name. For example, “scipy.searchsorted,” an API in Python programming language,
will be split into three fragments: “scipy,” “.,” and “searchsorted,” as shown in Figure 4(a). Such
division in pre-processing lengthens the API sequence, complicating the modeling of the API
calling relationship and dramatically increasing computational costs. Furthermore, this approach
often results in mismatched API fragments when generating recommendations for developers. As
shown in Figure 1, the deep learning-based method DeepAPI [21] recommends the API fragments

ACM Transactions on Software Engineering and Methodology, Vol. 34, No. 6, Article 162. Publication date: July 2025.

162:8 S. Nan et al.

Fig. 4. An example for data pre-processing phase.

“scipy,” “.,” and “transpose,” which are combined to form the complete API name “scipy.transpose.”
However, upon analysis, we find that this is an incorrect API, highlighting issues in combining
class and method names.

Inspired by the word embedding technique [5], we recombine these fragments into complete
APIs, allowing the model to better learn the calling relationship between APIs and reducing the
computation of decoding APIs. After pre-processing the queries and API fragments, the corpus
containing query-APIseq pairs for Java and Python are obtained, as shown in Figure 4(b). Subse-
quently, we conduct a frequency analysis of API occurrences and distinguish between non-tail and
tail APIs.

For tail APIs, we mine their descriptions to facilitate functional similarity calculations, as illus-
trated in Figure 4(c). To achieve this, we download both official API documentation and third-party
documents. Then we parse the HTML file of each API class to extract their descriptions. Gener-
ally, APIs with inheritance relationships tend to have similar functions. Therefore, we also mine
descriptions of APIs within these inheritance relationships as a supplementary measure.

3.2 Pseudo Ground Truth Building
Traditional API sequence recommendation approaches often overlook tail APIs, either by ignoring
them or labeling them as <UNK> tags, which leads to these APIs being under-recommended. Noting
that APIs with similar functions typically share analogous functionalities, we cluster tail APIs
with similar functionality and then substitute them with cluster centers to build a pseudo ground
truth. This pseudo ground truth includes both non-tail and tail APIs, ensuring comprehensive
recommendations. In this context, we use)� and #� to represent tail APIs and non-tail APIs,
respectively.

3.2.1 Similarity Calculation. As a primary indicator, the name of an API typically reflects its
function, while the official API documentation describes its functionalities. In this section, we
calculate the functional similarity among tail APIs using both their documentation descriptions
and names [35]. A functional similarity matrix is ultimately constructed, containing the functional
similarity between each pair of tail APIs.

Similarity Calculation of API Documentation Descriptions. We observe that official documentation
contains numerous inheritance associations among APIs. To augment the descriptions of child
APIs, we append the official descriptions of their parent APIs. Designing APIs with a preference
for shallow inheritance hierarchies is considered a good design principle and is widely accepted
and recommended [19]. Therefore, we only consider API descriptions that involve inheritance
relationships of parent nodes. Let D8 = {�8,B , �8,? } represent the description set of tail API)�8 ,
where�8,B is the description of)�8 itself, and �8,? denotes the description inherited from the parent
node of)�8 .

ACM Transactions on Software Engineering and Methodology, Vol. 34, No. 6, Article 162. Publication date: July 2025.

DDASR: Deep Diverse API Sequence Recommendation 162:9

We use BM25, an algorithm for evaluating the similarity between search statements and doc-
uments in the corpus, to calculate the description similarity between tail APIs. To assess the
text-similarity between two descriptions, �1 and �2, we approach it in a bifurcated manner:
(8<(�1 → �2) and (8<(�2 → �1). These are calculated using the BM25 algorithm, yielding
two asymmetric scores. This approach recognizes that the impact of a morpheme can vary across
different sentences, necessitating a nuanced evaluation of similarity. Then the harmonic mean is
taken as the similarity score (8<(�1, �2) between the two asymmetric scores:

(8< (�1, �2) =
2 × (8< (�1 → �2) × (8< (�2 → �1)
(8< (�1 → �2) + (8< (�2 → �1)

. (1)

Due to the inheritance relationship, each tail API description set D includes both its description
and the descriptions of its parents. However, the description of its parents cannot fully reflect the
functionalities of a tail API. Therefore, we set up a semaphore �� as the weight to distinguish the
impact of descriptions from different sources. According to [67], we set DI to 2 if the description
similarity is calculated based on the tail API’s description; otherwise, DI is set to 1. After iterating
through all descriptions in D, we take the maximum similarity as the description similarity B8<�
of two tail APIs:

B8<� ()�8 ,)� 9) =<0G{�� × (8<(�8,: , � 9,<) |�8,: ∈ D8 0=3 � 9,< ∈ D9 }. (2)

Similarity Calculation of API Names. We use the Levenshtein distance [38], a minimum edit
distance algorithm, to calculate the similarity between the names of tail APIs. The Levenshtein
distance is computed as the minimum number of three single-character edit operations, including
deletion, insertion, and substitution (matching or mismatching), for converting one API name to
another:

!4E#8 ,# 9
(:,<) =


<0G (:,<), <8=(:,<) = 0

<8=
©­«

!4E#8 ,# 9
(: − 1,<) + 1,

!4E#8 ,# 9
(:,< − 1) + 1,

!4E#8 ,# 9
(: − 1,< − 1) + 1#8 [:]≠# 9 [<]

ª®¬ , >Cℎ4AF8B4
, (3)

where #8 and # 9 represent the names of tail APIs)�8 and)� 9 , respectively. The indices : and<
correspond to the positions within #8 and # 9 , respectively. The function !4E#8 ,# 9

(:,<) calculates
the distance between the first : characters of #8 and the first< characters of # 9 . In the minimum
operation, the first term accounts for deletion implying the removal of a character from #8 to match
9 . The second term accounts for insertion, denoting the addition of a character to #8 . The final
term represents the cost of substitution, which is determined by the indicator function 1#8 [:]≠# 9 [<] .
The function yields 1 if #8 [:] ≠ # 9 [<], indicating a mismatch, and 0 if they match.

The name similarity, B8<# , is calculated based on the Levenshtein distance:

B8<# ()�8 ,)� 9) = 1 −
!4E#8 ,# 9

(|#8 |, |# 9 |)
<0G (|#8 |, |# 9 |)

, (4)

where |#8 | and |# 9 | represent the length of #8 and # 9 , respectively. !4E#8 ,# 9
(|#8 |, |# 9 |) equals 0

when #8 = # 9 .
Functional Similarity Matrix. Due to the different calculation methods of description similarity

(8<� and name similarity (8<# , they exhibit a significant difference in scale. Therefore, we employ
Min-Max Normalization to standardize their scales. When the normalized similarity measures B8<�
and B8<# exceed respective thresholds X1 and X2, the APIs in question are considered to have
related descriptions or names. Otherwise, their similarity is deemed irrelevant and is effectively
set to zero. The values of U and V will be discussed in Section 4.6.4, where U and V represent the

ACM Transactions on Software Engineering and Methodology, Vol. 34, No. 6, Article 162. Publication date: July 2025.

162:10 S. Nan et al.

Fig. 5. The original ground truth and the pseudo ground truth of API sequence recommendation.

weights assigned to B8<� and B8<# , respectively, under the condition that U + V = 1. The final
similarity score, (8<, is calculated by adding B8<� and B8<# after normalizing them with weights:

(8<()�8 ,)� 9) = U ×<0G (
B8<� ()�8 ,)� 9)

B8<�<0G − B8<�<8=
− X1, 0) + V ×<0G (

B8<# ()�8 ,)� 9)
B8<#<0G − B8<#<8=

− X2, 0).
(5)

We calculate the similarity of all tail APIs in pairs to obtain an = × = symmetric similarity score
matrix SM.

3.2.2 Clustering and Replacing. To improve the representation of tail APIs, we build a pseudo
ground truth by clustering the tail APIs based on the functional similarity matrix and replacing the
tail APIs with cluster centers.

For a given query & in the original ground truth, the answer is a sequence that consists of
a series of APIs, such as < #�1, #�2,)�1, #�3,)�2,)�3 >. Due to the sparse historical usage
data of tail APIs, directly using the original ground truth, which contains a large number of tail
APIs, poses significant challenges to accuracy [28, 44, 63]. Traditional deep learning-based API
sequence recommendation approaches [14, 21, 46] treat the sequence as < #�1, #�2, #�3 > or
< #�1, #�2, < *# >, #�3, < *# >, < *# >> since they delete tail APIs, i.e.,)�1,)�2,
and)�3, or use <UNK> tags to replace them in the pre-processing phase as shown in Figure 5. In
addition, we conduct experiments using the original ground truth and the pseudo ground truth
(where tail APIs are treated as <UNK> tags) on two deep learning-based methods, DeepAPI and
CodeBERT. The experimental results shown in Table 1 demonstrate that the accuracy of both
models dramatically decreases when directly using the original ground truth compared to the
pseudo ground truth. This indicates that the processing of the pseudo ground truth is effective in
improving the accuracy of deep learning-based models. However, in existing methods [14, 21, 46],
tail APIs are treated as <UNK> tags in constructing the pseudo ground truth, which prevents the
recommendation of these important APIs to developers. Thus, we apply spectral clustering [68] to
group tail APIs based on functional similarity, effectively representing similar tail APIs with their
cluster centers.

We treat the similarity matrix SM of tail APIs as an adjacency matrix and use it to calculate a
diagonal symmetric matrix with dimension = × =, denoted as D806:

D8068 9 =

{∑
: SM8: , 8 = 9, 0 ≤ : < =

0, 8 ≠ 9
. (6)

ACM Transactions on Software Engineering and Methodology, Vol. 34, No. 6, Article 162. Publication date: July 2025.

DDASR: Deep Diverse API Sequence Recommendation 162:11

Table 1. Evaluation Results of DeepAPI
and CodeBERT with Different Ground
Truths on the Java and Python Datasets

Models Type of
Ground Truth

Java Dataset Python Dataset

�!�*$

DeepAPI OGT 20.18 39.61
PGT(<UNK>) 28.65 47.54

CodeBERT OGT 42.11 47.93
PGT(<UNK>) 50.86 52.40

“OGT” represents the original ground truth and
“PGT(<UNK>)” represents the pseudo ground truth
built by replacing tail APIs with <UNK> tags.

Algorithm 1 : Generate Sample Points for Spectral Clustering
Input: SM: Similarity matrix of tail APIs. 2: number of clusters.
Output: Y = {~1, ~2, . . . , ~=}: Sample points.
Begin
1: /* Compute the diagonal matrix. */
2: D806 ← 3806(∑:SM0: ,

∑
:SM0: , . . . ,

∑
:SM0:)

3: /*Compute the normalized Laplace matrix. */
4: LAB~< ← D806−1/2 (D806 − SM)D8061/2
5: /*Compute the first 2 eigenvectors D1, D2, . . . , D2 of LAB~< . */
6: U← [D1, D2, . . . , D2] ∈ R=×2
7: /*Compute matrix T from matrix U by individually normalizing each row with !2-norm. */
8: T← [C8 9 = D8 9/

√∑=
<=1 D

2
8<
] ∈ R=×2

9: /*Define ~8 ∈ R2 as the vector associated with the ith row of matrix T. */
10: Y← {~8 = A>F8 (T)}=8
11: return Y

Based on Equation (6), we define a normalized symmetric Laplace matrix LAB~< :

LAB~< = D806
− 1

2 (D806 − SM)D806
1
2 . (7)

Algorithm 1 generates sample points based on tail APIs and their similarity matrix SM for
clustering. We begin by computing D806 and LAB~< (Lines 1–4). Then we calculate the eigenvalues
of LAB~< and select the first 2 eigenvalues after sorting in ascending order. After calculating the
eigenvectors of eigenvalues, we take them as column vectors to form the matrix U (Lines 5–6).
Finally, the vectors in each row of U are converted to unit vectors to form new sample points Y
(Lines 7–10).

After that, we use the k-means algorithm to assign tail APIs with similar functionality into
a cluster TA = {TA1, TA2, . . . ,TA9 , . . .TA2 } based on sample points . , where 2 represents the
number of cluster centers. For the cluster TA9 ,)� 9 is the cluster center. Recommending cluster
centers can expose some hidden tail APIs, increase the diversity of recommendations, and offer ad-
ditional perspectives and possibilities, thereby inspiring developers’ creativity due to the functional
similarity of the exposed and hidden tail APIs in the clusters [9]. Therefore, we substitute tail APIs
with cluster centers. For an API sequence represented as < #�1, #�2,)�1, #�3,)�2,)�3 >, we
restructure it to < #�1, #�2,)�1, #�3,)�1,)�2 > to build a pseudo ground truth, as illustrated

ACM Transactions on Software Engineering and Methodology, Vol. 34, No. 6, Article 162. Publication date: July 2025.

162:12 S. Nan et al.

Fig. 6. An example of building the pseudo ground truth. (a) The original ground truth, (b) the pseudo ground
truth built by clustering tail APIs and replacing them with cluster centers (as done in our method), and (c)
the pseudo ground truth built by replacing tail APIs with <UNK> for the query (as done in prior methods).

in Figure 5. This restructuring is based on the categorization of)�1 and)�2 as belonging to the
same cluster TA1, while)�3 is classified under a different cluster TA2. Figure 6 shows an example
of building the pseudo ground truth. There are two clusters of tail APIs as shown in Figure 6. For
the query, Figure 6(a) is the original ground truth, Figure 6(b) is the pseudo ground truth built by
clustering tail APIs and relocating with the cluster centers, and Figure 6(c) is the pseudo ground
truth constructed by replacing tail APIs with <UNK> tags. Moreover, the number of occurrences of
each cluster is the sum of the number of occurrences of tail APIs belonging to the cluster. However,
the clusters serve as substitutes for the tail APIs in the training process. Each tail API cluster should
not appear more frequently than the non-tail APIs. Thus, we set the number of clusters 2 such that
the average number of tail APIs in clusters approximates that of non-tail APIs, and ensure that the
item count in each cluster does not substantially exceed that of non-tail APIs.

3.3 Model Training
3.3.1 Seq2Seq Model. DDASR applies Seq2Seq, an encoder-decoder model, to generate API

sequences. For a given query, the encoder can produce a contextualized embedding vector, which
is used by the decoder to produce an API sequence. The LLM encoder-decoder architecture is used
in DDASR, with LLMs serving as the encoder to capture developer requirements and a six-layer
Transformer acting as the decoder.

3.3.2 LTR Loss Function. To achieve a balance between accuracy and diversity, we adopt ListMLE
[77], a listwise LTR method, as our loss function. By utilizing ListMLE to model the rankings of all
API sequences generated, we learn the order of ranking to balance the effect of tail API clusters on
diversity by improving the prediction accuracy of the rankings, thus allowing the model to increase
diversity without sacrificing accuracy. For a given query & and corresponding API sequence � in
the pseudo ground truth, we define a sequence probability distribution based on Plackett-Luce [77]
for the recommendation results as follows:

% (A|B) =
<∏
8=1

i (B�−1 (8))∑<
D=8 i (B�−1 (D))

, (8)

where �−1 (8) represents the APIs sorted to the ith positions in sequence A =< �1, �2, · · · , �< >.
B�−1 (8) is a ranking score of item �8 from ranking scores vector B = 5 (G) and i () is an exponential

ACM Transactions on Software Engineering and Methodology, Vol. 34, No. 6, Article 162. Publication date: July 2025.

DDASR: Deep Diverse API Sequence Recommendation 162:13

mapping function, namely i (G) = 4G? (G). The better the fit between A and B , the higher the
probability value % (A|B).

We define our loss function ! as the inverse of log-likelihood:

! = −;>6% (A|5 (G)), (9)

where ! is a convex function so that we can optimize it directly with gradient descent.
Finally, DDASR produces top-k API sequences for each given query by using Beam Search [34],

a heuristic search strategy based on the average loss.

4 Evaluation
In this section, we evaluate the proposed DDASR approach. We will study the following four
ResearchQuestions (RQs):

—RQ1: How accurate is DDASR in comparison with the state-of-the-art approaches?
—RQ2: Does DDASR improve diversity while maintaining accuracy?
—RQ3: Can DDASR help programmers address tasks more effectively?
—RQ4: How do the different functional similarity algorithms and the parameter weights in the
similarity algorithms affect the performance of DDASR?

4.1 Experiment
All our experiments were performed on a Supermicro GPU server with Intel(R) Xeon(R) E5-2640 v4
x86_64, 2.4 GHz, 2 GPUs (NVIDIA Tesla V100 16 GB), and the CentOS 7.5 Linux operating system.
The machine learning models were implemented with the PyTorch library.

4.2 Data
We utilize two open source datasets: one for the Java programming language [21] and the other for
the Python programming language [46]. The Java dataset constructed by Gu et al. [21] consists of
7 million annotation-API sequence pairs. These are extracted by mining Java projects on GitHub
that have garnered more than one star. We treat the natural language annotations as queries.
However, in the original Java dataset, we find about 6 million duplicate records and many errors
in the API sequences, as illustrated in Table 2. We eliminate the duplicate records. Subsequently,
our examination revealed a total of 25,862 records containing mismatched symbols, with the
predominant issue being a disparity in the count of left and right parentheses. To address this
imbalance, we primarily rectified the records by adding parentheses where necessary to achieve
symmetry. In addition, we find 3,552 records whose class or method names mismatch the official API
documentation. We revise them manually by consulting the API documentation. Our developers
manually review approximately 20k processed APIs. Finally, we obtain a repository in Java, including
about 760k query-APIseq pairs and 120k APIs. Additionally, we observe a phenomenon that the test
set of the original dataset contains very few query-APIseq pairs of tail APIs. To evaluate the diversity
in API sequence recommendation, we build a diverse Java dataset with an equal distribution of
pairs containing tail APIs in the training and test sets by stratified random sampling. The Python
dataset constructed by Martin and Guo [46] consists of about 855k records by collecting Python
projects with at least five stars. After a comprehensive investigation, we do not find the issue shown
in Table 2. Moreover, the Python dataset contains a balanced record of tail APIs in both the test and
training sets and can be used to evaluate diversity without constructing a separate diverse dataset.
Finally, we obtain the Python dataset that contains around 855k query-APIseq pairs and 8.5k APIs.
Table 3 shows the summary of the datasets.

ACM Transactions on Software Engineering and Methodology, Vol. 34, No. 6, Article 162. Publication date: July 2025.

162:14 S. Nan et al.

Table 2. Five Data Cleaning Steps on the Original Java Dataset with Corresponding Scenarios, Processing
Methods, and Examples

Type Scenarios Processing Method Example Example after Processing

Duplicate
pairs

Duplicate records for
the same

query-APIseq pairs in
the dataset.

Delete duplicate records
and keep only one. - -

Class name
errors

Class name is
inconsistent with the

official API
documentation.

Change to standard class
name according to the

official API
documentation.

CDRInputStream_1_0.<init > CDRInputStream.<init >

Method name
errors

Method name is
inconsistent with the

official API
documentation.

For those caused by
spelling errors, make the
necessary corrections. For
method names that do not
exist, remove the entire

API.

ConcurrentLinkedDeque.succ -

Not all actual
arguments have been
completely removed.

Remove the actual
arguments from the

method name.
StringBuilder.append(“time”) StringBuilder.append

Mismatched
symbols

The number of left
and right parentheses

is unequal.

Complete the mismatched
parentheses. ArrayList<.append ArrayList<>.append

Table 3. Summary of the Datasets

Datasets # Pairs # Pairs Containing Tail APIs # Non-Tail APIs # Tail APIs

Java
dataset

Training set 7,519,907 63,239 46,245 79,797

Test set 9,975 175 12,895 227

Diverse Java
dataset

Training set 752,919 62,654 46,180 78,521

Test set 7,600 760 12,198 1,555

Python
dataset

Training set 835,069 3,914 4,949 3,534

Test set 10,000 131 1,914 153

For the descriptions of tail APIs, we mine the API documentation based on the class names
of long-tail APIs. When experimenting on Java, we download the Java SE 8 API documentation2

and third-party documentation, such as Spring Boot,3 JUnit,4 and Log4j.5 When experimenting
on Python, we crawl the official documentations of Python 3,6 Numpy,7 SciPy,8 PyTorch,9 and
Pandas10 to mine the descriptions.

2http://www.oracle.com/technetwork/java/javase/
3https://docs.spring.io/spring-boot/docs/2.6.12/api/
4https://junit.org/junit4/javadoc/latest/
5https://logging.apache.org/log4j/2.x/log4j-api/apidocs/
6https://docs.python.org/3.8/
7https://numpy.org/doc/stable/reference/
8https://docs.scipy.org/doc/scipy/reference/
9https://pytorch.org/docs/stable/
10https://pandas.pydata.org/docs/reference/

ACM Transactions on Software Engineering and Methodology, Vol. 34, No. 6, Article 162. Publication date: July 2025.

http://www.oracle.com/technetwork/java/javase/
https://docs.spring.io/spring-boot/docs/2.6.12/api/
https://junit.org/junit4/javadoc/latest/
https://logging.apache.org/log4j/2.x/log4j-api/apidocs/
https://docs.python.org/3.8/
https://numpy.org/doc/stable/reference/
https://docs.scipy.org/doc/scipy/reference/
https://pytorch.org/docs/stable/
https://pandas.pydata.org/docs/reference/

DDASR: Deep Diverse API Sequence Recommendation 162:15

4.3 Baselines
We selected seven state-of-the-art approaches as competing models: DeepAPI [21], BIKER [26],
DGAS [72], CodeBERT [46], CodeTrans [14], GPT-3.5, and GPT-4. Among them, BIKER and DGAS
are information retrieval-based methods, while GPT-3.5 and GPT-4 are generative models capable
of producing API sequences based on input prompts. These two LLMs were chosen as baselines
due to their superior performance across various natural language processing tasks compared to
other open source and closed-source LLMs [51]. The remaining models, DeepAPI, CodeBERT, and
CodeTrans, are generative approaches based on deep learning techniques.

—DeepAPI 11 [21] adapts an RNN encoder-decoder model to encode a query into a fixed-length
context vector and generate API sequences based on the context vector.

—BIKER12 [26] extracts API-related posts of Stack Overflow, treating the titles of the questions
as search queries and the APIs mentioned in the accepted answers as the canonical solu-
tions. The tool mainly calculates the similarity of questions and recommends the APIs of
similar questions. To adapt BIKER for API sequence recommendation, we make the necessary
modifications to its open source code. The detail of modifications is shown on GitHub.13

—DGAS14 [72] utilizes a multi-head self-attention network and trains a deep learning net-
work for API sequence search through three phases: the inner-modal attention phase, the
documentation-guided attention phase, and the documentation-guided cross-modal attention
phase. In the searching phase, DGAS searches for a ranked list of relevant API sequences
based on the matching scores calculated between the query and API sequences by the trained
network.

—CodeBERT 15 is reproduced by Martin and Guo [46] to generate API sequences by fine-tuning
CodeBERT [16], a pre-trained model, on the Java and Python datasets.

—CodeTrans16 [14] combines encoder-decoder and Transformer models and explores different
training strategies to recommend API sequences. In addition, CodeTrans provides a pre-trained
model for the task of API sequence generation on the original Java dataset, which we utilize
directly for experimental comparison.

—GPT-3.517 is a model improved on GPT-3. We use OpenAI’s APIs to access its latest version,
gpt-3.5-turbo.

—GPT-418 is a large multi-modal with broader general knowledge and advanced reasoning
capabilities. We also use OpenAI’s APIs to access its latest version, gpt-4-turbo.

—Ablation Studies. Our DDASR comprises three key components: recombining fragments into
complete APIs, building the pseudo ground truth, and training the Seq2Seq model with a LTR
loss function. Since the three components in our DDASR are in an incremental relationship,
where the second component depends on the first and the third component depends on the
second, we design two variants of DDASR, DASR (containing only the first component),
and DASR+PGT (containing the first two components), for ablation studies. Our DDASR
incorporates all three components.

11https://github.com/guxd/deepAPI
12https://github.com/tkdsheep/BIKER-ASE2018
13https://github.com/WHU-AISE/DDASR
14https://github.com/helloDGASworld/DGAS_dataset
15https://github.com/hapsby/deepAPIRevisited
16https://github.com/agemagician/CodeTrans
17https://platform.openai.com/docs/models/gpt-3-5-turbo
18https://platform.openai.com/docs/models/gpt-4-turbo

ACM Transactions on Software Engineering and Methodology, Vol. 34, No. 6, Article 162. Publication date: July 2025.

https://github.com/guxd/deepAPI
https://github.com/tkdsheep/BIKER-ASE2018
https://github.com/WHU-AISE/DDASR
https://github.com/helloDGASworld/DGAS_dataset
https://github.com/hapsby/deepAPIRevisited
https://github.com/agemagician/CodeTrans
https://platform.openai.com/docs/models/gpt-3-5-turbo
https://platform.openai.com/docs/models/gpt-4-turbo

162:16 S. Nan et al.

–DASR is a variant of our DDASR, which is designed to be an ablation study to assess the
effect of the first component—merely recombining API fragments. In DASR, API fragments
are combined into complete APIs during the construction of the pseudo ground truth, with
tail APIs treated as <UNK> tags. The loss function of DASR is Cross Entropy, following the
previous work [21, 46].

–DASR+PGT is to assess the impact of integrating DASR with the pseudo ground truth
component. DASR+PGT constructs pseudo ground truth using the cluster centers of tail
APIs. Its loss function is also Cross Entropy.

4.4 Model Selection
We consider three types of encoder-decoder models in our experiment.

—RNN Encoder-Decoder Model. We choose the model because it is used to generate API sequences
by Gu et al. [21]. A standard Bidirectional LSTM is employed in the encoder, and the decoder
is a GRU network.

—Transformer Encoder-Decoder Model. The encoder and decoder consist of six layers of Trans-
former encoder and decoder components. CodeTrans [14] also employs a similar architecture
to accomplish tasks.

—LLM Encoder-Decoder Model. LLMs currently demonstrate outstanding performance in various
natural language processing tasks. They are categorized into three architectures: encoder-
only, decoder-only, and encoder-decoder. Decoder-only models have vocabulary limitations
and heavily rely on the presence of tokens in their vocabulary for prediction [57]. The APIs
in the pseudo ground truth are not included in the vocabulary of decoder-only models,
resulting in no matches with any tokens in the model’s fixed vocabulary [63]. Additionally,
our loss function based on LTR is specifically designed for API sequences where tokens
correspond to complete APIs. Therefore, in our approach, we have not considered decoder-
only models. For the encoder-only and encoder-decoder LLMs, we only utilize their encoder
component as the encoder for our approach. We select five widely available LLMs for code
in the HuggingFace API,19 including CodeBERT,20 GraphCodeBERT,21 PLBART,22 CodeT5,23
and UniXcoder.24 CodeBERT [16] is an encoder-only model pre-trained on bimodal data
sourced from CodeSearchNet [27]. GraphCodeBERT [23] is also an encoder-only model that
incorporates syntax information from code.The other three LLMs are encoder-decoder models.
PLBART [3] is pre-trained on a wide range of Java and Python function collections and related
natural language text using denoising auto-encoders. CodeT5 [70] can better leverage the code
semantics conveyed from the developer-assigned identifiers. UniXcoder [22] comprehensively
utilizes the code structure information provided by the Abstract Syntax Tree. The decoder
consists of six layers of Transformer decoder.

We use the following hyper-parameter settings. Based on our experiment results shown in our
reproducible package on GitHub, we select the optimal hyper-parameters when using RNN encoder-
decoder architecture. For the RNN encoder-decoder, we set the number of hidden layers, the
number of hidden units, and the dimension of word embedding to 3, 1,000, and 512, respectively.

19https://huggingface.co
20https://huggingface.co/microsoft/codebert-base
21https://huggingface.co/microsoft/graphcodebert-base
22https://huggingface.co/uclanlp/plbart-base
23https://huggingface.co/Salesforce/codet5-base
24https://huggingface.co/microsoft/unixcoder-base

ACM Transactions on Software Engineering and Methodology, Vol. 34, No. 6, Article 162. Publication date: July 2025.

https://huggingface.co
https://huggingface.co/microsoft/codebert-base
https://huggingface.co/microsoft/graphcodebert-base
https://huggingface.co/uclanlp/plbart-base
https://huggingface.co/Salesforce/codet5-base
https://huggingface.co/microsoft/unixcoder-base

DDASR: Deep Diverse API Sequence Recommendation 162:17

For the Transformer encoder-decoder, both the encoder and decoder have six layers, and the
word embedding dimension is 512, which is the same as that used in the RNN encoder-decoder
architecture. For the LMM encoder-decoder, we utilize the pre-defined hyper-parameters from the
openly available models on HuggingFace. Specifically, the hidden dimensions for the LMMs used
as the encoder are 768, and the decoder has six layers. The AdamW algorithm is used to optimize
model parameters with the learning rate U = 24 − 5. Moreover, we adopt the optimal settings of
baselines reported in the literature for fair comparison.

4.5 Metrics
—BLEU is used to evaluate how close the candidate API sequences generated by the model are
to the reference API sequence in the ground truth. BLEU calculates the n-gram hit ratio of the
candidate sequence in the reference sequence. The calculation formula of BLEU is as follows:

�!�*@ =
1

 ∑
:=1

�%@: · 4G? (
#∑
==1

1
=
;>6

�′
A4 5
= + 1

�20=:= + 1
), (10)

where represents the top-K API sequences recommended, and # represents the largest
number of grams. # is usually set to 4. �20=:= refers to the number of the n-gram in the kth
recommended API sequence. A4 5 represents the reference API sequence that is the correct
answer in the ground truth.�′

A4 5
= refers to the number of n-gram in the reference API sequence

simultaneously. �% is a length penalty factor to avoid the effect of too short sequences on the
effectiveness of evaluation results. �% is defined as

�%@: =

{
1 !20=: > !A4 5

41−!A45 /!20=: !20=: ≤ !A4 5
, (11)

where !A4 5 refers to the length of the reference API sequence, and !20=: refers to the length
of the kth candidate API sequence.

—ROUGE is an evaluation method that compares candidate API sequences with the reference
API sequence based on recall. We primarily consider the ROUGE-L metric, which focuses
on the Longest Common Subsequence (LCS) between a candidate API sequence and the
reference API sequence. Formally,

'$*��@ =
1

 ∑
:=1

2 · !�((A4 5 ,20=:)
!A45

· !�((A4 5 ,20=:)
!20=:

!�((A4 5 ,20=:)
!A45

+ !�((A4 5 ,20=:)
!20=:

, (12)

where !�((A4 5 , 20=:) denotes the length of the longest common subsequence between A4 5
and 20=: .

—MAP is the mean of the AP score for each query. Formally,

"�%@ =
1
!A4 5

∑
�∈A4 5

1

 ∑
:=1

=D<� (:)
:

, (13)

where =D<� (:) represents the number of APIs denoted as � in the top-k candidate API
sequence.

—NDCG evaluates the ranking quality of candidate API sequences. Formally,

#���@ =
1
!A4 5

∑
�∈A4 5

����@
����@

, (14)

ACM Transactions on Software Engineering and Methodology, Vol. 34, No. 6, Article 162. Publication date: July 2025.

162:18 S. Nan et al.

where ����@ uses graded relevance as a measure of gain, the gain is discounted according
to its ranking position. We define it as

����@ =

 ∑
:=1

2A
(:)
A − 1

;>62 (: + 1)
, (15)

where A (:)A is a relevance score. A (:)A is set to 1 if the API appears in the kth candidate sequence,
otherwise 0. Since the gain with a high rank is high, the low-ranked score is somewhat
compromised according to the order in which the API appears in the candidate API sequences.
����@ is equivalent to<0G (����@), which normalizes ����@ . Formally,

����@ =

 ∑
:=1

1
;>62 (: + 1)

. (16)

—Coverage [30] is used to assess the diversity of API sequence recommender systems. It is
defined as the proportion of all candidate API sequences exposed to APIs in the vocabulary.

�>E4A064 =
#8C4< 8= 20=3830C4 �%� B4@D4=24B

#C>C0;
. (17)

BLEU, ROUGE, MAP, and NDCG are metrics for evaluating the accuracy. However, previous work
has typically used the pseudo ground truth as a reference for evaluating, which we refer to as
falsified accuracy. This is because, in the pseudo ground truth, tail APIs are replaced with <UNK>

tags or cluster centers, leading to evaluation bias. We denote the accuracy metrics evaluated using
the pseudo ground truth as BLEU% , ROUGE% , MAP% , and NDCG% . To restore the veritable accuracy,
we also utilize the original ground truth as a reference, and in this case, the accuracy metrics
are labeled as BLEU$, ROUGE$, MAP$, and NDCG$. When assessing the falsified accuracy of
different approaches, we use the pseudo ground truth constructed by each approach itself as the
reference. Conversely, the original ground truth is uniformly used as the reference when assessing
the veritable accuracy of any approach. For example, our DDASR constructs the pseudo ground truth
using cluster centers of tail APIs, as shown in Figure 6(b). This pseudo ground truth is then used as
the reference when evaluating DDASR’s falsified accuracy. Similarly, the prior deep learning-based
methods construct the pseudo ground truth using <UNK> tags, as shown in Figure 6(c), and this
is used as the reference when evaluating the falsified accuracy of deep learning-based baselines.
Additionally, when assessing the veritable accuracy of all methods, the original ground truth, as
shown in Figure 6(a), is used as the same reference. Specifically, the IR-based baselines do not
construct the pseudo ground truth.Therefore, when evaluating the falsified accuracy of the IR-based
baselines, the original ground truth is regarded as the reference, similar to the evaluation of the
veritable accuracy.

Moreover, considering the effectiveness and practicality of the API sequence recommender, the
smallest unit of evaluation in our experiments is a complete API, which includes both the class
name and method name in its full designation. This approach helps avoid invalid combinations of
API classes and method names, providing directly usable and correct APIs that enhance developers’
work efficiency [67].

4.6 Experimental Results
4.6.1 RQ1. How Accurate Is DDASR in Comparison with the State-of-the-Art Approaches?
Motivation. A crucial evaluating factor for API sequence recommendation is accuracy. In DDASR,

we have incorporated a treatment for tail APIs. We evaluate the accuracy of DDASR concerning
baselines on the original Java dataset.

ACM Transactions on Software Engineering and Methodology, Vol. 34, No. 6, Article 162. Publication date: July 2025.

DDASR: Deep Diverse API Sequence Recommendation 162:19

Approach. We first train DDASR on RNN encoder-decoder, Transformer encoder-decoder, and
different LLM encoder-decoder architectures as well as DeepAPI with the aforementioned settings
on the original Java dataset. For CodeBERT andCodeTrans, we directly utilize their publicly available
models to generate API sequences. For BIKER, an information retrieval-based approach, we execute
the open source code after necessary modifications. Originally, BIKER calculates the similarity
between a new query and existing questions in a historical repository, as well as the similarity
between the new query and the official documentation descriptions of APIs in the repository, using
a harmonic mean as the ranking score. For API sequence recommendation, we modify the approach
to compute the similarity between the new query and the questions in the historical repository, as
well as the similarity between the new query and the official documentation descriptions of API
sequences in the repository, again using a harmonic mean as the ranking score. Specifically, we
calculate the similarity between the new query and each API’s official documentation description
within an API sequence and use the average of these similarities as the similarity measure between
the new query and the official documentation descriptions of API sequences. This tailored approach
enhances BIKER’s ability to recommend sequences of APIs that are relevant to the new query.
For DGAS, we replicate the algorithm and parameters as described in the article. We successfully
replicated the results of BIKER and DGAS as reported in their original works [26, 72] to ensure the
correctness of our implementation. For GPT-3.5 and GPT-4, we apply nucleus sampling with the
sampling parameters set to C>?_? = 0.9 and C4<?4A0CDA4 = 0.9. We use the prompt “Here are some
examples: \n Input Query : $EI $. \n Output API Sequence : EO. \n Please generate the C>?_K API
sequences in PL following the output format in examples that can solve the query : $Q $.,” where EI
represents the example of input query, EO represents the example of output API sequence, K
represents the number of API sequences recommended, PL represents the programming language,
and Q represents the query of the developer, as the input for GPT-3.5 and GPT-4 to generate
API sequences.

We assess the performance using accuracy metrics, specifically BLEU% , ROUGE% , MAP% , and
NDCG% , across the top-1, top-5, and top-10 recommendation results. Additionally, we evaluate the
top-1, top-5, and top-10 recommendation results using restored veritable accuracy metrics BLEU$,
ROUGE$, MAP$, and NDCG$.

We perform t-test, a statistical test that tests for differences in means between two groups are
used to find if differences in reported performance are statistically significant. We first examine
the significant differences between DDASR with RNN encoder-decoder, Transformer encoder-
decoder, and different LLM encoder-decoder architectures and the best-performing baseline. We
utilize t-test to test the statistical differences among top-1, top-5, and top-10 results. In addition, the
significant differences among DDASR with different LLMs when applying the LLM encoder-decoder
architecture are also assessed.

Moreover, we conduct ablation studies by comparing the veritable accuracy of CodeBERT, DASR,
DASR+PGT, and DDASR at top-10 recommendation results to evaluate the performance of each
component within DDASR. In the experiment, we select CodeBERT as the encoder for DASR,
DASR+PGT, and DDASR.
Results. Figure 7 shows an example of the input prompt and output of GPT-4. Tables 4 and 5

show the evaluation results of falsified accuracy and veritable accuracy, respectively, on the original
dataset. The bold numbers in the table represent the optimal outcomes. The p-value is the result of
the t-test between DDASR and the best-performing baseline. Figure 8 shows the comparison of
top-k results and the comparison of DDASR using different LLMs. Table 6 shows the evaluation
results of ablation studies in veritable accuracy on the original dataset.

ACM Transactions on Software Engineering and Methodology, Vol. 34, No. 6, Article 162. Publication date: July 2025.

162:20 S. Nan et al.

Fig. 7. An example of the input prompt and output of GPT-4.

Table 4. Evaluation Results in Falsified Accuracy on the Original Java Dataset

Models BLEU% ROUGE% MAP% NDCG% p
Top-1 Top-5 Top-10 Top-1 Top-5 Top-10 Top-1 Top-5 Top-10 Top-1 Top-5 Top-10

Baselines

DeepAPI 0.2818 0.3659 0.3738 0.4012 0.5260 0.5387 0.3672 0.4308 0.4374 0.3672 0.3572 0.3545 -
BIKER 0.0000 0.0000 0.0000 0.1201 0.1622 0.1811 0.2892 0.3471 0.4512 0.0700 0.0612 0.0588 -
DGAS 0.0101 0.0377 0.0635 0.0795 0.1903 0.2424 0.0242 0.0896 0.1493 0.0242 0.0448 0.0209 -

CodeBERT 0.4024 0.4677 0.4815 0.5436 0.5936 0.6413 0.4774 0.5463 0.5618 0.4774 0.3753 0.3522 -
CodeTrans 0.4178 0.4708 0.5006 0.5642 0.6266 0.6571 0.5049 0.5750 0.6115 0.5049 0.3655 0.3420 -
GPT-3.5 0.0692 0.0706 0.0739 0.0899 0.0925 0.0947 0.0687 0.0691 0.0706 0.0763 0.0758 0.0751 -
GPT-4 0.0698 0.0712 0.0745 0.0914 0.0931 0.0959 0.0699 0.0718 0.0725 0.0770 0.0765 0.0763 -

DDASR

DDASR(RNN) 0.6510 0.7601 0.7825 0.7406 0.8470 0.8653 0.7860 0.8521 0.8684 0.7860 0.7489 0.7316 ***
DDASR(Transformer) 0.6575 0.7685 0.7895 0.7466 0.8501 0.8699 0.7970 0.8632 0.8788 0.7970 0.7903 0.7876 ***
DDASR(CodeBERT) 0.6682 0.7707 0.8205 0.7591 0.8523 0.8863 0.8158 0.8737 0.8971 0.8158 0.8123 0.8104 ***

DDASR(GraphCodeBERT) 0.6628 0.7742 0.8218 0.7563 0.8551 0.8892 0.8135 0.8784 0.8998 0.8135 0.8109 0.8093 ***
DDASR(PLBART) 0.6649 0.7703 0.8191 0.7582 0.8519 0.8822 0.8129 0.8751 0.8978 0.8129 0.8080 0.8062 ***
DDASR(CodeT5) 0.6484 0.7461 0.8027 0.7221 0.8379 0.8715 0.8026 0.8604 0.8871 0.8026 0.8000 0.8000 ***

DDASR(UniXcoder) 0.6665 0.7776 0.8246 0.7586 0.8591 0.8906 0.8137 0.8765 0.8993 0.8137 0.8092 0.8070 ***

“***” represents a highly significant statistical difference (p < 0.001), “-” represents that there is no value in this cell, and
the bold text represents the best performance.

(1) Compared to the baselines, DDASR demonstrates significant accuracy. According to Table 4,
DDASR significantly improves all metrics (p < 0.05), regardless of which architecture it uses.
The accuracy of top-1, top-5, and top-10 results is more than 55.19%, 58.47%, and 56.31% on
BLEU% , 27.99%, 33.72%, and 32.63% on ROUGE% , 55.67%, 48.19%, and 42.01% on MAP% , as well
as 55.67%, 99.55%, and 106.38% on NDCG% , respectively, which shows DDASR can provide
correct API sequences in most cases. The BLEU% and BLEU$ of BIKER are about 0, indicating
that the API sequences recommended by BIKER do not retain the correct call relationship. In
addition, CodeBERT performs best as the encoder of DDASR in terms of accuracy in the top-1
recommendation results. In the top-5 and top-10 recommendation results, UniXcoder excels
in terms of BLEU% and ROUGE% metrics performance, and GraphCodeBERT, on the other
hand, demonstrates the best performance in terms of MAP% metric, and when it comes to

ACM Transactions on Software Engineering and Methodology, Vol. 34, No. 6, Article 162. Publication date: July 2025.

DDASR: Deep Diverse API Sequence Recommendation 162:21

Table 5. Evaluation Results in Veritable Accuracy on the Original Java Dataset

Models BLEU$ ROUGE$ MAP$ NDCG$ p
top-1 top-5 top-10 top-1 top-5 top-10 top-1 top-5 top-10 top-1 top-5 top-10

Baselines

DeepAPI 0.2806 0.3598 0.3701 0.3961 0.5211 0.5332 0.3593 0.4201 0.4269 0.3588 0.3463 0.3461 -
BIKER 0.0000 0.0000 0.0000 0.1201 0.1622 0.1811 0.2892 0.3471 0.4512 0.0700 0.0612 0.0588 -
DGAS 0.0101 0.0377 0.0635 0.0795 0.1903 0.2424 0.0242 0.0896 0.1493 0.0242 0.0448 0.0209 -

CodeBERT 0.3964 0.4631 0.4774 0.5384 0.5886 0.6365 0.4687 0.5371 0.5511 0.4681 0.3671 0.3438 -
CodeTrans 0.4118 0.4678 0.4967 0.5591 0.6214 0.6527 0.4949 0.5643 0.6023 0.4951 0.3568 0.3333 -
GPT-3.5 0.0692 0.0706 0.0739 0.0899 0.0925 0.0947 0.0687 0.0691 0.0706 0.0763 0.0758 0.0751 -
GPT-4 0.0698 0.0712 0.0745 0.0914 0.0931 0.0959 0.0699 0.0718 0.0725 0.0770 0.0765 0.0763 -

DDASR

DDASR(RNN) 0.6476 0.7564 0.7802 0.7354 0.8421 0.8603 0.7771 0.8438 0.8591 0.7763 0.7396 0.7224 ***
DDASR(Transformer) 0.6551 0.7613 0.7854 0.7412 0.8451 0.8647 0.7881 0.8530 0.8689 0.7888 0.7800 0.7781 ***
DDASR(CodeBERT) 0.6612 0.7654 0.8185 0.7541 0.8479 0.8817 0.8059 0.8647 0.8891 0.8061 0.8036 0.8007 ***

DDASR(GraphCodeBERT) 0.6564 0.7685 0.8197 0.7521 0.8500 0.8843 0.8047 0.8691 0.8900 0.8043 0.8004 0.8001 ***
DDASR(PLBART) 0.6587 0.7653 0.8154 0.7529 0.8467 0.8774 0.8040 0.8662 0.8898 0.8022 0.7972 0.7983 ***
DDASR(CodeT5) 0.6447 0.7435 0.7966 0.7167 0.8322 0.8661 0.7933 0.8498 0.8781 0.7936 0.7889 0.7908 ***

DDASR(UniXcoder) 0.6598 0.7741 0.8215 0.7533 0.8546 0.8857 0.8048 0.8677 0.8900 0.8027 0.7991 0.7989 ***

“***” represents a highly significant statistical difference (p < 0.001), “-” represents that there is no value in this cell, and
the bold text represents the best performance.

Fig. 8. Accuracy comparative analysis on the original Java dataset. (a) Comparison of top-k results under
different falsified accuracy metrics, (b) comparison of DDASR with different LLMs in falsified accuracy, (c)
comparison of top-k results under different veritable accuracy metrics, and (d) comparison of DDASR with
different LLMs in veritable accuracy.

NDCG% metric, CodeBERT outperforms other encoders. From Table 5, we find that there are
consistent results in terms of veritable accuracy. From Figure 8(b) and (d), it can be observed
that DDASR using GraphCodeBERT demonstrates the best overall performance. Moreover, it
is observed that GPT-3.5 and GPT-4 exhibit sub-optimal performance. We hypothesize that,
due to the high degree of flexibility in LLMs when generating output, while some of the API
sequences generated may be semantically correct, they may differ from the ground truth

ACM Transactions on Software Engineering and Methodology, Vol. 34, No. 6, Article 162. Publication date: July 2025.

162:22 S. Nan et al.

Table 6. Evaluation Results of Ablation Studies in
Veritable Accuracy on the Original Dataset

Models BLEU$ ROUGE$ MAP$ NDCG$

CodeBERT 0.4774 0.6365 0.5511 0.3438
DASR(CodeBERT) 0.8375 0.9098 0.8972 0.8184

DASR(CodeBERT)+PGT 0.7901 0.8522 0.8654 0.7963
DDASR(CodeBERT) 0.8135 0.8817 0.8891 0.8007

The bold text represents the best performance.

as shown in Figure 7. This discrepancy results in poor performance when evaluated using
metrics.

(2) An increase in the number of recommended results tends to result in improved accuracy . As the
number of recommendation results rises, BLEU% , BLEU$, ROUGE% , ROUGE$, MAP% , and
MAP$ increase. It indicates that developers are more likely to discover the optimal solution
when more results are offered. Nevertheless, the growth is not significant (p > 0.05). In
addition, NDCG% and NDCG$ decrease as the number of recommendation results increases.
It verifies that the first appearance of correct APIs is concentrated in the position in front of
the recommendation results.

(3) The performance gap of DDASR with the LLM encoder-decoder architecture is not very significant
when applying different LLMs (p > 0.05). In the top-10 recommended results, the differences
of DDASR with different LLMs in BLEU% , ROUGE% , MAP% , and NDCG% are only 0.67%,
2.19%, 1.43%, and 1.30%, respectively, and in BLEU$, ROUGE$, MAP$, and NDCG$ are only
3.13%, 2.26%, 1.36%, and 1.25%, respectively.

(4) Merging API fragments into complete APIs can effectively increase the accuracy . From Table 6,
we observe that DASR, which only merges API fragments into complete APIs, performs the
best. Adding the pseudo ground truth construction component to DASR causes a significant
drop in accuracy. Our method, DDASR, achieves a balance between accuracy and diversity.
Although its accuracy slightly decreases compared to DASR, it still shows a significant
improvement compared to the baselines.

Answer to RQ1: When using alternative encoder-decoder architectures on the original Java dataset,
DDASR consistently outperforms the baseline models in terms of accuracy. Furthermore, the
performance of DDASR with different LLM encoder-decoder models is not pronounced.

4.6.2 RQ2. Does DDASR Improve Diversity While Maintaining Accuracy?
Motivation. Diversity is another essential factor in API sequence recommendation, which is

disregarded by previous approaches. In RQ2, we look at how well our DDASR performs in terms
of diversity. Furthermore, accuracy and diversity are frequently incompatible objectives. We also
investigate how DDASR affects accuracy when improving diversity.
Approach. To answer this question, we conduct comparative experiments at the top-10 rec-

ommendation results on the diverse Java dataset and the Python dataset. We train DDASR and
DASR on RNN encoder-decoder, Transformer encoder-decoder, and different LLM encoder-decoder
architectures as well as deep learning-based baselines with the aforementioned settings on the
diverse Java dataset and the Python dataset, respectively. Specifically, when working on the Python
dataset, we directly utilize the publicly available model of CodeBERT to generate results. The
execution of BIKER, DGAS, GPT-3.5, and GPT-4 is the same as RQ1.

ACM Transactions on Software Engineering and Methodology, Vol. 34, No. 6, Article 162. Publication date: July 2025.

DDASR: Deep Diverse API Sequence Recommendation 162:23

Table 7. Evaluation Results in Accuracy and Diversity at Top-10 Recommendation Results on the Diverse
Java Dataset

Models BLEU% BLEU$ ROUGE% ROUGE$ MAP% MAP$ NDCG% NDCG$ Coverage p

Baselines

DeepAPI 0.0943 0.0941 0.1567 0.1532 0.1815 0.1804 0.1506 0.1401 0.0329 -
BIKER 0.0000 0.0000 0.0235 0.0235 0.0554 0.0554 0.0039 0.0039 0.0319 -
DGAS 0.0081 0.0081 0.2039 0.2039 0.0176 0.0176 0.0019 0.0019 0.0815 -

CodeBERT 0.0464 0.0402 0.1222 0.1198 0.0909 0.0896 0.0347 0.0309 0.0544 -
CodeTrans 0.2477 0.2389 0.3743 0.3695 0.3375 0.3246 0.1324 0.1276 0.0744 -
GPT-3.5 0.0462 0.0462 0.0498 0.0498 0.0543 0.0543 0.0527 0.0527 0.0036 -
GPT-4 0.0449 0.0449 0.0501 0.0501 0.0549 0.0549 0.0534 0.0534 0.0035 -

DASR

DASR(RNN) 0.2926 0.2865 0.4152 0.4038 0.4557 0.4442 0.4243 0.4168 0.0400 ***
DASR(Transformer) 0.4124 0.4027 0.5690 0.5603 0.4865 0.4796 0.4268 0.4127 0.0406 ***
DASR(CodeBERT) 0.5260 0.5086 0.6387 0.6174 0.6231 0.6136 0.4752 0.4621 0.0430 ***

DASR(GraphCodeBERT) 0.4711 0.4609 0.5782 0.5680 0.5885 0.5801 0.4119 0.4093 0.0418 ***
DASR(PLBART) 0.4769 0.4688 0.5801 0.5769 0.5876 0.5796 0.4249 0.4117 0.0438 ***
DASR(CodeT5) 0.4992 0.4911 0.6038 0.5967 0.6007 0.5943 0.4521 0.4474 0.0446 ***

DASR(UniXcoder) 0.4851 0.4824 0.5866 0.5851 0.6056 0.5994 0.4208 0.4165 0.0428 ***

DDASR

DDASR(RNN) 0.3221 0.3196 0.4471 0.4400 0.4493 0.4438 0.4526 0.4435 0.1064 ***
DDASR(Transformer) 0.4002 0.3971 0.5561 0.5513 0.4968 0.4883 0.4344 0.4263 0.0758 ***
DDASR(CodeBERT) 0.5159 0.5077 0.6262 0.6149 0.6365 0.6255 0.4629 0.4554 0.1085 ***

DDASR(GraphCodeBERT) 0.4629 0.4581 0.5689 0.5675 0.5845 0.5769 0.4115 0.4073 0.1038 ***
DDASR(PLBART) 0.4550 0.4516 0.5671 0.5664 0.5832 0.5770 0.4067 0.4037 0.0996 ***
DDASR(CodeT5) 0.4880 0.4826 0.5914 0.5852 0.6100 0.6012 0.4404 0.4343 0.0978 ***

DDASR(UniXcoder) 0.4759 0.4702 0.5796 0.5780 0.6018 0.5927 0.4199 0.4154 0.1003 ***

“***” represents a highly significant statistical difference (p < 0.001), “-” represents that there is no value in this cell, and
the bold text represents the best performance.

We calculate the accuracymetrics of BLEU% , ROUGE% , MAP% , and NDCG% , the veritable accuracy
metrics of BLEU$, ROUGE$, MAP$, and NDCG$, as well as the diversity metric of coverage on the
top-10 results of all models. Moreover, we conduct significance analysis for performance differences
between DASR and the best-performing baseline, between DDASR and the best-performing baseline,
among DASR with different LLM encoder-decoder architectures, among DDASR with different
LLM encoder-decoder architectures, between DASR and DDASR on coverage, and between DASR
and DDASR on accuracy.

We conduct ablation studies by comparing the veritable accuracy of CodeBERT, DASR, DASR+PGT,
and DDASR at top-10 recommendation results to evaluate the performance of each component
within DDASR on the diverse Java dataset and the Python dataset. In the experiment, we select
CodeBERT as the encoder for DASR, DASR+PGT, and DDASR. Additionally, we divide both the
test sets of the diverse Java dataset and the Python dataset into tail API datasets, a subset of queries
whose ground truth contains tail APIs, and non-tail API datasets, a subset of queries whose ground
truth contains non-tail APIs only. We conduct ablation studies separately on the non-tail and tail
API datasets within both the diverse Java dataset and the Python dataset.
Results. Table 7 shows the experimental results on the diverse Java dataset. Figure 9 shows the

change of accuracy metrics in DASR and DDASR with epoch during the training phase. Among
them, DASR and DDASR employ seven encoder-decoder models. The performance results on the
Python dataset are shown in Table 8. The p-value in Tables 7 and 8 is the result of the t-test between
DASR and the best-performing baseline, as well as between DDASR and the best-performing
baseline. Figure 10 shows the comparison of DASR using different LLMs and the comparison of
DDASR using different LLMs on the diverse Java dataset. Figure 11 shows the comparison of DASR
and DDASR on accuracy and the comparison of DASR and DDASR on coverage. Figure 12 shows

ACM Transactions on Software Engineering and Methodology, Vol. 34, No. 6, Article 162. Publication date: July 2025.

162:24 S. Nan et al.

Fig. 9. The comparison of BLEU, ROUGE, MAP, and NDCG for each epoch on the diverse Java dataset. (a)
The performance of DDASR, and (b) the performance of DASR.

Table 8. The Performance in Accuracy and Diversity at Top-10 Recommendation Results on the
Python Dataset

Models BLEU% BLEU$ ROUGE% ROUGE$ MAP% MAP$ NDCG% NDCG$ Coverage p

Baselines

DeepAPI 0.4386 0.4227 0.6561 0.6403 0.5012 0.4835 0.3561 0.3342 0.1851 -
BIKER 0.1865 0.1865 0.2075 0.2075 0.4037 0.4037 0.3158 0.3158 0.1164 -
DGAS 0.4423 0.4423 0.3466 0.3466 0.5241 0.5241 0.3455 0.3455 0.1508 -

CodeBERT 0.4099 0.3896 0.6113 0.6002 0.5249 0.5041 0.1836 0.1702 0.2080 -
CodeTrans 0.3998 0.3854 0.6045 0.5987 0.5176 0.4988 0.1901 0.1819 0.1924 -
GPT-3.5 0.0753 0.0753 0.0899 0.0899 0.1396 0.1396 0.1303 0.1303 0.0248 -
GPT-4 0.0872 0.0872 0.0981 0.0981 0.1507 0.1507 0.1443 0.1443 0.0259 -

DASR

DASR(RNN) 0.4843 0.4754 0.6712 0.6693 0.5440 0.5229 0.3767 0.3584 0.1475 ns
DASR(Transformer) 0.4982 0.4799 0.6828 0.6713 0.5845 0.5770 0.2752 0.2698 0.2320 ns
DASR(CodeBERT) 0.5432 0.5240 0.7014 0.6933 0.6117 0.6032 0.3660 0.3587 0.1954 ns

DASR(GraphCodeBERT) 0.5058 0.4896 0.6837 0.6830 0.5781 0.5704 0.3206 0.3146 0.1786 ns
DASR(PLBART) 0.5098 0.4927 0.6858 0.6781 0.5860 0.5810 0.3234 0.3150 0.1784 ns
DASR(CodeT5) 0.5389 0.5228 0.6983 0.6926 0.6090 0.6017 0.3633 0.3572 0.1736 ns

DASR(UniXcoder) 0.4885 0.4719 0.6746 0.6689 0.5682 0.5610 0.2881 0.2824 0.1946 ns

DDASR

DDASR(RNN) 0.4560 0.4507 0.6658 0.6632 0.5219 0.5134 0.3211 0.3117 0.2232 ns
DDASR(Transformer) 0.4292 0.4128 0.6453 0.6227 0.5108 0.5039 0.2546 0.2405 0.2378 ns
DDASR(CodeBERT) 0.4858 0.4679 0.6722 0.6678 0.5672 0.5592 0.3677 0.3605 0.2247 ns

DDASR(GraphCodeBERT) 0.4928 0.4768 0.6781 0.6710 0.5726 0.5620 0.3879 0.3809 0.2103 ns
DDASR(PLBART) 0.4869 0.4738 0.6733 0.6682 0.5682 0.5619 0.3609 0.3558 0.2216 ns
DDASR(CodeT5) 0.4544 0.4453 0.6650 0.6611 0.5295 0.5290 0.3603 0.3543 0.2256 ns

DDASR(UniXcoder) 0.4984 0.4828 0.6829 0.6719 0.5776 0.5668 0.3843 0.3758 0.2177 ns

“ns” represents no significance (p > 0.05), “-” represents that there is no value in this cell, and the bold text represents the
best performance.

the comparison of DASR and DDASR with different LLMs on accuracy on the diverse Java dataset.
Figures 13–15 show the comparison on the Python dataset. Table 9 shows the evaluation results
of ablation studies on the complete, non-tail, and tail diverse Java dataset and on the complete,
non-tail, tail Python dataset.

(1) Both DASR and DDASR exhibit significant accuracy gains over baselines (p < 0.05), and the
difference between DASR and DDASR is not particularly noticeable (p > 0.05) on the diverse
Java dataset . As can be seen from Table 7, accuracy metrics for both DASR and DDASR

ACM Transactions on Software Engineering and Methodology, Vol. 34, No. 6, Article 162. Publication date: July 2025.

DDASR: Deep Diverse API Sequence Recommendation 162:25

Fig. 10. Accuracy comparative analysis of DASR and DDASR applying different LLMs on the diverse Java
dataset. (a) Comparison of DASR with different LLMs applied, and (b) comparison of DDASR with different
LLMs.

Fig. 11. Comparative analysis between DASR and DDASR on the diverse Java dataset. (a) Comparison on
accuracy, and (b) comparison on coverage.

have significantly increased in comparison to the baselines (p < 0.05), which illustrates that
word embedding of the complete API outperforms character embedding of API fragments.
Regardless of which LLMs DDASR uses, DDASR exceeds baselines with the best performance
by more than 83.69%, 89.03%, 51.51%, 53.29%, 77.73%, 101.54%, 109.77%, and 188.15% on all
accuracy metrics. From Figure 9, we can observe that DASR and DDASR using CodeBERT as
the encoder consistently outperform other models. As shown in Figure 11(a), the difference
is not particularly apparent (p > 0.05) between DASR and DDASR. Moreover, for DDASR
and DASR, which use the same LLMs, DDASR has not shown a significant decrease in
accuracy, and in some cases, it even outperforms DASR as shown in Figure 12. It indicates
that the treatment of tail APIs in DDASR does not cause a significant drop in the accuracy of
recommendation results.

(2) Both DASR and DDASR with LLMs perform better than baselines in terms of accuracy, and
the differences are not particularly noticeable (p > 0.05) on the Python dataset . Regardless of
which LLMs DDASR uses, DDASR exceeds baselines with the best performance by more than
2.74%, 0.68%, 1.36%, 3.25%, 4.94%, 1.20%, 2.47%, and 6.01% on all accuracy metrics, although
the difference is not significant (p > 0.05). We speculate it is due to the more straightforward
composition of Python APIs. For example, “scipy.special.digamma” is a typical API in the
Python dataset. There are essentially no symbols like “<” and “>” in API, and no nested
usage patterns as in the Java dataset, making the effect of merging APIs less obvious than

ACM Transactions on Software Engineering and Methodology, Vol. 34, No. 6, Article 162. Publication date: July 2025.

162:26 S. Nan et al.

Fig. 12. Accuracy comparative analysis between DASR and DDASR with different LLMs on the diverse Java
dataset. (a) Comparison with CodeBERT, (b) comparison with GraphCodeBERT, (c) comparison with PLBART,
(d) comparison with CodeT5, and (e) comparison with UniXcoder.

Fig. 13. Accuracy comparative analysis of DASR and DDASR applying different LLMs on the Python dataset.
(a) Comparison of DASR with different LLMs, and (b) comparison of DDASR with different LLMs.

in the Java dataset. Furthermore, it can be observed from Figures 14(a) and 15 that, on the
Python dataset, the accuracy difference between DASR and DDASR is not significant.

(3) On both the diverse Java dataset and the Python dataset, the restored veritable accuracy is
lower than the falsified accuracy, but DASR and DDASR still perform better than baselines.
Compared to BLEU% , ROUGE% , MAP% , and NDCG% , BLEU$, ROUGE$, MAP$, and NDCG$
all show a decrease. The reduction for DASR and deep learning-based baselines, however, is
frequently more than for DDASR. Compared to the falsified accuracy, DDASR, DASR, and
deep learning-based baselines have, on average, decreased the restored veritable accuracy
by 1.17%, 1.75%, and 4.17% on the diverse Java dataset, as well as decreased by 1.97%, 2.01%,

ACM Transactions on Software Engineering and Methodology, Vol. 34, No. 6, Article 162. Publication date: July 2025.

DDASR: Deep Diverse API Sequence Recommendation 162:27

Fig. 14. Comparative analysis between DASR and DDASR on the Python dataset. (a) Comparison on accuracy,
and (b) comparison on coverage.

Fig. 15. Accuracy comparative analysis between DASR and DDASR with different LLMs on the Python
dataset. (a) Comparison with CodeBERT, (b) comparison with GraphCodeBERT, (c) comparison with PLBART,
(d) comparison with CodeT5, and (e) comparison with UniXcoder.

and 3.85% on the Python dataset, respectively. This suggests that constructing the pseudo
ground truth through clustering and relocating is more effective than using <UNK> tags for
replacement.

(4) The differences among DDASR with different LLMs and among DASR applying different LLMs
are not significant on accuracy (p > 0.05). We evaluate the statistical differences among DASR
with different LLM encoder-decoder architectures and among DDASR with different LLM
encoder-decoder architectures. It can be found that there are no significant differences (p >

0.05) as shown in Figures 10 and 13. Furthermore, the results suggest that DASR and DDASR,
when utilizing CodeBERT, perform the best on the diverse Java dataset, while DASR using
CodeBERT and DDASR using UniXcoder excel on the Python dataset.

(5) DDASR significantly enhances diversity (p < 0.05) while maintaining accuracy (p > 0.05). As
shown in Tables 7 and 8, DDASR demonstrates a significant improvement in both diversity

ACM Transactions on Software Engineering and Methodology, Vol. 34, No. 6, Article 162. Publication date: July 2025.

162:28 S. Nan et al.

Table 9. Evaluation Results of Ablation Studies on the Diverse Java Dataset and the
Python Dataset

Datasets Models BLEU$ ROUGE$ MAP$ NDCG$ Coverage

Diverse
Java

dataset

Complete
dataset

CodeBERT 0.0402 0.1198 0.0896 0.0309 0.0544
DASR(CodeBERT) 0.5086 0.6174 0.6136 0.4621 0.0430

DASR(CodeBERT)+PGT 0.4921 0.6001 0.6142 0.4512 0.1098
DDASR(CodeBERT) 0.5077 0.6149 0.6255 0.4554 0.1085

Non-tail
API dataset

CodeBERT 0.0416 0.1244 0.0946 0.0318 -
DASR(CodeBERT) 0.5154 0.6235 0.6188 0.4640 -

DASR(CodeBERT)+PGT 0.4909 0.5982 0.6155 0.4515 -
DDASR(CodeBERT) 0.5105 0.6189 0.6292 0.4560 -

Tail
API dataset

CodeBERT 0.0382 0.1101 0.0798 0.0287 -
DASR(CodeBERT) 0.4958 0.6052 0.6033 0.4571 -

DASR(CodeBERT)+PGT 0.4943 0.6044 0.6110 0.4508 -
DDASR(CodeBERT) 0.5010 0.6098 0.6178 0.4541 -

Python
dataset

Complete
dataset

CodeBERT 0.3896 0.6002 0.5041 0.1702 0.2080
DASR(CodeBERT) 0.5240 0.6933 0.6032 0.3587 0.1954

DASR(CodeBERT)+PGT 0.4518 0.6542 0.5553 0.3572 0.2401
DDASR(CodeBERT) 0.4679 0.6678 0.5592 0.3605 0.2247

Non-tail
API dataset

CodeBERT 0.3902 0.6037 0.5068 0.1734 -
DASR(CodeBERT) 0.5289 0.6962 0.6091 0.3588 -

DASR(CodeBERT)+PGT 0.4510 0.6528 0.5559 0.3574 -
DDASR(CodeBERT) 0.4671 0.6669 0.5598 0.3606 -

Tail
API dataset

CodeBERT 0.3772 0.5891 0.4905 0.1638 -
DASR(CodeBERT) 0.4699 0.6673 0.5578 0.3579 -

DASR(CodeBERT)+PGT 0.4533 0.6565 0.5548 0.3568 -
DDASR(CodeBERT) 0.4703 0.6723 0.5585 0.3600 -

“-” represents that there is no value in this cell and the bold text represents the best performance.

and accuracy compared to the baselines. Results in Table 9 indicate that DASR, DASR+PGT,
and DDASR all show improvements in accuracy over the baselines, with DASR performing
the best in terms of accuracy, though its diversity remains low. DASR+PGT offers a substantial
increase in diversity but at a significant loss of accuracy compared to DASR. In contrast,
DDASR significantly enhances diversity, as illustrated in Figures 11(b) and 14(b), without
significantly compromising accuracy, as shown in Figures 12 and 15.

(6) DDASR excels in recommending tail APIs more accurately . As shown in Tables 7 and 8, DDASR
performs well in terms of coverage, indicating that it can recommend a greater number of tail
APIs. In Table 9, DDASR exhibits the best performance on the tail API dataset, demonstrating
its ability to recommend more precise tail APIs.

Answer to RQ2 : DDASR exhibits superior diversity compared to DASR and the baselines. While
DASR+PGT exhibits excellent diversity, it causes a sharp decline in accuracy. In terms of accuracy,
there is no significant difference between DDASR and DASR. However, DDASR does outperform
the baselines. These findings indicate that our DDASR can significantly increase diversity without
compromising accuracy.

4.6.3 RQ3. Can DDASR Help Programmers Address Tasks More Effectively?
Motivation. The ultimate goal of API sequence recommendation is to assist developers. Thus, in

this section, we conduct a human evaluation to assess our DDASR.

ACM Transactions on Software Engineering and Methodology, Vol. 34, No. 6, Article 162. Publication date: July 2025.

DDASR: Deep Diverse API Sequence Recommendation 162:29

Table 10. The Rating Scores of the Human Evaluation

Models Evaluation
Sets

Rating Score
of Developer 1

Rating Score
of Developer 2

Rating Score
of Developer 3

Rating Score
of Developer 4

Rating Score
of Developer 5

Rating Score
of Developer 6

Zero One Two Avg Zero One Two Avg Zero One Two Avg Zero One Two Avg Zero One Two Avg Zero One Two Avg

DeepAPI Tail API set 13 5 0 0.28 13 5 0 0.28 15 3 0 0.17 10 7 1 0.5 11 7 0 0.39 13 5 0 0.28
Non-tail API set 36 40 6 0.63 34 44 4 0.63 39 38 5 0.59 34 43 5 0.65 38 40 4 0.59 46 33 3 0.48

BIKER Tail API set 13 5 0 0.28 12 6 0 0.33 13 5 0 0.28 10 8 0 0.44 12 5 1 0.28 10 6 2 0.33
Non-tail API set 46 30 6 0.52 40 38 4 0.56 53 27 2 0.38 40 35 7 0.59 40 36 6 0.59 43 30 9 0.59

DGAS Tail API set 10 8 0 0.44 11 6 1 0.44 10 7 1 0.5 11 7 0 0.39 12 5 1 0.39 10 6 2 0.56
Non-tail API set 29 41 12 0.79 34 48 0 0.59 30 39 13 0.79 27 43 12 0.82 29 38 15 0.83 23 32 27 1.05

CodeBERT Tail API set 6 11 1 0.72 6 10 2 0.78 8 10 0 0.56 8 9 1 0.61 5 9 4 0.94 2 13 3 1.06
Non-tail API set 25 50 7 0.78 20 50 12 0.90 17 42 23 1.07 23 35 24 0.98 19 55 18 1.11 14 54 14 1.00

CodeTrans Tail API set 5 13 0 0.72 6 10 2 0.78 3 11 4 1.06 1 12 5 1.22 0 10 8 1.44 1 10 7 1.33
Non-tail API set 23 55 4 0.77 15 43 24 1.11 16 46 20 1.05 11 54 17 1.07 16 51 15 0.99 12 57 13 1.01

GPT-3.5 Tail API set 11 4 3 0.56 16 2 0 0.11 11 5 2 0.50 14 1 3 0.39 7 7 4 0.83 9 6 3 0.67
Non-tail API set 36 18 28 0.90 29 18 35 1.07 30 20 32 1.02 24 15 43 1.23 21 21 40 1.23 20 27 35 1.18

GPT-4 Tail API set 10 5 3 0.61 11 3 4 0.61 8 7 3 0.72 13 2 3 0.44 6 8 4 0.89 7 8 3 0.78
Non-tail API set 30 24 28 0.98 28 17 37 1.11 27 25 30 1.04 23 16 43 1.24 20 20 42 1.27 18 30 34 1.20

DDASR Tail API set 3 9 6 1.17 4 9 5 1.06 3 8 7 1.22 0 9 9 1.5 0 6 12 1.67 0 8 10 1.56
Non-tail API set 12 27 43 1.38 18 27 37 1.23 16 20 46 1.37 5 47 30 1.30 2 26 54 1.63 4 24 54 1.61

A score of zero indicates that the generated API sequences are of no help in solving the requirement, a score of one
indicates it is valuable to the developer, and a score of two suggests it can solve the requirement. Avg represents the
average score given by each developer to each evaluation set.

Approach. We randomly select 100 queries and generate the top-10 API sequences using all
baselines and DDASR, respectively, to evaluate the validity and usefulness of the results for pro-
grammers. Six developers who study or work in computer-related fields with experience in Java
projects are invited to join a subject group. Three of the developers are currently pursuing master’s
degrees with more than 2 years of experience programming in Java, while the other three are
engaged in Java development in Internet companies, such as Alibaba, Byte Dance, and Huawei. It
is important to note that they are not co-authors. They independently give a rating score for the
generated API sequences according to their experience. A score of zero indicates that they believed
the API sequences generated are completely useless for the query, while a score of one denotes
they are valuable to the developers. For example, the key API for solving the query appears in the
generated API sequences, or the results inspire them. The rating score is two if the API sequences
generated are a way to the query. In addition, the developers are also allowed to search the Internet
for unfamiliar concepts. Specifically, to ensure fairness in the human evaluation, each developer
was provided only the query and the corresponding API sequences generated by different models,
without being informed which model produced them. We further subdivide the 100 queries into a
tail API set, a subset of queries whose ground truth contains tail APIs, and a non-tail API set, a
subset of queries whose ground truth contains non-tail APIs only. We analyze the rating scores
given by developers to the results generated by all methods in both sets.

Results. The results of the human evaluation are shown in Table 10. Developers 1–3 are students,
and developers 4–6 have working experience in Internet companies. Table 11 shows 10 queries
with the same rating scores and their ground truth, top-3 generated API sequences, and human
rating scores. These queries vary in length, containing both very long and short queries that
were not included in the training set. They include requirements for page layout, mathematical
calculation, string processing, file streaming, and so on. In addition, tail APIs are highlighted in italics
in the table.

ACM Transactions on Software Engineering and Methodology, Vol. 34, No. 6, Article 162. Publication date: July 2025.

162:30 S. Nan et al.

Table 11. Results of Human Evaluation with API Sequences in the Ground Truth, Top-3 Recommendation
Results by DDASR, and Human Rating Scores with 10Queries

ID Query API Sequence in the Ground Truth API Sequences Generated by DDASR Rating
Score

1 Create appropriate menu item

JMenu.instance
JCheckBoxMenuItem.<init>
JCheckBoxMenuItem.setName
JCheckBoxMenuItem.addActionListener

1 JMenuItem.<init>
JMenuItem.addActionListener

2 JMenuItem.<init> JMenuItem.setMnemonic
JMenuItem.addActionListener

3 JMenuItem.<init> ActionListener.<init>
JMenuItem.addActionListener

1

2 Build json string fields values
given module

StringBuilder.<init>
StringBuilder.append
Map<String,List<Field».keySet
String.cast

1 String.instance String.cast Collection.instance
Collection.cast

2 StringBuilder.<init> StringBuilder.append
StringBuilder.deleteCharAt
StringBuilder.toString

3 String.instance String.cast Object.toString
Collection.instance

0

3 Calculate standard deviation Math.sqrt
Math.round

1 Math.pow Math.sqrt
2 Math.pow Math.round Math.sqrt
3 Math.pow Math.sqrt

2

4
Create full classpath including
existing classpath additional
paths jars service files

System.getenv
StringBuilder.<init>
File.getAbsolutePath

1 System.getenv StringBuilder.<init>
StringBuilder.append

2 StringBuilder.<init> StringBuilder.append
StringBuilder.toString

3 StringBuilder.<init> StringBuilder.append
File.getAbsolutePath

2

5

Create returns xml <UNK> sess-
ion element, stores <UNK> ses-
sion details, including <UNK>
state

Document.createElement
Element.setAttribute
Integer.toString

1 Element.<init> Element.setAttribute
Element.addContent

2 Element.<init> String.valueOf
Element.setAttribute

3 Element.<init> Element.setAttribute
Element.<init>

1

6 End operation
Map<Integer,LinkedList<Operation».get
LinkedList<Operation>.isEmpty
LinkedList<Operation>.getLast

1 Map<Integer,LinkedList<Operation».get
LinkedList<Operation>.getLast
LinkedList<Operation>.removeLast

2 Map<Integer,LinkedList<Operation».get
LinkedList<Operation>.isEmpty
LinkedList<Operation>.getLast

3 Map<Integer,LinkedList<Operation».get
LinkedList<Operation>.isEmpty
LinkedList<Operation>.isEmpty

2

7 Open connection given url spe-
cific http method

URL.openConnection
HttpURLConnection.cast
HttpURLConnection.setDoOutput

1 URL.<init> URL.openConnection
HttpURLConnection.cast

2 URL.openConnection HttpURLConnection.cast
HttpURLConnection.setRequestProperty

3 URL.<init> URL.getHost URL.<init>

2

8 Return elements contained elem-
ent given fully qualified name

DTMNodeProxy.getElementsByTagNameNS
QName.getName
ArrayList.<init>
NodeList.item

1 DTMNodeProxy.getElementsByTagName
ArrayList.<init> NodeList.getLength
NodeList.item

2 DTMNodeProxy.getElementsByTagName
ArrayList.<init> Element.instance Element.cast

3 DTMNodeProxy.getElementsByTagName
ArrayList.<init> NodeList.item List.add

1

9 Locate visible view latest adapter
position

LayoutManager.getChildCount
LayoutManager.getChildAt
View.getLayoutParams

1 LayoutManager.getChildAt Location.getX
2 LayoutManager.getChildAt
LayoutManager.getChildAt

3 LayoutManager.getChildAt Location.getX
Location.getY

1

10 Set right child indent AbstractLayoutCache.invalidateSizes
BasicTreeUI.updateSize

1 BasicTreeUI.updateSize ArrayList.add
2 BasicTreeUI.updateSize
3 AbstractLayoutCache.invalidateSizes

2

ACM Transactions on Software Engineering and Methodology, Vol. 34, No. 6, Article 162. Publication date: July 2025.

DDASR: Deep Diverse API Sequence Recommendation 162:31

(1) DDASR is effective in recommending appropriate API sequences for developers in the majority
of cases. Results in Table 10 show that the average scores given by the six developers for
results generated by DDASR are higher than results generated by baselines. Moreover, the six
developers believe that the results generated by DDASR could either directly solve the query
problems or provide substantial help (rating scores greater than or equal to one) in a higher
proportion of all evaluated queries (over 78%). This indicates that DDASR can effectively
recommend suitable API sequences to developers. Notably, compared to developers 1–3,
developers 4–6 give fewer rating scores of zero and higher average scores. This difference is
likely due to the higher programming expertise of the first group, allowing them to more
effectively identify useful APIs. Specifically, for instance, GPT-3.5 and GPT-4 may generate
seemingly reasonable but incorrect APIs by concatenating keywords from the query into
API names. This can easily mislead developers with less programming experience, while
those with more experience are better at identifying these erroneous APIs.

(2) DDASR can generate more accurate API sequences for length queries, while its performance
may degrade if the query contains infrequent words represented as <UNK> tags. DDASR
recommends correct results for length queries like Query 4. Query 5 is also lengthy, with
only one API hitting, which cannot solve the query exhaustively. We assume this is because
some words, which occur less frequently in the query, are replaced with <UNK> tags during
data pre-processing. These words may be domain-specific keywords, thus preventing mining
the true intent of the query when training.

(3) For short queries, DDASR tends to generate correct results, especially when the query contains
words related to the API sequence or the topic of the query is precise. The generated API
sequences will get high accuracy if the query contains words related to the API sequence, like
the class name.Query 6, “end operation” contains the “Operation” class in the API sequence of
the ground truth, and the generated API sequences contain all APIs in the first two of results.
For queries that focus on a specific topic, like Query 3, which is dedicated to calculating the
standard variance and exhibits distinct mathematical characteristics, DDASR successfully
identifies the correct APIs in its second result. However, it should be noted that the sequence
of API calls in this instance is not in the correct order. There are two cases whose query or
correct API sequence in the ground truth contains an operation on “String” in Table 11. The
APIs about “String” account for a relatively large portion of the dataset. For queries that
involve only processing of String, DDASR can generate accurate API sequences. String is
only a class used indirectly, like Query 2. The most critical APIs are not recommended due to
the objective factor of popularity differences.

(4) DDASR is capable of recommending tail APIs that are useful for developers. As shown in
Table 10, among the tail API dataset, over 77% of the results generated by DDASR were
considered practically valuable (whose rating score is greater than or equal to 1) by six
developers. The proportion is dramatically higher than those generated by other baselines.
This demonstrates that DDASR can effectively recommend useful tail APIs to developers.
In Table 11, Queries 8–10 contain tail APIs in their ground truths. For instance, for Query 8,
“DTMNodeProxy.getElementsByTagNameNS” is a tail API, and DDASR generates “DTMNode-
Proxy.getElementsByTagName,” another tail API. Although they are not the same API, they
perform similar functions and are clustered into the same cluster during data pre-processing,
with “DTMNodeProxy.getElementsByTagName” as the cluster center. All six developers think
that the API sequences generated for Query 8 can provide substantial help in resolving
the query (rating score equal to 1), demonstrating that developers can derive inspiration
from the results generated by DDASR. For Query 9 and Query 10, DDASR successfully hit
the tail APIs.

ACM Transactions on Software Engineering and Methodology, Vol. 34, No. 6, Article 162. Publication date: July 2025.

162:32 S. Nan et al.

Table 12. Evaluation Results of Different Description Similarity Algorithms of DDASR
on the Python Dataset

Similarity Algorithms BLEU$ ROUGE$ MAP$ NDCG$ Coverage Time Cost (ms)

Our Algorithm 0.4858 0.6722 0.5672 0.3677 0.2247 0.0047
Cosine Similarity (Word2vec) 0.4805 0.6685 0.5611 0.3624 0.2249 0.0169
Cosine Similarity (CodeBERT) 0.4901 0.6782 0.5704 0.3685 0.2218 0.0527

The bold text represents the best performance.

Table 13. Evaluation Results on Accuracy
of DDASR on the Python Dataset When
the Weights of Name Similarity and

Description Similarity Vary

U V BLEU$ ROUGE$ MAP$ NDCG$

0 1 0.4799 0.6591 0.5601 0.3622
0.2 0.8 0.4852 0.6668 0.5642 0.3650
0.4 0.6 0.4845 0.6667 0.5624 0.3641
0.6 0.4 0.4856 0.6708 0.5661 0.3673
0.8 0.2 0.4858 0.6722 0.5672 0.3677
1 0 0.4852 0.6715 0.5670 0.3671

The bold text represents the best performance.

Answer to RQ3: The human evaluation, conducted by six developers, reveals that the API sequences
recommended by DDASR are perceived as useful. Specifically, the developers found it advantageous
to have functionally similar cluster centers suggested for tail APIs within sequences that contain
tail APIs.

4.6.4 RQ4. How Do the Different Functional Similarity Algorithms and the Parameter Weights in
the Similarity Algorithms Affect the Performance of DDASR?
Motivation. We calculate the functional similarity between tail APIs using name similarity and

description similarity. In this section, we investigate the performance of DDASR when different
similarity algorithms are utilized. Additionally, we study the impact of theweights of name similarity
and description similarity on the performance of DDASR.
Approach. We conduct experiments comparing the description similarity calculation algorithm

used in DDASR with semantic-based similarity algorithms: one based on Word2vec and the other
based on CodeBERT, to assess their impact on the performance of DDASR on the Python dataset.
Additionally, we vary the weights of name similarity and description similarity from 0 to 1, in
increments of 0.2, and evaluate the performance of DDASR on the Python dataset.
Results. Table 12 shows the evaluation results of different description similarity algorithms of

DDASR on the Python dataset. The time cost in the table refers to the average time required to
calculate the description similarity between two tail APIs. Table 13 shows the evaluation results on
the accuracy of DDASR on the Python dataset when the weights of name similarity and description
similarity vary. The values of U and V represent the weights of description similarity and name
similarity, respectively, when calculating the functional similarity between tail APIs.

(1) Different description similarity algorithms do not significantly impact the performance of
DDASR; however, the syntactic similarity algorithm we use has an advantage in terms of time
cost . As shown in Table 12, the syntactic similarity algorithm used by DDASR requires the

ACM Transactions on Software Engineering and Methodology, Vol. 34, No. 6, Article 162. Publication date: July 2025.

DDASR: Deep Diverse API Sequence Recommendation 162:33

least computation time, while the cosine similarity algorithm based on CodeBERT takes the
longest. In terms of accuracy, the cosine similarity algorithm based on Word2vec presents
poor accuracy, while the one based on CodeBERT achieves the best, though the difference is
not significant. For diversity, the cosine similarity algorithm based on Word2vec achieves the
best coverage, while the one based on CodeBERT performs the worst, and the differences
among the three similarity algorithms are alsominimal. Compared to the two cosine similarity
algorithms, our syntactic similarity algorithm only slightly decreases by a maximum of 0.88%,
0.88%, 0.56%, and 0.22% on the accuracy metrics BLEU$, ROUGE$, MAP$, and NDCG$,
respectively, and by a maximum of 0.09% on the diversity metric. At the same time, it reduces
the computation time by at least 72.19%. Given the large number of tail APIs in our task,
calculating the description similarity between all pairs of tail APIs requires substantial
computational resources. Therefore, balancing both time efficiency and performance in terms
of accuracy and diversity, we choose syntactic similarity to calculate the description similarity
between tail APIs.

(2) Descriptions are more important than names when calculating the functional similarity between
tail APIs. As shown in Table 13, DDASR performs the best when U = 0.8 and V = 0.2.
However, the weights of description similarity and name similarity do not significantly affect
the accuracy performance of DDASR.

Answer to RQ4: Using different similarity algorithms to calculate the description similarity between
tail APIs has little impact on the performance of DDASR, but the semantic similarity algorithm
we use can significantly reduce time consumption. In the functional similarity between tail APIs,
description similarity is more important than name similarity.

5 Threats to Validity
This section discusses potential threats to the validity of our research and experimental design.
Internal Validity. Threats to internal validity, primarily concerning experiment bias and errors,

manifest in aspects such as dataset construction and baseline replication [15, 48]. We correct the
mismatched parentheses in the Java dataset, which could potentially introduce errors, such as the
occurrence of redundant parentheses. To mitigate this threat, our developers conduct a manual
inspection, and we have also made the processed dataset publicly available. Moreover, the popularity
difference of APIs exists objectively, which is not considered in the original open source Java dataset.
To mitigate this threat, we employ the hierarchical sampling method to build a diverse dataset with
the same distribution of query-APIseq pairs containing tail APIs in the test set as in the training set.
Additionally, we conduct multiple checks to ensure that questions in the test set are not included
in the training set. Another threat to internal validity, the implementation of baseline approaches,
is discussed from the different categories of baselines. For DeepAPI, CodeBERT, and CodeTrans,
we directly utilize their open source code or models. Nevertheless, we modify BIKER to make it
applicable to our study. For DGAS, we replicate the algorithm and parameters as described in the
article. Despite this, there is somewhat of a threat to implementing BIKER, DGAS, and DDASR. To
mitigate it, we have conducted multiple code reviews by recruiting experienced programmers and
made the source code available on GitHub.
External Validity. External validity refers to the extent to which the results can be generalized

beyond the scope of the study. We explore the threats to external validity, which pertain to the
generalizability of DDASR. The pairs of query and API sequences in the datasets we use are based
on Java and Python. Although the evaluation of two programming languages has validated the
generalizability of DDASR to some extent, there is still the possibility that our model may not work

ACM Transactions on Software Engineering and Methodology, Vol. 34, No. 6, Article 162. Publication date: July 2025.

162:34 S. Nan et al.

well with other libraries or programming languages. To further validate the model, we will collect
more data from other libraries and programming languages for training in the future. Moreover, Gu
et al. [21] mined the open source Java dataset by extracting projects from GitHub with more than
one star. The constraint indeed introduces some unreliable code. In our evaluation, to maintain a
fair comparison with the baselines, we do not modify this restriction. However, to mitigate this
threat, we introduce a Python dataset mined by extracting projects from GitHub with more than
five stars.

Construct Validity.Threats to construct validity relate to the suitability of our evaluationmeasures.
We use BLEU, a widely usedmetric in the translation task, to evaluate the accuracy of API sequences,
because generating API sequences from a query can be analogous to translating. MAP and NDCG
are the classical accuracy evaluation measures in recommender systems, which are also widely
used in the software engineering field. Coverage is widely used in diversity recommendation as an
evaluation metric for the proportion of recommended items. In addition, to assess the impact of
the pseudo ground truth on evaluating authenticity, we introduce a restored veritable accuracy
metric to mitigate bias. As a result of different coding habits, developers have different ways of
implementing requirements when completing development tasks. However, there is only one
correct way to solve the query in the ground truth of the dataset. We utilize a user study to mitigate
this threat through manual evaluation by developers with programming experience.
Conclusion Validity. Conclusion validity concerns how much the experiment setting influences

the observed result. The baseline approaches split APIs into fragments for data pre-processing
and experimental evaluation, while our study regards a complete API as a basic unit for the two
stages. This difference presents a potential risk to conclusion validity. To address this, we conduct
an ablation experiment with DASR, a variant of our approach, assessing the impact of training
solely with aggregated API fragments.

6 Conclusion and Future Work
In this article, we propose DDASR to recommend API sequences automatically for developer queries.
Our study highlights the importance of incorporating diversity in API sequence recommendation,
particularly with tail APIs. DDASR can recommend functionally similar tail APIs, helping to
mitigate the long-tail effect. For programming tasks, recommending APIs with similar functionality
can provide heuristic assistance to developers. We achieve this by clustering tail APIs based on
function and substituting them with cluster centers to create a pseudo ground truth, followed by
recommendations based on Seq2Seq and LTR techniques. Due to the outstanding performance of
LLMs in natural language processing tasks, we also leverage widely adopted LLMs for learning
query representations. The evaluation with state-of-the-art baselines on the original Java dataset
confirms DDASR’s accuracy. Experiments on the diverse Java dataset and the Python dataset show
that DDASR can achieve the best diversity without significantly reducing accuracy.

In DDASR, we utilize lightweight syntactic similarity to calculate the functional similarity be-
tween tail APIs. Moving forward, we plan to explore the performance of other similarity algorithms
in clustering tail APIs. Additionally, DDASR provides developers with cluster centers of similar
functionality among tail APIs due to the construction of the pseudo ground truth. In the future, we
will also consider how to achieve more precise recommendations of tail APIs. Considering the per-
sonalized coding styles of developers, multiple API combinations may fulfill the same requirement,
suggesting that the API sequence in the ground truth is not the only correct solution. In the future,
we hope to satisfy personalized and multi-objective API sequence recommendations from various
aspects of dataset construction, model improvement, and innovation in evaluation metrics. We also
plan to integrate a broader range of refined tail APIs into the sequences to further improve DDASR’s
performance. Furthermore, we intend to apply DDASR across more programming languages and a

ACM Transactions on Software Engineering and Methodology, Vol. 34, No. 6, Article 162. Publication date: July 2025.

DDASR: Deep Diverse API Sequence Recommendation 162:35

wider range of requirement domains. LLMs perform well in automated code generation tasks, while
they tend to write code rather than apply existing APIs [69]. Focusing on the importance of API
recommendation in automated code generation [41] to enhance the readability and maintainability
of code generated by LLMs will be a future research direction for us.

References
[1] Gediminas Adomavicius and YoungOk Kwon. 2011. Improving aggregate recommendation diversity using ranking-

based techniques. IEEE Transactions on Knowledge and Data Engineering 24, 5 (2011), 896–911. DOI: https://doi.org/
10.1109/TKDE.2011.15

[2] Gediminas Adomavicius and YoungOk Kwon. 2014. Optimization-based approaches for maximizing aggregate recom-
mendation diversity. INFORMS Journal on Computing 26, 2 (2014), 351–369. DOI: https://doi.org/10.1287/ijoc.2013.0570

[3] Wasi Ahmad, Saikat Chakraborty, Baishakhi Ray, and Kai-Wei Chang. 2021. Unified pre-training for program un-
derstanding and generation. In Proceedings of the Conference of the North American Chapter of the Association for
Computational Linguistics: Human Language Technologies (NAACL-HLT ’21), 2655–2668.

[4] Chris Anderson. 2012. The long tail. In The Social Media Reader. Michael Mandiberg (Ed.), New York University Press,
137–152. DOI: https://doi.org/10.18574/nyu/9780814763025.003.0014

[5] Yoshua Bengio, Holger Schwenk, Jean-Sébastien Senécal, Fréderic Morin, and Jean-Luc Gauvain. 2006. Neural
probabilistic language models. In Innovations in Machine Learning: Theory and Applications. Holmes E. Dawn and Jain
C. Lakhmi (Eds.), Springer, Berlin, 137–186. DOI: https://doi.org/10.1007/3-540-33486-6_6

[6] Steven Bird. 2006. NLTK: The natural language toolkit. In Proceedings of the COLING/ACL Interactive Presentation
Sessions (ACL ’06), 69–72. DOI: https://doi.org/10.3115/1225403.1225421

[7] Jaime Carbonell and Jade Goldstein. 1998. The use of MMR, diversity-based reranking for reordering documents
and producing summaries. In Proceedings of the 21st Annual International ACM SIGIR Conference on Research and
Development in Information Retrieval (SIGIR ’98), 335–336. DOI: https://doi.org/10.1145/290941.291025

[8] Wing-Kwan Chan, Hong Cheng, and David Lo. 2012. Searching connected API subgraph via text phrases. In Proceedings
of the ACM SIGSOFT 20th International Symposium on the Foundations of Software Engineering (SIGSOFT FSE ’12),
1–11. DOI: https://doi.org/10.1145/2393596.2393606

[9] Chi Chen, Xin Peng, Bihuan Chen, Jun Sun, Zhenchang Xing, Xin Wang, and Wenyun Zhao. 2022. “More than deep
learning”: Post-processing for API sequence recommendation. Empirical Software Engineering 27 (2022), 1–32. DOI:
https://doi.org/10.1007/s10664-021-10040-2

[10] Laming Chen, Guoxin Zhang, and Hanning Zhou. 2018. Fast greedy MAP inference for determinantal point process
to improve recommendation diversity. arXiv:1709.05135. Retrieved from https://arxiv.org/abs/1709.05135

[11] Yujia Chen, Cuiyun Gao, Xiaoxue Ren, Yun Peng, Xin Xia, and Michael R. Lyu. 2023. API usage recommendation
via multi-view heterogeneous graph representation learning. IEEE Transactions on Software Engineering 49, 5 (2023),
3289–3304. DOI: https://doi.org/10.1109/TSE.2023.3252259

[12] Peizhe Cheng, Shuaiqiang Wang, Jun Ma, Jiankai Sun, and Hui Xiong. 2017. Learning to recommend accurate and
diverse items. In Proceedings of the 26th International Conference on World Wide Web (WWW ’17), 183–192. DOI:
https://doi.org/10.1145/3038912.3052585

[13] Sunhao Dai, Ninglu Shao, Haiyuan Zhao, Weijie Yu, Zihua Si, Chen Xu, Zhongxiang Sun, Xiao Zhang, and Jun Xu.
2023. Uncovering ChatGPT’S capabilities in recommender systems. In Proceedings of the 17th ACM Conference on
Recommender Systems (RecSys ’23), 1126–1132. DOI: https://doi.org/10.1145/3604915.3610646

[14] Ahmed Elnaggar, Wei Ding, Llion Jones, Tom Gibbs, Tamas Feher, Christoph Angerer, Silvia Severini, Florian Matthes,
and Burkhard Rost. 2021. CodeTrans: Towards cracking the language of silicon’s code through self-supervised deep
learning and high performance computing. arXiv:2104.02443. Retrieved from https://arxiv.org/abs/2104.02443

[15] Robert Feldt and Ana Magazinius. 2010. Validity threats in empirical software engineering research - An initial survey.
In Proceedings of the 22nd International Conference on Software Engineering Knowledge Engineering (SEKE ’10), 374–379.

[16] Zhangyin Feng, Daya Guo, Duyu Tang, Nan Duan, Xiaocheng Feng, Ming Gong, Linjun Shou, Bing Qin, Ting Liu,
Daxin Jiang, et al. 2020. CodeBERT: A pre-trained model for programming and natural languages. In Proceedings of
the Findings of the Association for Computational Linguistics (EMNLP Findings ’20), 1536–1547. DOI: https://doi.org/10.
18653/v1/2020.findings-emnlp.139

[17] Luke Friedman, Sameer Ahuja, David Allen, Zhenning Tan, Hakim Sidahmed, Changbo Long, Jun Xie, Gabriel
Schubiner, Ajay Patel, Harsh Lara, et al. 2023. Leveraging large language models in conversational recommender
systems. arXiv:2305.07961. Retrieved from https://arxiv.org/abs/2305.07961

[18] Junchen Fu, Fajie Yuan, Yu Song, Zheng Yuan, Mingyue Cheng, Shenghui Cheng, Jiaqi Zhang, Jie Wang, and Yunzhu
Pan. 2023. Exploring adapter-based transfer learning for recommender systems: Empirical studies and practical
insights. arXiv:2305.15036. Retrieved from https://arxiv.org/abs/2305.15036

ACM Transactions on Software Engineering and Methodology, Vol. 34, No. 6, Article 162. Publication date: July 2025.

https://doi.org/10.1109/TKDE.2011.15
https://doi.org/10.1109/TKDE.2011.15
https://doi.org/10.1287/ijoc.2013.0570
https://doi.org/10.18574/nyu/9780814763025.003.0014
https://doi.org/10.1007/3-540-33486-6_6
https://doi.org/10.3115/1225403.1225421
https://doi.org/10.1145/290941.291025
https://doi.org/10.1145/2393596.2393606
https://doi.org/10.1007/s10664-021-10040-2
https://arxiv.org/abs/1709.05135
https://doi.org/10.1109/TSE.2023.3252259
https://doi.org/10.1145/3038912.3052585
https://doi.org/10.1145/3604915.3610646
https://arxiv.org/abs/2104.02443
https://doi.org/10.18653/v1/2020.findings-emnlp.139
https://doi.org/10.18653/v1/2020.findings-emnlp.139
https://arxiv.org/abs/2305.07961
https://arxiv.org/abs/2305.15036

162:36 S. Nan et al.

[19] Erich Gamma, Richard Helm, Ralph Johnson, and John Vlissides. 1995. Design Patterns: Elements of Reusable Object-
Oriented Software. Pearson Deutschland GmbH.

[20] Marko Gasparic and Andrea Janes. 2016. What recommendation systems for software engineering recommend: A
systematic literature review. Journal of Systems and Software 113 (2016), 101–113. DOI: https://doi.org/10.1016/j.jss.
2015.11.036

[21] Xiaodong Gu, Hongyu Zhang, Dongmei Zhang, and Sunghun Kim. 2016. Deep API learning. In Proceedings of the 24th
ACM SIGSOFT International Symposium on Foundations of Software Engineering (SIGSOFT FSE ’16), 631–642. DOI:
https://doi.org/10.1145/2950290.2950334

[22] Daya Guo, Shuai Lu, Nan Duan, Yanlin Wang, Ming Zhou, and Jian Yin. 2022. UniXcoder: Unified cross-modal
pre-training for code representation. In Proceedings of the 60th Annual Meeting of the Association for Computational
Linguistics (ACL ’22), 7212–7225. DOI: https://doi.org/10.18653/v1/2022.acl-long.499

[23] Daya Guo, Shuo Ren, Shuai Lu, Zhangyin Feng, Duyu Tang, Shujie Liu, Long Zhou, Nan Duan, Alexey Svyatkovskiy,
Shengyu Fu, et al. 2021. GraphCode{BERT}: Pre-training code representations with data flow. In Proceedings of the
International Conference on Learning Representations (ICLR ’21).

[24] Balázs Hidasi, Alexandros Karatzoglou, Linas Baltrunas, and Domonkos Tikk. 2016. Session-based recommendations
with recurrent neural networks. arXiv:1511.06939. Retrieved from https://arxiv.org/abs/1511.06939

[25] Yupeng Hou, Junjie Zhang, Zihan Lin, Hongyu Lu, Ruobing Xie, Julian McAuley, and Wayne Xin Zhao. 2023.
Large language models are zero-shot rankers for recommender systems. arXiv:2305.08845. Retrieved from https:
//arxiv.org/abs/2305.08845

[26] Qiao Huang, Xin Xia, Zhenchang Xing, David Lo, and Xinyu Wang. 2018. API method recommendation without
worrying about the task-API knowledge gap. In Proceedings of the 33rd ACM/IEEE International Conference on
Automated Software Engineering (ASE ’18), 293–304. DOI: https://doi.org/10.1145/3238147.3238191

[27] Hamel Husain, Ho-Hsiang Wu, Tiferet Gazit, Miltiadis Allamanis, and Marc Brockschmidt. 2020. CodeSearchNet chal-
lenge: Evaluating the state of semantic code search. arXiv:1909.09436. Retrieved from https://arxiv.org/abs/1909.09436

[28] Sébastien Jean, Kyunghyun Cho, Roland Memisevic, and Yoshua Bengio. 2015. On using very large target vocabulary
for neural machine translation. arXiv:1412.2007. Retrieved from https://arxiv.org/abs/1412.2007

[29] Zhengbao Jiang, Zhicheng Dou, Wayne Xin Zhao, Jian-Yun Nie, Ming Yue, and Ji-Rong Wen. 2018. Supervised search
result diversification via subtopic attention. IEEE Transactions on Knowledge and Data Engineering 30, 10 (2018),
1971–1984. DOI: https://doi.org/10.1109/TKDE.2018.2810873

[30] Marius Kaminskas and Derek Bridge. 2016. Diversity, serendipity, novelty, and coverage: A survey and empirical
analysis of beyond-accuracy objectives in recommender systems. ACM Transactions on Interactive Intelligent Systems
7, 1 (2016), 1–42. DOI: https://doi.org/10.1145/2926720

[31] Wang-Cheng Kang and Julian McAuley. 2018. Self-attentive sequential recommendation. In Proceedings of the IEEE
International Conference on Data Mining (ICDM ’18), 197–206. DOI: https://doi.org/10.1109/ICDM.2018.000356

[32] Yejin Kim, Kwangseob Kim, Chanyoung Park, and Hwanjo Yu. 2019. Sequential and diverse recommendation with
long tail. In Proceedings of the 28th International Joint Conference on Artificial Intelligence (IJCAI ’19), 2740–2746. DOI:
https://doi.org/10.24963/ijcai.2019/380

[33] Amy J. Ko, Brad A. Myers, and Htet Htet Aung. 2004. Six learning barriers in end-user programming systems. In
Proceedings of the IEEE Symposium on Visual Languages - Human Centric Computing (VL/HCC ’04), 199–206. DOI:
https://doi.org/10.1109/VLHCC.2004.47

[34] Philipp Koehn. 2004. Pharaoh: A beam search decoder for phrase-based statistical machine translation models. In
Proceedings of the Machine Translation: From Real Users to Research (AMTA ’04), 115–124. DOI: https://doi.org/10.
1007/978-3-540-30194-3_13

[35] Xianglong Kong, Weina Han, Li Liao, and Bixin Li. 2020. An analysis of correctness for API recommendation: Are the
unmatched results useless? Science China Information Sciences 63 (2020), 1–15. DOI: https://doi.org/10.1007/s11432-
019-2929-9

[36] Hyokmin Kwon, Jaeho Han, and Kyungsik Han. 2020. ART (attractive recommendation tailor): How the diversity of
product recommendations affects customer purchase preference in fashion industry? In Proceedings of the 29th ACM
International Conference on Information and Knowledge Management (CIKM ’20), 2573–2580. DOI: https://doi.org/10.
1145/3340531.3412687

[37] Yann LeCun, Yoshua Bengio, and Geoffrey Hinton. 2015. Deep learning. Nature 521, 7553 (2015), 436–444. DOI:
https://doi.org/10.1038/nature14539

[38] Vladimir I. Levenshtein. 1966. Binary codes capable of correcting deletions, insertions and reversals. Soviet Physics
Doklady 10 (1966), 707–710.

[39] Jing Li, Pengjie Ren, Zhumin Chen, Zhaochun Ren, Tao Lian, and Jun Ma. 2017. Neural attentive session-based
recommendation. In Proceedings of the 2017 ACM on Conference on Information and Knowledge Management (CIKM
’17), 1419–1428. DOI: https://doi.org/10.1145/3132847.3132926

ACM Transactions on Software Engineering and Methodology, Vol. 34, No. 6, Article 162. Publication date: July 2025.

https://doi.org/10.1016/j.jss.2015.11.036
https://doi.org/10.1016/j.jss.2015.11.036
https://doi.org/10.1145/2950290.2950334
https://doi.org/10.18653/v1/2022.acl-long.499
https://arxiv.org/abs/1511.06939
https://arxiv.org/abs/2305.08845
https://arxiv.org/abs/2305.08845
https://doi.org/10.1145/3238147.3238191
https://arxiv.org/abs/1909.09436
https://arxiv.org/abs/1412.2007
https://doi.org/10.1109/TKDE.2018.2810873
https://doi.org/10.1145/2926720
https://doi.org/10.1109/ICDM.2018.000356
https://doi.org/10.24963/ijcai.2019/380
https://doi.org/10.1109/VLHCC.2004.47
https://doi.org/10.1007/978-3-540-30194-3_13
https://doi.org/10.1007/978-3-540-30194-3_13
https://doi.org/10.1007/s11432-019-2929-9
https://doi.org/10.1007/s11432-019-2929-9
https://doi.org/10.1145/3340531.3412687
https://doi.org/10.1145/3340531.3412687
https://doi.org/10.1038/nature14539
https://doi.org/10.1145/3132847.3132926

DDASR: Deep Diverse API Sequence Recommendation 162:37

[40] Shuang Li, Yuezhi Zhou, Di Zhang, Yaoxue Zhang, and Xiang Lan. 2017. Learning to diversify recommendations based
on matrix factorization. In Proceedings of the IEEE 15th International Conference on Dependable, Autonomic and Secure
Computing, 15th International Conference on Pervasive Intelligence and Computing, 3rd International Conference on Big
Data Intelligence and Computing and Cyber Science and Technology Congress (DASC/PiCom/DataCom/CyberSciTech
’17), 68–74. DOI: https://doi.org/10.1109/DASC-PICom-DataCom-CyberSciTec.2017.26

[41] Dianshu Liao, Shidong Pan, Xiaoyu Sun, Xiaoxue Ren, Qing Huang, Zhenchang Xing, Huan Jin, and Qinying
Li. 2024. A3-CodGen : A repository-level code generation framework for code reuse with local-aware, global-
aware, and third-party-library-aware. IEEE Transactions on Software Engineering 01 (2024), 1–16. Retrieved from
https://doi.ieeecomputersociety.org/10.1109/TSE.2024.3486195

[42] Jianghao Lin, Xinyi Dai, Yunjia Xi, Weiwen Liu, Bo Chen, Xiangyang Li, Chenxu Zhu, Huifeng Guo, Yong Yu, Ruiming
Tang, et al. 2023. How can recommender systems benefit from large language models: A survey. arXiv:2306.05817.
Retrieved from https://arxiv.org/abs/2306.05817

[43] Junling Liu, Chao Liu, Peilin Zhou, Renjie Lv, Kang Zhou, and Yan Zhang. 2023. Is ChatGPT a good recommender? A
preliminary study. arXiv:2304.10149. Retrieved from https://arxiv.org/abs/2304.10149

[44] Minh-Thang Luong, Hieu Pham, and Christopher D. Manning. 2015. Effective approaches to attention-based neural
machine translation. arXiv:1508.04025. Retrieved from https://arxiv.org/abs/1508.04025

[45] Homan Ma, Robert Amor, and Ewan Tempero. 2006. Usage patterns of the Java standard API. In Proceedings of the
13th Asia Pacific Software Engineering Conference (APSEC ’06), 342–352. DOI: https://doi.org/10.1109/APSEC.2006.60

[46] James Martin and Jin L. C. Guo. 2022. Deep API learning revisited. In Proceedings of the 30th IEEE/ACM International
Conference on Program Comprehension (ICPC ’22), 321–330. DOI: https://doi.org/10.1145/3524610.3527872

[47] Collin McMillan, Mark Grechanik, Denys Poshyvanyk, Qing Xie, and Chen Fu. 2011. Portfolio: Finding relevant
functions and their usage. In Proceedings of the 33rd International Conference on Software Engineering (ICSE ’11),
111–120. DOI: https://doi.org/10.1145/1985793.1985809

[48] Nasser Mustafa, Yvan Labiche, and Dave Towey. 2019. Mitigating threats to validity in empirical software engineering:
A traceability case study. In Proceedings of the IEEE 43rd Annual Computer Software and Applications Conference
(COMPSAC ’19), 324–329. DOI: https://doi.org/10.1109/COMPSAC.2019.10227

[49] Phuong T. Nguyen, Juri Di Rocco, Davide Di Ruscio, and Massimiliano Di Penta. 2020. CrossRec: Supporting software
developers by recommending third-party libraries. Journal of Systems and Software 161 (2020), 110460. DOI: https:
//doi.org/10.1016/j.jss.2019.110460

[50] Haoran Niu, Iman Keivanloo, and Ying Zou. 2017. Learning to rank code examples for code search engines. Empirical
Software Engineering 22 (2017), 259–291. DOI: https://doi.org/10.1007/s10664-015-9421-5

[51] OpenAI, Josh Achiam, Steven Adler, Sandhini Agarwal, Lama Ahmad, Ilge Akkaya, Florencia Leoni Aleman, Diogo
Almeida, Janko Altenschmidt, Sam Altman, et al. 2024. GPT-4 technical report. arXiv:2303.08774. Retrieved from
https://arxiv.org/abs/2303.08774

[52] Ali Ouni, Raula Gaikovina Kula, Marouane Kessentini, Takashi Ishio, Daniel M. German, and Katsuro Inoue. 2017.
Search-based software library recommendation using multi-objective optimization. Information and Software Technol-
ogy 83 (2017), 55–75. DOI: https://doi.org/10.1016/j.infsof.2016.11.007

[53] Yoon-Joo Park. 2012. The adaptive clustering method for the long tail problem of recommender systems. IEEE
Transactions on Knowledge and Data Engineering 25, 8 (2012), 1904–1915. DOI: https://doi.org/10.1109/TKDE.2012.119

[54] Yoon-Joo Park and Alexander Tuzhilin. 2008. The long tail of recommender systems and how to leverage it. In
Proceedings of the 2008 ACM Conference on Recommender Systems (RecSys ’08), 11–18. DOI: https://doi.org/10.1145/
1454008.1454012

[55] Yun Peng, Shuqing Li, Wenwei Gu, Yichen Li, Wenxuan Wang, Cuiyun Gao, and Michael R. Lyu. 2023. Revisiting,
benchmarking and exploring API recommendation: How far are we? IEEE Transactions on Software Engineering 49, 4
(2023), 1876–1897. DOI: https://doi.org/10.1109/TSE.2022.3197063

[56] Massimo Quadrana, Alexandros Karatzoglou, Balázs Hidasi, and Paolo Cremonesi. 2017. Personalizing session-
based recommendations with hierarchical recurrent neural networks. In Proceedings of the 11th ACM Conference on
Recommender Systems (RecSys ’17), 130–137. DOI: https://doi.org/10.1145/3109859.3109896

[57] Alec Radford, Jeffrey Wu, Rewon Child, David Luan, Dario Amodei, and Ilya Sutskever. 2019. Language models are
unsupervised multitask learners. OpenAI Blog 1, 8 (2019), 9.

[58] Mukund Raghothaman, Yi Wei, and Youssef Hamadi. 2016. SWIM: Synthesizing what I mean - Code search and
idiomatic snippet synthesis. In Proceedings of the 38th International Conference on Software Engineering (ICSE ’16),
357–367. DOI: https://doi.org/10.1145/2884781.2884808

[59] Mohammad Masudur Rahman, Chanchal K. Roy, and David Lo. 2016. RACK: Automatic API recommendation using
crowdsourced knowledge. In Proceedings of the IEEE 23rd International Conference on Software Analysis, Evolution, and
Reengineering (SANER ’16), 349–359. DOI: https://doi.org/10.1109/SANER.2016.80

ACM Transactions on Software Engineering and Methodology, Vol. 34, No. 6, Article 162. Publication date: July 2025.

https://doi.org/10.1109/DASC-PICom-DataCom-CyberSciTec.2017.26
https://doi.ieeecomputersociety.org/10.1109/TSE.2024.3486195
https://arxiv.org/abs/2306.05817
https://arxiv.org/abs/2304.10149
https://arxiv.org/abs/1508.04025
https://doi.org/10.1109/APSEC.2006.60
https://doi.org/10.1145/3524610.3527872
https://doi.org/10.1145/1985793.1985809
https://doi.org/10.1109/COMPSAC.2019.10227
https://doi.org/10.1016/j.jss.2019.110460
https://doi.org/10.1016/j.jss.2019.110460
https://doi.org/10.1007/s10664-015-9421-5
https://arxiv.org/abs/2303.08774
https://doi.org/10.1016/j.infsof.2016.11.007
https://doi.org/10.1109/TKDE.2012.119
https://doi.org/10.1145/1454008.1454012
https://doi.org/10.1145/1454008.1454012
https://doi.org/10.1109/TSE.2022.3197063
https://doi.org/10.1145/3109859.3109896
https://doi.org/10.1145/2884781.2884808
https://doi.org/10.1109/SANER.2016.80

162:38 S. Nan et al.

[60] Steffen Rendle, Christoph Freudenthaler, and Lars Schmidt-Thieme. 2010. Factorizing personalized Markov chains for
next-basket recommendation. In Proceedings of the 19th International Conference on World Wide Web (WWW ’10),
811–820. DOI: https://doi.org/10.1145/1772690.17727738

[61] Martin Robillard, Robert Walker, andThomas Zimmermann. 2010. Recommendation systems for software engineering.
IEEE Software 27, 4 (2010), 80–86. DOI: https://doi.org/10.1109/MS.2009.161

[62] Hinrich Schütze, Christopher D. Manning, and Prabhakar Raghavan. 2008. Introduction to Information Retrieval, Vol.
39. Cambridge University Press, Cambridge.

[63] Rico Sennrich, Barry Haddow, and Alexandra Birch. 2016. Neural machine translation of rare words with subword
units. arXiv:1508.07909. Retrieved from https://arxiv.org/abs/1508.07909

[64] Weiwei Sun, Lingyong Yan, Xinyu Ma, Shuaiqiang Wang, Pengjie Ren, Zhumin Chen, Dawei Yin, and Zhaochun
Ren. 2023. Is ChatGPT good at search? Investigating large language models as re-ranking agents. arXiv:2304.09542.
Retrieved from https://arxiv.org/abs/2304.09542

[65] Jiaxi Tang and Ke Wang. 2018. Personalized top-n sequential recommendation via convolutional sequence embedding.
In Proceedings of the 11th ACM International Conference on Web Search and Data Mining (WSDM ’18), 565–573. DOI:
https://doi.org/10.1145/3159652.3159656

[66] Ferdian Thung, David Lo, and Julia Lawall. 2013. Automated library recommendation. In Proceedings of the 20th
Working conference on reverse engineering (WCRE ’13), 182–191. DOI: https://doi.org/10.1109/WCRE.2013.6671293

[67] Yuan Tian, Ferdian Thung, Abhishek Sharma, and David Lo. 2017. APIBot: Question answering bot for API documen-
tation. In Proceedings of the 32nd IEEE/ACM International Conference on Automated Software Engineering (ASE ’17),
153–158. DOI: https://doi.org/10.1109/ASE.2017.8115628

[68] Von Luxburg Ulrike. 2007. A tutorial on spectral clustering. Statistics and Computing 17, 4 (2007), 395–416. DOI:
https://doi.org/10.1007/s11222-007-9033-z

[69] Yanlin Wang, Tianyue Jiang, Mingwei Liu, Jiachi Chen, and Zibin Zheng. 2024. Beyond functional correct-
ness: Investigating coding style inconsistencies in large language models. arXiv:2407.00456. Retrieved from
https://arxiv.org/abs/2407.00456

[70] Yue Wang, Weishi Wang, Shafiq Joty, and Steven C. H. Hoi. 2021. CodeT5: Identifier-aware unified pre-trained
encoder-decoder models for code understanding and generation. In Proceedings of the Conference on Empirical Methods
in Natural Language Processing (EMNLP ’21), 8696–8708. DOI: https://doi.org/10.18653/v1/2021.emnlp-main.685

[71] Jacek Wasilewski and Neil Hurley. 2016. Incorporating diversity in a learning to rank recommender system. In
Proceedings of the 29th International Flairs Conference (FLAIRS ’16), 572–578.

[72] Hongwei Wei, Xiaohong Su, Weining Zheng, and Wenxin Tao. 2023. Documentation-guided API sequence search
without worrying about the text-API semantic gap. In Proceedings of the IEEE International Conference on Software
Analysis, Evolution and Reengineering (SANER ’23), 343–354. DOI: https://doi.org/10.1109/SANER56733.2023.00040

[73] Moshi Wei, Nima Shiri Harzevili, Yuchao Huang, Junjie Wang, and Song Wang. 2022. CLEAR: Contrastive learning for
API recommendation. In Proceedings of the 44th International Conference on Software Engineering (ICSE ’22), 376–387.
DOI: https://doi.org/10.1145/3510003.3510159

[74] Mark Wilhelm, Ajith Ramanathan, Alexander Bonomo, Sagar Jain, Ed H. Chi, and Jennifer Gillenwater. 2018. Practical
diversified recommendations on YouTube with determinantal point processes. In Proceedings of the 27th ACM
International Conference on Information and Knowledge Management (CIKM ’18), 2165–2173. DOI: https://doi.org/10.
1145/3269206.3272018

[75] Chao-Yuan Wu, Amr Ahmed, Alex Beutel, Alexander J. Smola, and How Jing. 2017. Recurrent recommender networks.
In Proceedings of the 10th ACM International Conference on Web Search and Data Mining (WSDM ’17), 495–503. DOI:
https://doi.org/10.1145/3018661.3018689

[76] Haolun Wu, Yansen Zhang, Chen Ma, Fuyuan Lyu, Bowei He, Bhaskar Mitra, and Xue Liu. 2023. Result diversification
in search and recommendation: A survey. arXiv:2212.14464. Retrieved from https://arxiv.org/abs/2212.14464

[77] Fen Xia, Tie-Yan Liu, Jue Wang, Wensheng Zhang, and Hang Li. 2008. Listwise approach to learning to rank: Theory
and algorithm. In Proceedings of the 25th International Conference on Machine Learning (ICML ’08), 1192–1199. DOI:
https://doi.org/10.1145/1390156.1390306

[78] Hongzhi Yin, Bin Cui, Jing Li, Junjie Yao, and Chen Chen. 2012. Challenging the long tail recommendation. Proceedings
of the VLDB Endowment 5, 9 (2012), 896–907. DOI: https://doi.org/10.14778/2311906.2311916

[79] Fajie Yuan, Alexandros Karatzoglou, Ioannis Arapakis, JoemonM. Jose, and Xiangnan He. 2019. A simple convolutional
generative network for next item recommendation. In Proceedings of the 12th ACM International Conference on Web
Search and Data Mining (WSDM ’19), 582–590. DOI: https://doi.org/10.1145/3289600.3290975

[80] Jingxuan Zhang, He Jiang, Zhilei Ren, and Xin Chen. 2018. Recommending APIs for API related questions in stack
overflow. IEEE Access 6 (2018), 6205–6219. DOI: https://doi.org/10.1109/ACCESS.2017.2777845

ACM Transactions on Software Engineering and Methodology, Vol. 34, No. 6, Article 162. Publication date: July 2025.

https://doi.org/10.1145/1772690.17727738
https://doi.org/10.1109/MS.2009.161
https://arxiv.org/abs/1508.07909
https://arxiv.org/abs/2304.09542
https://doi.org/10.1145/3159652.3159656
https://doi.org/10.1109/WCRE.2013.6671293
https://doi.org/10.1109/ASE.2017.8115628
https://doi.org/10.1007/s11222-007-9033-z
https://arxiv.org/abs/arXiv:2407.00456
https://doi.org/10.18653/v1/2021.emnlp-main.685
https://doi.org/10.1109/SANER56733.2023.00040
https://doi.org/10.1145/3510003.3510159
https://doi.org/10.1145/3269206.3272018
https://doi.org/10.1145/3269206.3272018
https://doi.org/10.1145/3018661.3018689
https://arxiv.org/abs/2212.14464
https://doi.org/10.1145/1390156.1390306
https://doi.org/10.14778/2311906.2311916
https://doi.org/10.1145/3289600.3290975
https://doi.org/10.1109/ACCESS.2017.2777845

DDASR: Deep Diverse API Sequence Recommendation 162:39

[81] Qi Zhang, Jingjie Li, Qinglin Jia, Chuyuan Wang, Jieming Zhu, Zhaowei Wang, and Xiuqiang He. 2021. UNBERT:
User-news matching BERT for news recommendation. In Proceedings of the 30th International Joint Conference on
Artificial Intelligence (IJCAI ’21), 3356–3362. DOI: https://doi.org/10.24963/ijcai.2021/462

[82] Shuai Zhang, Yi Tay, Lina Yao, and Aixin Sun. 2018. Next item recommendation with self-attention. arXiv:1808.06414.
Retrieved from https://arxiv.org/abs/1808.06414

[83] Yuhui Zhang, Hao Ding, Zeren Shui, Yifei Ma, James Zou, Anoop Deoras, and Hao Wang. 2021. Language models as
recommender systems: Evaluations and limitations. In Proceedings of the I (Still) Can’t Believe It’s Not Better! NeurIPS
2021 Workshop.

[84] Yu Zheng, Chen Gao, Liang Chen, Depeng Jin, and Yong Li. 2021. DGCN: Diversified recommendation with graph
convolutional networks. In Proceedings of the Web Conference (WWW ’21), 401–412. DOI: https://doi.org/10.1145/
3442381.3449835

[85] Hao Zhong and Hong Mei. 2019. An empirical study on API Usages. IEEE Transactions on Software Engineering 45, 4
(2019), 319–334. DOI: https://doi.org/10.1109/TSE.2017.2782280

[86] Hao Zhong, Tao Xie, Lu Zhang, Jian Pei, and Hong Mei. 2009. MAPO: Mining and recommending API usage
patterns. In Proceedings of the 23rd European Conference Object-Oriented Programming (ECOOP ’09), 318–343. DOI:
https://doi.org/10.1007/978-3-642-03013-0_15

[87] Jianghong Zhou, Eugene Agichtein, and Surya Kallumadi. 2020. Diversifying multi-aspect search results using
Simpson’s diversity Index. In Proceedings of the 29th ACM International Conference on Information and Knowledge
Management (CIKM ’20), 2345–2348. DOI: https://doi.org/10.1145/3340531.3412163

[88] Cai-Nicolas Ziegler, Sean M. McNee, Joseph A. Konstan, and Georg Lausen. 2005. Improving recommendation lists
through topic diversification. In Proceedings of the 14th International Conference on World Wide Web (WWW ’05),
22–32. DOI: https://doi.org/10.1145/1060745.1060754

Received 10 January 2024; revised 11 December 2024; accepted 17 December 2024

ACM Transactions on Software Engineering and Methodology, Vol. 34, No. 6, Article 162. Publication date: July 2025.

https://doi.org/10.24963/ijcai.2021/462
https://arxiv.org/abs/1808.06414
https://doi.org/10.1145/3442381.3449835
https://doi.org/10.1145/3442381.3449835
https://doi.org/10.1109/TSE.2017.2782280
https://doi.org/10.1007/978-3-642-03013-0_15
https://doi.org/10.1145/3340531.3412163
https://doi.org/10.1145/1060745.1060754

	Abstract
	1 Introduction
	2 Related Work
	2.1 API Recommendation
	2.2 Sequence Recommendation
	2.3 Diverse Recommendation

	3 Approach
	3.1 Data Pre-Processing
	3.2 Pseudo Ground Truth Building
	3.3 Model Training

	4 Evaluation
	4.1 Experiment
	4.2 Data
	4.3 Baselines
	4.4 Model Selection
	4.5 Metrics
	4.6 Experimental Results

	5 Threats to Validity
	6 Conclusion and Future Work
	References

