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ABSTRACT
Accurately extracting blood vessel structures from retinal fundus images is critical for the early diagnosis and treatment of various
ocular and systemic diseases. However, retinal vessel segmentation continues to face significant challenges. Firstly, capturing the
boundary information of small vessels is particularly difficult. Secondly, uneven vessel thickness and irregular distribution further
complicate the multi-scale feature modelling. Lastly, low-contrast images lead to increased background noise, further affecting
the segmentation accuracy. To tackle these challenges, this article presents a multi-scale segmentation network that combines
edge features and attention mechanisms, referred to as EANet. It demonstrates significant advantages over existing methods.
Specifically, EANet consists of three key modules: the edge feature enhancement module, the multi-scale information interaction
encoding module, and the multi-class attention mechanism decoding module. Experimental results validate the effectiveness of
the method. Specifically, EANet outperforms existing advanced methods in the precise segmentation of small and multi-scale
vessels and in effectively filtering background noise to maintain segmentation continuity.

1 Introduction

Retinal fundus diseases are closely linked to visual health, with
retinal lesions caused by leukaemia [1] and tumours [2] being of
particular concern. For instance, leukemia can cause symptoms
such as cotton-wool spots, retinal vein tortuosity, and retinal infil-
tration [3], while tumours can cause tumour-associated retinal
lesions [4]. These lesions can result in irreversible visual impair-
ment. In addition, conditions such as diabetes [5], heart disease
[6], and hypertension [7] can also cause retinal lesions, leading
to visual impairment. Therefore, accurate and rapid retinal vessel

lesion screening can provide critical clinical information for dis-
ease diagnosis and effectively prevent the rapid deterioration of
associated conditions. Healthcare professionals typically rely on
visual inspection to screen retinal vessels in clinical practice. This
screening approach is extremely sensitive to external influences,
including collection equipment and lighting, as well as variations
in the subjective diagnosis of physicians, which significantly
reduces the accuracy and efficiency of detection [8]. Conse-
quently, automated retinal vessel segmentation technology plays
a crucial role in mitigating these problems and is of great impor-
tance for intelligent screening of retinal-related diseases [9].

Abbreviations: ANA, anti-nuclear antibodies; APC, antigen-presenting cells; IRF, interferon regulatory factor.
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It is significant to note that the models above focused exclusively
on modelling either shallow features or deep semantic features
in the process of feature capture, neglecting to incorporate con-
textual information effectively. Furthermore, due to the irregular
distribution of vessels and the indistinct edge features in vas-
cular images, networks struggle to identify channel information
accurately. This, in turn, limits the model’s ability to extract
detailed vessel features [10]. Owing to the inherent intricacy of
vessel shapes and their low contrast against the background, it
is crucial to effectively extract vessel edge details for success-
ful segmentation of retinal vessels, mainly when dealing with
fine vessels.

Early mainstream approaches to retinal image processing often
used techniques such as thresholding and filtering [11, 12]. These
techniques are easy to implement and can provide segmentation
results with a degree of accuracy. However, these approaches
fail to segment vessels in densely populated areas of retinal
images accurately and somewhat rely on manual intervention
for interpretation. Recently, convolutional neural network based
techniques have achieved commendable success in image seg-
mentation. For instance, Wang et al. [13] integrated CNN with
random forests for vessel segmentation, thereby improving the
accuracy of segmentation. Given the abundance of edge infor-
mation in vascular images, López-Linares et al. [14] developed
a fully convolutional network that exploits edge detection for
automated vessel featuremodelling. Specifically, theU-Netmodel
[15] achieves commendable segmentation performance due to
its simplicity of a wide range of U-Net-enabled variants already
extensively deployed. The principles of residual connections,
multi-scale fusion, and transfer learning were applied, which
increased the segmentation efficiency of the U-Net [16]. Recog-
nizing the importance of feature fusion, Khened et al. [17]merged
the U-Net architecture to introduce a novel fully convolutional
neural network (FCN) framework.

While the aforementioned methods have yielded satisfactory
results, many are constrained by fixed receptive fields, which
limits their ability to capture features at varying scales. Moreover,
these methods are unable to effectively model the vessel edge
features. As a result, accurately restoring the characteristics of
fine vessels in vascular images is challenging, making it difficult
to increase the final segmentation quality [18]. Acknowledging
the importance of integratingmulti-scale contextual features,Wu
et al. [19, 20] have advanced the network’s segmentation capabili-
ties for scenarios with substantial scale variations via multi-scale
interactions, feature aggregation, andmulti-level semantic super-
vision modules. To improve the network’s capacity for modelling
global features, Guo et al. [21, 22] introduced an attention mech-
anism. This mechanism helps the network learn crucial spatial
and channel information, improving its resistance to interference.
Furthermore, Qi et al. [23] utilized deformable convolutions to
detect retinal vessels of various shapes and sizes, enhancing the
network’s capability of capturing finer details. The focus was on
the pronounced tubular characteristics of the vessels.

Considering that the current vessel segmentation task continues
to face challenges, including the difficulty in capturing small
vessels, the high complexity of multi-scale vessel feature mod-
elling, and the significant impact of background noise, this article
introduces a network architecture, designated as EANet. The

network comprises three modules: an edge feature enhancement
(EFE) module, a multi-scale feature exchange encoding (MSE)
module, and a multi-category attention mechanism decoding
(MAD) module. The first stage of the process is the extraction
of the vessel edge features, which is carried out effectively
by the EFE module. Secondly, the MSE module enhances the
network’s capacity to extract features from vessels of varying
thickness, minimizes the loss of tubular feature information and
integrates the contextual information extracted by the network.
Lastly, the MAD module enhances the network’s capacity to
model global features and improves the overall performance of
feature extraction. The validity as well as feasibility of EANet
were demonstrated on three mainstream retinal vessel datasets.
Comparative experimental findings demonstrate that the EANet
model surpasses current mainstream approaches across the
metrics of accuracy, mean intersection over union, and F1 score.
The four major contributions summarised are as follows:

∙ We present a multi-scale network for retinal vessel segmenta-
tion that integrates edge features with attention mechanisms,
which effectively learns edge features of vessel images and
exhibits robust multi-scale feature fusion capabilities.

∙ Given the challenges in extracting small vessel boundary
features, we propose an edge feature enhancement (EFE)
module designed to improve the network’s ability to express
small vessel features with both completeness and precision.

∙ To tackle the issue of uneven vessel thickness and irregular
distribution, we introduce a multi-scale information inter-
action encoding (MSE) module. It dynamically models the
tubular characteristics of vessels while integratingmulti-scale
contextual information.

∙ We introduce amulti-category attentionmechanismdecoding
(MAD) module, which is designed to enhance the network’s
capacity to model global features during the decoding phase.
It retains more details while minimizing the impact of
background noise in low-contrast images.

2 RelatedWork

2.1 Traditional Retinal Image Processing
Methods

Traditional approaches to retinal image processing predomi-
nantly involve matched filtering and machine learning tech-
niques. The use of matched filtering in image segmentation
enables the incorporation of various techniques such as thresh-
olding, edge detection, andmorphological operations. Chaudhuri
et al. [24] introduced the feature selection method designed
explicitly for fundus vessel segmentation. This method combines
the computational simplicity of threshold-based edge operators
with the advantages of model-based edge detectors. To mitigate
the effects of image background noise on the segmentation
results, Moghimirad et al. [25] employed techniques weighted by
mean deviation and median function, acknowledging the influ-
ence of background noise on segmentation outcomes. Accurately
segmenting vascular images can be significantly complicated
by the abundance of small vessels. To address this issue, Kar
et al. [26] introduced a matched filtering technique for enhanced
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extraction from small blood. The techniques mentioned above
are effective in segmenting images with clear and specific
characteristics. However, they often require manual parameter
adjustments and rely on prior knowledge and specific assump-
tions. These methods address challenges such as high compu-
tational complexity, sensitivity to noise, and poor segmentation
performance in images with low contrast or greyscale overlap.
Consequently, when addressing complex or low-contrast vascular
images, their efficacy falls short of the desired level.

To address these challenges, researchers have developed a
variety of machine learning-based approaches to image pro-
cessing. These techniques initially extract features from input
images, utilizing gold standards to train networks specifically
for vascular image segmentation. Marín et al. [27] introduced a
supervised learning technique that uses neural networks for pixel
classification, recognizing the importance of labelled data. To
automate vessel segmentation while minimizing false positives
in pathological areas, a semi-supervised self-training method
and AdaBoost classifier [28] were utilized for training on vessel
samples, enabling automatic vessel segmentation. In contrast
to the previously mentioned supervised training methods, [29]
adopted an unsupervised approach that integrates line detectors
with image enhancement techniques for vessel segmentation.
Recognizing the importance of extracting precise edge features to
enhance segmentation accuracy, studies by [30] have focused on
vessel edge detection. They have utilized random decision forests
and heuristic algorithms to extract multi-scale edge features,
resulting in improved segmentation accuracy.

In comparison to methods such as matched filtering, machine
learning techniques can learn features from data independently
and decrease operator involvement while improving the accu-
racy and adaptability of segmentation. However, these meth-
ods may have limited generalization capabilities, and for data
with complex features, the segmentation outcomes may not
meet expectations.

2.2 Deep Learning Retinal Image Processing
Methods

Deep learning, which uses backpropagation and multilayer neu-
ral networks, is highly effective at automatically learning complex
features. Its ability to generalize models robustly has led to its
widespread application across numerous domains [31–35].

Over the past few years, many researchers using deep learn-
ing techniques have tackled challenges in vessel segmentation.
Existing research mainly focuses on the following four areas.

Encoder–decoder architecture: Ronneberger et al. [15] introduced
the U-Net, which has been successful in medical image segmen-
tation. Due to U-Net’s exceptional performance in medical image
segmentation, there has been a growing effort to improve and
refine its network structure. Wu et al. [36] integrated cascaded
dilated convolutions and SE attention residual blocks into the
U-Net framework to enhance the ability to extract global multi-
scale features. This method facilitates effective segmentation
of retinal vessels while enhancing the extraction of multi-scale
characteristics. Owing to the abundance of small vessels in

vascular images, Dong et al. [37] developed a cascaded residual
attention U-Net, focusing on the detailed segmentation of retinal
vessels from coarse to fine details.

Edge feature perception and optimization: Considering the
abundance of boundary feature information in retinal vessel
images, effectively utilizing this data can greatly improve the final
segmentation accuracy. Consequently, [38] used boundary feature
detection techniques in conjunction to refine edge features. Zhu
et al. [39] introduces a boundary shape correction module to
enhance the accuracy of retrieving boundary position informa-
tion. Zhu et al. [40] utilizes an edge spatial attention module to
model edge features.

Multi-scale feature interaction strategy: However, the original U-
Net structure’s inability to effectively merge extracted shallow
edge and deep semantic information led to the introduction
of feature fusion [41–43], which aims at a high aggregation of
contextual data within that network to efficiently acquire global
relations as well as the nuances of the underlying feature space.
Zhu et al. [44] integrates heterogeneous features through multi-
level edge feature fusion. Zhu et al. [45] reduces computational
complexity while enabling multi-scale feature interaction.

Attention mechanism collaboration: Sun et al. [46] used multiple
attention mechanisms within an encoder-decoder architecture
to capture a rich array of multi-scale contextual and advanced
semantic features. Acknowledging the prominent tubular char-
acteristics present in vascular images, Deng and Jin et al. [47]
applied the concept of deformable convolution integrated with
multi-scale attention modules. This enabled the network to
adaptively discernmore tubular structural features, consequently
improving the network’s segmentation ability.

Deep learning approaches are known for superior feature extrac-
tion and generalization capabilities compared to traditional
techniques. However, most of these methods ignore the signifi-
cance of edge information and do not effectively integrate it with
other types of features. These methods inadequately integrate
multi-scale contextual features, resulting in poor segmentation
precision for small vessels. The FPN network, for instance, has
not been specifically designed for the vascular segmentation
task. Therefore, extracting edge features effectively and integrat-
ing them with multi-scale contextual features are critical for
further research.

3 Methodology

3.1 Overall Architecture

This study presents EANet, a multi-scale network that integrates
edge features with attention mechanisms for retinal vessel seg-
mentation, as shown in Figure 1. EANet consists of three primary
modules: an EFE, an MSE, and an MAD.

To extract more precise contextual information, integrate multi-
scale data, and enhance the network’s ability to capture fine
vessel features, this article proposes an EFE. Focusing on the
local and global composite features of vascular images extracted
by VGG-16, the EFE enhances edge information on feature maps
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FIGURE 1 The EANet’s overall architecture comprises three primary modules: the edge feature enhancement module (EFE), the multi-scale
information interaction encoding module (MSE), and the multi-attention mechanism decoding module (MAD). The MSE is composed of the RS and
GAMF sections, as shown in the diagram. MAD, on the other hand, is composed of the U1 to U5 units and the CHG component.

to facilitate feature fusion during the encoding phase, enabling a
more comprehensive capture of edge feature details.

Considering the presence of numerous tubular structures in
vascular images and the uneven distribution of vessels with
varying thicknesses, this article proposes anMSE for the encoding
stage. The method utilizes dynamic snake convolution to capture
abundant tubular structural information in vascular images,
adapting to changes in vessel structure. Subsequently, a global
attention mechanism is introduced to minimize information
attenuation and enhance global interactions.

In the final decoding module, to address the issue of low contrast
and significant background noise in the original images, which
leads to the loss of detailed information, this article introduces
an MAD. The MAD module aims to diminish the amount for
upsampling and to improve integration between global and local
data.MAD comprises amulti-attention upsamplingmachine that
uses an edge element fusion machine. An upsampling module
with a multi-attention mechanism can capture a wide range
of global and local information while avoiding detailed feature
loss upsampling. The module for edge feature fusion merges
the original edge features with those obtained via the decoding
module. This accentuates the edge features while enhancing the
module’s capacity to capture information across various scales
and abstraction levels. As a result, the precision of the final
segmentation is elevated.

3.2 Edge Feature Enhancement Module

3.2.1 Feature Extraction

The feature extraction section uses a pre-trained VGG-16 model
[48]. The model has a simple and repetitive architecture, con-

sisting of 13 convolutional layers and five max pooling layers. In
addition, this architecture uses several 3 × 3 convolutional layers
instead of a larger convolutional kernel. Convolutional layers
are primarily designed to extract features within images. Pooling
layers decrease feature map size, increasing network receptive
field. The structure’s repetitive nature simplifies the network’s
comprehension and training while deepening it effectively.
Beginning with the input feature map 𝐅Im ∈ ℝ3×𝐻×𝑊 , VGG-16
extracts the feature map identified as

(
𝐅1𝐼 , 𝐅

2
𝐼 , 𝐅

3
𝐼 , 𝐅

4
𝐼 , 𝐅

5
𝐼

)
. This

fragment includes components 𝐅1𝐼 ∈ ℝ𝐶×𝐻×𝑊 , 𝐅2𝐼 ∈ ℝ2𝐶in×𝐻×𝑊 ,
𝐅3𝐼 ∈ ℝ4𝐶in×𝐻×𝑊 , and 𝐅4𝐼 , 𝐅

5
𝐼 ∈ ℝ8𝐶in×𝐻×𝑊 .

3.2.2 Feature Enhancement

Due to the abundance of vascular boundaries in retinal
vessel images, it is crucial to effectively extract and utilize
comprehensive and rich boundary information to enhance
segmentation accuracy. Therefore, this research uses the Canny
algorithm [49] for feature enhancement to extract effective vessel
boundary information. The Canny algorithm extracts a feature
map, denoted as

(
𝐅0
𝐶
, 𝐅1

𝐶
, 𝐅2

𝐶
, 𝐅3

𝐶

)
, which includes 𝐅0

𝐶
∈ ℝ1×𝐻×𝑊 ,

𝐅1
𝐶
∈ ℝ4𝐶in×𝐻×𝑊 , 𝐅2

𝐶
∈ ℝ8𝐶in×𝐻×𝑊 , and 𝐅3

𝐶
∈ ℝ8𝐶in×𝐻×𝑊 . VGG-16

has numerous convolutional and pooling layers with larger
kernel sizes and strides. This design may cause small features to
be overlooked or blurred, hindering the extraction of rich minute
features in vascular images. Consequently, the ParNet block [50]
is introduced to enhance VGG-16’s feature extraction capabilities
Figure 2. This module enhances the network’s receptive field
without increasing its depth, thereby significantly improving
its capability for obtaining valuable information within feature
maps. Furthermore, the concept of feature fusion is embraced,
merging boundary feature information with extracted feature
information. The deep network feature information is combined
with the shallow network feature information to enable
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FIGURE 2 The edge feature enhancement module effectively fuses
the extracted edge features with the multi-scale information extracted by
the ParNetmodule to providemore effective information for the encoding
module.

multi-scale feature fusion. This enhances the semantic clarity
of the vascular boundary region. This study introduces an edge
feature enhancement module that can extract feature maps 𝐅𝑖 at
five distinct depths based on the preceding analysis. Model local
semantic information, such as boundary textures and the subtle
contrast between blood vessels and the background. If 𝑖 ∈ [2, 4]

is the case, the output feature map 𝐅𝑖 is represented as:

𝐅𝑖 = 𝑓P
(
𝐅𝑖I
)
⊕𝑈𝑝

(
𝐅𝑖+1I

)
⊕

(
◦
(
𝐅𝑖−1I

))
⊕

(
◦
(
𝐅𝑖−1C

))
, (1)

if 𝑖 = 1 is the case, then 𝐅𝑖 = 𝑓P(𝐅
1
I ) ⊕ 𝑈𝑝(𝐅2I ) follows.⊕ denotes

the element-wise summation operation, ◦ denotes the MaxPool-
ing operation, 𝑈𝑝() denotes the upsampling operation, and 𝑓P
denotes the ParNet operation.

3.3 Encoding and Decoding Module

To enhance segmentation accuracy, it is essential to effectively
integrate contextual information for multi-scale feature fusion,
considering the significant variation in scale information among
retinal vessels. The U-Net architecture’s original encoding and
decoding modules execute convolution and down/up-sampling
operations to extract pertinent information from feature maps
and assimilate contextual data. However, standard convolution
operations have a relatively fixed receptive field, which can
cause fine vessels to be missed and, therefore, cannot accurately
capture the features of complex vascular structures. As the
network depth increases, shallowandminute feature information
is lost, resulting in inadequate feature restoration. Therefore,
this study introduces an MSE. In the encoding stage, we first
introduce the MSE module, which consists of two parts: the
residual dynamic snake convolution (RS) module and the fusion
attention downsampling mechanism (GAMF). It captures global
semantics, such as the overall vascular morphology and spatial
relationships of large vessels, while encoding local semantics,
including fine-grained details of small vessels. TheRSmodule can
incorporate more detailed information about tubular structures,
while the GAMF better integrates contextual information at mul-
tiple scales. Consequently, it provides the decoding module with
feature information at different scales, demonstrating effective

feature fusion. The dynamic serpentine convolution [23] can
adaptively concentrate on slender and tortuous local structures.
Hence, this structure is well-suited for the extraction of vascular
features. Simultaneously, the residual structure lightens the
network training load and preserves essential information from
the original input, accomplishing local feature fusion. Regarding
the GAM [51] attention mechanism, it filters out redundant
information, mitigates the loss of crucial data, and enhances
global interaction capacity. This compensates for the information
loss resulting from downsampling operations. However, the use
of the original convolution operations introduces some degree
of network complexity. Therefore, we substituted them with
the ghost module [52]. This module collects additional feature
information from less complex operations, reducing the burden
on network training.

Efficiently restoring the detailed information of acquired features
in the decodingmodule is crucial for enhancing the segmentation
accuracy. However, the original U-Net architecture’s decoding
module fails to fully and accurately restore relatively minor
details. Simultaneously, its ability to integrate both global and
local information is limited. Thus, this study introduces a multi-
attention mechanism decoding structure. Within the skip con-
nection segment, we have retained the SDImodule fromU-Netv2
[53]. A multi-attention mechanism and a context feature fusion
modulewere incorporated during the decoding phase. During the
layer-by-layer sampling process, distinct decoding sub-modules
were crafted for different structural layers. The model employs
the position attention module, channel attention module, and
spatial attentionmodule for layers U1 toU3 to combine associated
features from spatial and channel dimensions. Moreover, to
counteract the gradient vanishing issue stemming from the repet-
itive stacking of identical modules, we implemented structural
alterations in each layer. In layers U2 and U3, we integrated edge
features to give it the ability to capture the detail from various
perspectives. Thereby boosting the network’s generalizability. We
acknowledge the significance of edge features and the potential
loss of minute features. As layer U4 is located in themidsection of
the decoder, it contains both abundant shallow detail information
and extensive deep semantic information. Consequently, we
added the context feature extraction module at layer U4. This
minimizes the loss of detailed information without significantly
increasing the network’s computational demand. The module
for extracting context features consists of two parts: a dense
atrous convolution module and a residual multi-kernel pooling
module [54]. Finally, we use the concept of gated convolution
[55] to combine edge features with others to achieve accurate
segmentation predictions. The techniques for obtaining edge
features include Canny edge detection and holistic nested edge
detection [56]. Due to the complexity and richness of detail
in vascular images, the holistic nested edge detection method
can extract deeper features and contextual information. This
method blends two edge detection techniques to accentuate
vascular edge features. The following section provides specific
details.

3.3.1 Residual Dynamic Serpentine Convolution

Vascular images containmany tubular structural features. There-
fore, by incorporating these features, the encoding module can
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better integrate multi-scale contextual information. This study
introduces a residual dynamic serpentine convolution module,
which consists of two components: a residual structure and
dynamic snake convolution. Using dynamic serpentine convolu-
tion allows for acquiring additional tubular feature information
𝐅S. Additionally, this technique can extract richer spatial infor-
mation from input images, resulting in more diverse features.
Simultaneously, we aim to diversify the features by exploiting
input images that possess richer spatial information. Follow-
ing the principle of residual structures and feature fusion, we
amalgamate the original image feature information, the features
marked as 𝐅Im and 𝐅1, and the tubular feature information as 𝐅S
to obtain more comprehensive tubular feature information. The
technique of dynamic snake convolution focuses on slender and
curved local structures, allowing for accurate capture of tubular
structural features. Dynamic snake convolution is an extension of
deformable convolution [57]. It incorporates deformation offsets
and uses an iterative strategy to select observation positions for
each target under consideration sequentially. This approach pre-
serves the continuity of attention without excessively dispersing
the receptive field, even when significant deformation offsets are
present [23, 58]. Secondly, to optimize the utilization of edge
information in the original images, the structure incorporates
residual connections to facilitate feature fusion. This method
provides the GAMF module with more accurate information on
tubular features, thereby improving the integration of multi-scale
contextual information.

Initially, the tubular structural features 𝐅S of the input image 𝐅Im
are captured using dynamic snake convolution. Subsequently, a
1 × 1 convolution is applied to 𝐅Im to align the channel count
with 𝐅1. Finally, a feature map enriched with tubular features
is obtained by performing an element-wise summation on all
acquired feature maps 𝐅RS.

𝐅S = 𝜙S(𝐅Im), (2)

𝐅RS = 𝜙1(𝐅Im) ⊕ 𝐅1 ⊕ 𝐅S, (3)

where 𝜙S represents the dynamic snake convolution operation
and 𝜙1 represents the 1 × 1 convolution.

3.3.2 Fusion Attention Downsampling Mechanism

The EFE assimilates contextual information from various scales
of the input image. Concurrently, the RS module captures richer
tubular structural details, thereby enhancing the integration of
multi-scale contextual information. This supplies the decoding
module with more precise vascular feature information and
more precise spatial relationships. Based on the abovementioned
analysis, this study presents a fusion attention downsampling
mechanism. The mechanism consists two parts: GAM mecha-
nism and down ghost mechanism as shown in Figure 3. The
GAM attention mechanism is a global attention framework
that combines spatial features from 𝐅S with semantic features
that increase progressively from 𝐅2 to 𝐅5. This process provides
the decoding module with more precise and enriched detail
features, enhancing accuracy during detail restoration.Moreover,
it can improve model generalization, allowing it to adapt to

various datasets. However, this architecture increases network
complexity and raises the risk of overfitting. Therefore, we
implemented the ghost module, which replaces the original
convolution operations. It achieves equivalent or superior feature
extraction outcomes compared to traditional convolutions using
more straightforward arithmetic, reducing the overall number of
model coefficients.

The fusion attention downsampling mechanism’s GAM inte-
grates the output feature from the preceding encoding module
with the input feature map of the same encoding module 𝐅𝑖 .
Thus, by performing an element-wise summation on both input
features and then using the GAM attention mechanism, rich
contextual information 𝐅𝑖G is obtained in the new feature map.
The expression for this is as follows:

𝐅𝑖G = ◦
(
𝑓G

(
𝐅𝑖−1D ⊕ 𝐅𝑖−1

))
. (4)

Concurrently, we use the down ghost module to extract features
for the obtained value of 𝐅𝑖G. The expression is as follows:

𝐅𝑖GF = 𝑓DG
(
𝑓′DG

(
𝐅𝑖G

))
, (5)

where

𝑓′GB = 𝛿
(
𝐵
(
𝜙G

(
𝐅𝑖G

)))
, (6)

𝑓GB = 𝛿
(
𝐵
(
𝜙G

(
𝑓′GB

(
𝐅𝑖G

))))
, (7)

where 𝑓G denotes the GAM attention operation, 𝐵 denotes batch
normalization operation, 𝛿 denotes ReLu operation, 𝜙𝐺 denotes
ghost convolution, 𝑓GB denotes the ghost module, 𝑖 ∈ [2, 5].

3.3.3 Semantics and Detail Infusion

Utilizing detailed lower-layer spatial features to refine higher-
layer semantic features with greater abstraction can provide the
decoding module with more precise features across different
scales, thereby improving segmentation accuracy. Therefore, we
have included the semantics and detail infusion skip connec-
tion module from U-Netv2. The architecture utilizes attention
mechanisms to combine information from the five feature maps(
𝐅1D, 𝐅

2
D, 𝐅

3
D, 𝐅

4
D, 𝐅

5
D

)
produced by the encoder. A 3 × 3 convolu-

tion is then used to smooth the resulting feature maps. Finally,
the Hadamard product is used to integrate all feature map-
pings, leveraging more semantic information and finer details to
enhance the features. The ultimate feature map 𝐅𝑖DI is acquired,
expressed as follows:

𝐅𝑖DI = 𝑓S
(
𝐅𝑖D

)
, (8)

where 𝑓S denotes the SDI operation, 𝑖 ∈ [1, 5]

3.3.4 Decoding Module

While deep features excel in capturing semantic information,
they fall short in providing spatial details. On the other hand,
shallow features offer abundant spatial information but lack the
capacity to convey global semantics. Consequently, by merging
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FIGURE 3 The GAMF module is composed of GAM and down ghost. The fused features serve as input, and the global attention mechanism
effectively combines spatial and semantic information. Next, down ghost abstracts the features while preserving the original information. This, in turn,
reduces the model complexity.

these two features, the model can improve its ability to com-
prehend image content and capture precise details, resulting in
higher segmentation accuracy. It is composed of a multi-class
attention mechanism and an edge gating module (CHG). For
low-contrast regions, MAD enhances semantic representation
by using global attention, while leveraging edge semantics to
suppress noise and refine vascular details. Based on the analysis
mentioned above, this study presents a decodingmodule that uti-
lizes a multi-attention mechanism. Spatial and channel attention
mechanisms have been incorporated for layers U1, U2, and U3
to capture a significant amount of high-level and detailed fea-
ture information

(
𝐅3D, 𝐅

4
D, 𝐅

5
D

)
. The spatial attention mechanism

encodes broader contextual information into local features, while
the channel attentionmechanism combines inter-channel related
features. Thus, merging these two mechanisms can effectively
consolidate contextual information. In addition, we included
boundary features to aid in multi-level feature fusion.

The process for layer U2 will be detailed due to the structural
similarities among layers U1, U2, and U3. For layer U2, we
use the multi-attention mechanism to extract pivotal features in
𝐅4D. We also apply an element-wise summation to the boundary
features 𝐅3C and 𝐅

4
DI to obtain the combined feature map 𝐅

2
U. The

expression is as follows:

𝐅𝑘Sum = 𝑓Sum

(
𝑓PA

(
𝐅4,𝑘D

)
, 𝑓CA

(
𝐅4,𝑘D

)
, 𝑓SA

(
𝐅4,𝑘D

)
, 𝐅4,𝑘DI , 𝐅

3,𝑘

C

)
, (9)

𝐅2U = 𝑈𝑝
(
𝐅1U

)
©𝐅𝑘Sum. (10)

The up ghost module is used to perform upsampling operations
on the acquired data 𝐅2U, gradually restoring feature details and
obtaining the output feature map 𝐅2O, expressed as follows:

𝐅2O = 𝑓GB
(
𝑓′GB

(
𝐅2U

))
, (11)

where

𝑓′GB = 𝛿
(
𝐵
(
𝜙G

(
𝐅2U

)))
, (12)

𝑓GB = 𝛿
(
𝐵
(
𝜙G

(
𝑓′GB

(
𝐅2U

))))
, (13)

where © denotes concatenation, 𝑓Sum denotes multi-input
element-wise summation, 𝑓PA denotes the spatial attention
mechanism, 𝑓CA denotes the channel attention mechanism, 𝑓SA
denotes the spatial attention mechanism, 𝑘 denotes the number
of layers in the decoder, 𝑘 ∈ [1, 5].

The importance of abundant edge detail features in shallow layers
for detail restoration is acknowledged. The U4 layer incorporates
a context feature extraction module. This module effectively
combines surface-level details with in-depth semantic features to
maintain crucial semantic context information. The dense atrous
convolution module uses convolutions with varied receptive
fields to extract features of different abstraction levels. These
features are then integrated by the residual multi-kernel pooling
module to combine context features from various layers.

The combination with context feature extraction has improved
the ability to interactwith contextual information in layerU4. The
resulting feature map 𝐅4O, further refined for detail, is expressed
as follows:

𝐅4U = 𝑈𝑝
(
𝐅3O

)
©
[
𝑓R

((
𝑓D

(
𝐅2D

)))
⊕𝐅2DI

]
, (14)

𝐅4O = 𝑓GB
(
𝑓′GB

(
𝐅4U

))
. (15)

Ultimately, to obtain additional information without relying too
heavily on deep semantic analysis. This article uses the concept of
gated convolution to integrate boundary features across different
levels with refined and enriched semantic features to achieve
effective feature fusion. as shown in Figure 4. The holistic nested
edge detection method is used to acquire edge features 𝐅H. These
features are then concatenatedwith𝐅H,𝐅0C, and previous features
along the channel dimension 𝐅1D, resulting in the concatenated
feature map 𝐅′C, expressed as follows:

𝐅′C = 𝐅H©𝐅0C©𝐅
1
D. (16)

A new gated convolution module has been defined, the output
layer of this module is subject to a Sigmoid operation, which
results in a weight scaling factor 𝛼 between 0 and 1. Using 𝛼
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FIGURE 4 The structural diagram of the CHG module is depicted. Edge information serves as a positional prior, leveraging the gating layer to
guide the extraction of low-level features. This design retains essential regional information and mitigates noise interference.

to highlight the key features in 𝐅5U, we obtain the final output
𝐅P. It is akin to adding a filter to 𝐅′C, permitting only the
features related to semantics to pass through. We treat 𝐅′C as
low-level input and effectively control its activation using higher-
level activations derived from the decoding phase. This allows a
substantial amount of valuable edge information to be preserved.
Expression is shown below:

𝛼 = 𝑓GC
(
𝐅′C

)
, (17)

𝐅P = 𝜙1
(
𝐅5O ⊗ (𝛼 + 1)

)
, (18)

𝑓GC = 𝜎
(
𝐵
(
𝜙1
(
𝛿
(
𝜙1
(
𝐵
(
𝐅′C

))))))
, (19)

where⊗ denotes the element-wise multiplication operation.

3.4 Loss Function

In order to account for the potential disequilibrium between
vascular and non-vascular distributions within vascular images,
a weighted cross-entropy loss function is used in this study:

𝐿(𝑦𝑖, 𝑦̂𝑖) = − 1

𝑁

𝑁∑
𝑖=1

[
𝑤p ⋅ 𝑦𝑖 ⋅ log (𝑦̂𝑖) + 𝑤n ⋅ (1 − 𝑦𝑖) ⋅ log (1 − 𝑦̂𝑖)

]
,

(20)

where 𝑁 represents the batch size, 𝑦𝑖 denotes the true label of
the 𝑖th sample, with 𝑦𝑖 = 1 for positive samples and 𝑦𝑖 = 0 for
negative samples. The variable 𝑦̂𝑖 represents the probability of
the model predicting the 𝑖th image as a positive sample, while
𝑤p and 𝑤n are the weights assigned to positive and negative
samples, respectively (Algorithm 1).

4 Experiment Setup

4.1 Datasets

This study uses three publicly available datasets: DRIVE, STARE,
and CHASEDB1 for retinal vessel segmentation experiments to
evaluate the effectiveness of our method, as shown in Table 1.

Algorithm 1 EANet model training process.

1: Input: Training set 𝐅traIm, Test set 𝐅
tes
Im, Training rounds 𝑁,

Various parameters
2: Output: The predictive feature matrix 𝐅pr
3: Initialize optimummIoU bmIoU
4: Initialize weight 𝑆
5: Initialize the performance indicator matrix 𝑅M
6: for 𝑛 = 1 to 𝑁 do
7: Using the EFE module to acquire the encoded feature

matrix 𝐅𝑖 (refer to Equation 1)
8: Using MSE to obtain encoded feature matrices 𝐅RS,

𝐅𝑖GF (refer to Equations 3 and 5)
9: Using SDI to obtain the fused feature matrix 𝐅𝑖DI

(refer to Equation 8)
10: Using MAD to progressively restore detailed features

and acquire the predicted feature matrix 𝐅𝑛pr (refer to
Equations 9 to 19)

11: Using the loss function (refer to Equation 20) to
calculate the loss 𝐿s and obtain current weights 𝑆

12: Computing performance metrics: Acc, Se, F1, and
mIoU (refer to Equations 21 and 25)

13: if bmIoU > mIoU then
14: Set best𝑆 equal to 𝑆
15: Document the current performance metrics matrix

𝑅M = [Acc, Se,F1,mIoU]
16: Set best𝐅pr equal to 𝐅𝑛pr
17: end if
18: Updating various types of parameters and utilizing 𝐿s

to update model parameters
19: end for
20: return 𝐅pr, best𝑆, 𝑅M

8 of 17 IET Image Processing, 2025
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TABLE 1 Detailed information on three public datasets.

Dataset Image numbers Train/Test Image size

DRIVE 40 20/20 584 × 565
CHASEDB1 28 20/8 999 × 960
STARE 20 10/10 700 × 605

DRIVE: The DRIVE dataset was released in 2004 as part of a
Dutch study on diabetic retinopathy screening by [59]. It consists
of 40 colour fundus images with resolutions of 584 × 565 and
corresponding annotated images. The dataset consists of training
and testing datasets, which contain 20 images in total. Annotated
images are categorized into vessel annotations and mask images,
with two sets of vessel annotations available. Researchers usually
consider the set with a greater number of vessel annotations as
the gold standard.

CHASEDB1:The CHASEDB1 dataset was released in 2009 for a
study on child heart andhealth inEngland by [60]. It comprises 28
colour fundus images, each with a resolution of 999 × 960, taken
from 14 children and two sets of corresponding vessel annotation
images. Our research uses the first set of annotations as the gold
standard. No mask images are provided in this dataset.

STARE: The STARE dataset consists of 20 colour fundus images
with a resolution of 700 × 605 and two sets of corresponding
vascular annotations, introduced in 2000 and developed by
[61] using a region-based detection method. The fundus images
include 10 with lesions and 10 without. The first set of vessel
annotations is the gold standard in our research. Nomask images
are provided with this dataset.

4.2 Data Preprocessing

Regarding dataset division, the DRIVE dataset adheres to the offi-
cial partitioning, with 20 datasets intended to train model while
another 20 datasets to test. This study uses a commonly employed
dataset-splitting approach because there are no official partitions
for the CHASEDB1 and STARE datasets. The CHASEDB1 dataset
consists of 20 images for its training dataset and 8 images for
its testing dataset. The STARE dataset includes 10 images in the
training and test sets, with 5 images of vessels without lesions and
5 images with lesions in each set. The DRIVE dataset includes
field of view (FOV) masks, absent in the other two datasets. For
datasets without masks, mask images were manually annotated
using the Labelme tool. This ensures that each dataset contains
two types of annotations.

Given the small number of images in all three datasets, which
could potentially lead to overfitting during training, we employed
data augmentation techniques to expand the datasets. The
translation range is defined as [−10%, 10%], the scaling factor
varies within [0.8, 1.1], and brightness adjustment is confined
to [−10%, 10%]. These techniques included flipping, rotation,
translation, scaling, adding Gaussian noise, and making random
brightness adjustments. Concurrently, the input image sizes were
standardized to 380 × 380 to align with the network’s output
size specifications.

4.3 Evaluation Metrics

Retinal vessel images consist of two types: vessels (foreground)
and non-vessels (background). Vessels, which are the focus of
detection and segmentation, are identified as the positive class,
while non-vessels are designated as the negative class. The results
of network segmentation are compared to the true values to
determine true positives (TP), false positives (FP), false negatives
(FN), and true negatives (TN). TP represents the number of pixels
accurately identified as the vessel class, while FP refers to the
number of pixels mistakenly identified as background. FN is
the number of pixels misclassified as the vessel class, and TN
is the number of pixels correctly identified as background. This
study uses accuracy (Acc), sensitivity (Se), the F1 score, andmean
intersection over union (mIoU) to evaluate the effectiveness of
EANet. Acc represents the probability of correctly classifying
both vessel and background categories, while Se represents the
probability of correctly classifying the vessel category. The F1
score is the harmonic mean of precision and sensitivity. The
mean intersection over union (mIoU) metric is calculated by
averaging the IoU across all categories. The IoU is the ratio of
the intersection over the union between the actual labels and
predicted outcomes for each category.

𝐴𝑐𝑐 = 𝑇𝑃 + 𝑇𝑁

𝑇𝑃 + 𝐹𝑁 + 𝑇𝑁 + 𝐹𝑃
, (21)

𝑆𝑒 = 𝑇𝑃

𝑇𝑃 + 𝐹𝑁
, (22)

𝐹1 = 2𝑇𝑃

2𝑇𝑃 + 𝐹𝑃 + 𝐹𝑁
, (23)

IoU = TP
𝑇𝑃 + 𝐹𝑃 + 𝐹𝑁

, (24)

mIoU = 1

𝑀 + 1

𝑀∑
𝑡=1

𝐼𝑜𝑈𝑡, (25)

where𝑀 denotes the class total and 𝐼𝑜𝑈𝑡 denotes the IoU value
for the 𝑡th category.

4.4 Implementation Details

The EANet implementation presented in this study is built on
the Pytorch platform using an NVIDIA RTX 3090 graphics card
with 24 GB of memory and a 12 vCPU Intel(R) Xeon(R) Platinum
8255C CPU @ 2.50 GHz. The optimization technique used is
the Adam algorithm, which is initialized with a learning rate
of 1 × 10−3, a weight decay of 1.5 × 10−4, and a batch size of 2.
The DRIVE and CHASEDB1 datasets were trained for 40 epochs
during our experiments. The STARE dataset was trained for 80
epochs. Additionally, to reduce overfitting, Dropout operations
were implemented.

5 Results and Discussion

The trials performed to evaluate the performance of the proposed
model in retinal vessel segmentation tasks are described in
the following subsection. Initially, the methodology introduced
in this study was comprehensively compared with advanced
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approaches across three public retinal vessel datasets, under-
scoring its effectiveness. Subsequently, ablation studies focused
on three critical components of the EANet architecture were
carried out to ascertain the distinct effectiveness of each module.
In addition, we conducted comparative experiments on the
critical parameters of the EFE module to determine its optimal
performance. Finally, we compared the iteration speeds of various
methods to validate the high efficiency of EANet.

This section describes the experiments carried out on the
proposed model to evaluate its performance in retinal vessel
segmentation tasks. Initially, the methodology introduced in this
study was comprehensively compared with advanced approaches
across three public retinal vessel datasets, underscoring its
effectiveness. Subsequently, ablation studies focused on three
key components of the EANet architecture were carried out to
ascertain the distinct effectiveness of each module. Finally, we
conducted comparative experiments on the key parameters of the
EFE module to determine its optimal performance.

5.1 Tested Models

The 10 established methods were compared with the 5 variant
methods proposed in this study to assess the feasibility of the
method described here. All methods adopted identical experi-
mental configurations and training strategies to guarantee a fair
comparison. The methods compared are as follows:

∙ U-Net [15]: The U-Net model enables efficient medical image
segmentation with minimal annotated samples.

∙ R2U-Net [62]: R2U-Net is a segmentation model that uti-
lizes residual structures and recurrent residual convolution
modules to enhance feature fusion, resulting in improved
segmentation performance.

∙ AttU-Net [63]: AttU-Net uses attention gate modules to iden-
tify different target structures and highlight relevant features
while reducing the impact of irrelevant ones.

∙ SAU-Net [22]: SAU-Net is a variant of the lightweight spatial
attention U-Net that adaptively refines input feature maps.

∙ CS2-Net [64]: CS2-Net utilizes various attention modules to
comprehensively integrate the multi-layered information in
curve structures.

∙ FRU-Net [42]: This is a full-resolution network that integrates
multi-scale contextual information.

∙ ConvMixer [65]: ConvMixer uses self-attention mechanisms
in conjunction with U-Net for modelling.

∙ IterMiU-Net [66]: This article proposes a lightweight convo-
lutional model, IterMiU-Net, which combines the Iternet and
MiU-Net architectures.

∙ WS-DMF [67]: The WS-DMF network introduces a novel
approach by combining anisotropic awareness convolution
with anisotropic enhancement modules.

∙ IMFF-Net [68]: IMFF-Net is a segmentation network that
fuses features at multiple scales.

∙ EANet_B: The basic network of the model presented in
this work. This is a network that integrates local feature
fusion with VGG-16, using VGG-16’s superior feature extrac-
tion capabilities to enhance U-Net’s global and local feature
extraction.

∙ EANet_B + EFE: It proposes a network that combines local
features with edge feature enhancement, using the EFE
module to enhance the network’s edge feature detection
capability.

∙ EANet_B +MSE: This network combines local features with
multi-scale information exchange, using the MSE module to
exploit the abundant tubular features in images and increase
the global interactive capacity of the network.

∙ EANet_B+MAD: This network integrates local features with
a multi-attention mechanism. The MAD module is deployed
to strengthen the fusion of context information and mitigate
the loss of detailed feature information.

∙ EANet: This method is proposed in this article. EANet
introduces a multi-scale network that combines edge features
with an attentionmechanism. It adeptly incorporates theEFE,
MSE, and MADmodules within the EANet_B.

5.1.1 Visual Comparison

Our approach was visually compared to other methodologies
across three public datasets, as shown in Figures 5 and 6.
Although U-Net is a standard in segmentation benchmarks, its
performance was unsatisfactory. The high prevalence of yellow
and red pixels indicates a higher occurrence of false negatives
and positives in its segmentation outcomes. R2U-Net adopts the
principle of feature fusion through the integration of recursive
residual convolution blocks. Figure 6 shows that, compared to
U-Net, R2U-Net has fewer red pixels and more yellow pixels.
This indicates that the method’s ability to detect fine vessels may
have been compromised due to the extensive feature fusion oper-
ations. As shown in Figure 5, R2U-Net has difficulty accurately
segmenting small blood vessels. AttU-Net, which incorporates
attention gates, improves the network’s focus on targets of varying
sizes and shapes, outperforming R2U-Net. However, incomplete
capture of spatial information leads to reduced continuity in
vessel segmentation. Upon comparison with the ground truth,
it is evident that although AttU-Net can detect fine vessels, the
segmentation results lack continuity. This indicates a deficiency
in effectively capturing and utilizing deep semantic information.
By incorporating a spatial attention mechanism, SAU-Net has
improved its capability of acquiring spatial features. The seg-
mentation outcomes of this method are more precise than the
previously mentioned three methods. However, increased red
pixels within its segmentation results indicate a reduced ability to
resist interference. CS2-Net uses different attention mechanisms
to enhance its ability to capture curvilinear structural features.
However, as shown in Figure 5, it cannot accurately segment fine
vessels. FRU-Net integrates features from all network layers to
improve contextual feature capture. However, it is susceptible
to disruptions caused by image blur and complex structures,
resulting in increased red pixels in the imagery. ConvMixer,
which employs transfer learning principles, has improved the
network’s ability to resist interference, significantly reducing red
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FIGURE 5 The segmentation outcomes for all comparative methods across the three datasets are as follows: DRIVE (top), CHASEDB1 (middle),
and STARE (bottom).

FIGURE 6 The segmentation outcomes for all comparative methods across the three datasets are as follows: DRIVE (top), CHASEDB1 (middle),
and STARE (bottom). In the segmentation results, red indicates false positives, yellow false negatives, and green true positives.

pixels in the images. However, due to structural limitations,
the method cannot extract more comprehensive vessel details.
IterMiU-Net is a lightweight design that simplifies network
complexity, building on the Iternet architecture. However, its
adaptability to complex vascular images is limited, demonstrating
weak interference resistance. Although WS-DMF can enhance
vascular features with anisotropic awareness convolution, its
structural limitations hinder its adaptability to complex vascular
structures, which reduces themodel’s generalization capabilities.
IMFF-Net is a multi-scale feature fusion network that demon-
strates improved fine vessel segmentation capabilities compared
to previous methods. However, this approach is still susceptible
to interference from background noise.

Ourmethodbenefits from theEFEmodule,which adeptlymerges
vessels’ edge features with multi-scale features, thus augmenting
EANet’s edge detection and interference resistance capabilities.
Figure 5 demonstrates EANet’s ability to segment a larger
number of fine vessels while effectively suppressing irrelevant

background noise, as shown by the red pixels in Figure 6. The
MSE module proposed here enhances capabilities of the model
for tubular feature acquisition and promotes interactions within
the network context. Figures 5 and 6 demonstrate that EANet
captures vascular features with more excellent continuity. Fur-
thermore, our approach achieves a more precise segmentation of
fine vessels due to the proposedMAD structure. This architecture
minimizes the loss of crucial information in the network and
amplifies its capacity to restore detailed features.

5.1.2 Statistical Evaluation

To evaluate results quantitatively, we used Acc, mIoU, F1, and
Se metrics for statistical comparison to assess the efficacy of
our proposed EANet. Tables 2–4 present the data indicating
that EANet attained the highest scores in Acc, mIoU, and F1
across the DRIVE, CHASEDB1, and STARE datasets. The DRIVE
dataset achieved Acc of 95.48%, a mIoU of 82.40%, and an
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TABLE 2 Comparison results of different segmentationmethods on
the DRIVE dataset.

Dataset Method
Acc
(%)

Se
(%)

F1
(%)

mIoU
(%)

DRIVE U-Net [15] 95.18 82.89 81.42 81.64
R2U-Net [62] 95.12 80.83 80.84 81.20
AttU-Net [63] 95.25 80.72 81.21 81.54
SAU-Net [22] 94.96 85.83 81.25 81.38
CS2-Net [64] 95.26 79.77 81.08 81.45
FRU-Net [42] 94.98 82.21 80.65 80.98
ConvMixer [65] 95.14 79.96 80.73 81.14
IterMiU-Net [66] 95.29 75.68 80.36 80.98
WS-DMF [67] 94.69 80.99 79.54 80.06
IMFF-Net [68] 95.08 69.73 78.29 79.46

EANet 95.48 82.33 82.25 82.40

TABLE 3 Comparison results of different segmentationmethods on
the CHASEDB1 dataset.

Dataset Method
Acc
(%)

Se
(%)

F1
(%)

mIoU
(%)

CHASEDB1 U-Net [15] 94.86 86.77 80.33 80.70
R2U-Net [62] 95.16 75.78 77.64 79.08
AttU-Net [63] 95.21 86.31 79.69 80.48
SAU-Net [22] 94.99 87.44 79.91 80.49
CS2-Net [64] 95.05 76.91 79.23 80.07
FRU-Net [42] 94.23 78.44 75.96 77.45
ConvMixer [65] 95.24 86.93 81.19 81.51
IterMiU-Net [66] 95.19 73.64 77.08 78.74
WS-DMF [67] 94.40 82.85 77.64 78.62
IMFF-Net [68] 94.67 68.81 75.61 77.49

EANet 95.34 87.72 82.33 82.37

TABLE 4 Comparison results of different segmentationmethods on
the STARE dataset.

Dataset Method
Acc
(%)

Se
(%)

F1
(%)

mIoU
(%)

STARE U-Net [15] 94.74 81.54 83.08 82.51
R2U-Net [62] 94.21 73.03 79.62 79.81
AttU-Net [63] 94.79 80.07 83.06 82.53
SAU-Net [22] 94.87 81.99 83.28 82.73
CS2-Net [64] 94.35 78.22 80.83 80.71
FRU-Net [42] 94.27 77.82 81.02 80.78
ConvMixer [65] 93.69 74.26 78.57 78.78
IterMiU-Net [66] 93.51 61.33 74.19 75.90
WS-DMF [67] 94.34 70.77 79.27 79.66
IMFF-Net [68] 92.46 53.58 69.08 72.26

EANet 95.11 79.93 83.56 83.09

TABLE 5 Ablation studies of proposed EANet on DRIVE dataset.

Dataset Method
Acc
(%)

Se
(%)

F1
(%)

mIoU
(%)

DRIVE EANet_B 95.11 83.66 81.34 81.54
EANet_B+EFE 95.42 81.62 81.95 82.16
EANet_B+MSE 95.25 84.61 81.95 82.05
EANet_B+MAD 95.25 82.14 81.49 81.72

EANet 95.48 82.33 82.25 82.40

F1 score of 82.25%.The CHASEDB1 dataset achieved an Acc
of 95.34%, a mIoU of 82.37%, and an F1 score of 87.72%.The
STARE dataset recorded the following performance metrics:
Acc at 95.11%, mIoU at 83.09%, and F1 score at 83.56%. This
suggests that EANet outperforms the most advanced methodolo-
gies in terms of comprehensive performance. EANet achieved
the highest Se score of 87.72% in the CHASEDB1 dataset. This
suggests it has an enhanced capacity to identify fine vessels
and edge features, as demonstrated in numerous studies [19,
42]. These results highlight EANet’s proficiency in extracting
microvascular structures.

SAU-Net’s integration of a spatial attention mechanism concur-
rently boosted its fine vessel extraction capacity, resulting in
the highest Se scores in both the DRIVE and STARE datasets.
Furthermore, a comparative analysis of performance metrics on
CHASEDB1 demonstrates that ConvMixer closely matches our
approach in terms of Acc and F1 score. This can be attributed
to ConvMixer’s capability to combine features across spatial and
channel dimensions, allowing the network to capture a more
comprehensive feature information. Consequently, it achieved
commendable results about Acc and F1 scores.

5.2 Ablation Studies

Number of ablation experiments were conducted across publicly
retinal vessel segmentation datasets to determine the effective-
ness of the EANet and the three new modules introduced in
this study. The EANet_B model served as the foundational
network, with three innovative modules subsequently integrated
for ablation analysis. Results are shown in Tables 5–7 for ablation
tests for each dataset.

Table 5 shows that the baseline network achieved an Acc of
95.11%, a mIoU of 81.54%, a Se of 83.66%, and an F1 score of
81.34% for theDRIVEdataset. Subsequently, each of the three new
modules was sequentially integrated with the baseline network,
and their performance was compared to that of the baseline
network. The integration of the EFE module initially resulted
in improved performance metrics. Specifically, Acc increased by
0.31%, F1 by 0.61% and mIoU by 0.62%. After including the MSE
structure in the baseline network, there was an increase of 0.14%
in Acc, 0.51% in mIoU, 0.95% in Se, and 0.61% in F1 score. Finally,
the Acc, mIoU, and F1 were improved by 0.14%, 0.18%, and 0.15%,
respectively, with the incorporation of the MAD structure into
the baseline network. In conclusion, the three new modules
have greatly enhanced the segmentation capabilities within
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TABLE 6 Ablation studies of proposed EANet on CHASEDB1 dataset.

Dataset Method
Acc
(%)

Se
(%)

F1
(%)

mIoU
(%)

CHASEDB1 EANet_B 94.72 87.41 80.66 80.83
EANet_B+EFE 94.79 87.17 80.67 80.81
EANet_B+MSE 94.83 87.98 81.47 81.45
EANet_B+MAD 95.15 82.33 80.74 81.15

EANet 95.34 87.72 82.33 82.37

TABLE 7 Ablation studies of proposed EANet on STARE dataset.

Dataset Method
Acc
(%)

Se
(%)

F1
(%)

mIoU
(%)

STARE EANet_B 94.96 81.99 83.29 82.08
EANet_B+EFE 94.95 79.64 83.24 82.76
EANet_B+MSE 95.00 76.84 82.97 82.61
EANet_B+MAD 94.75 80.96 82.63 82.20

EANet 95.11 79.93 83.56 83.09

baseline networks. Additionally, EANet effectively integrated
these three modules, resulting in optimal overall performance.
The segmentation efficacy of the baseline was improved variably
by incorporating the three modules in the CHASEDB1 and
STARE datasets. Results are shown in Tables 6 and 7. The
integration of the EFE module enabled the baseline network to
capture more comprehensive feature information, resulting in
significant improvements in both Acc and F1 score. Furthermore,
the MSE module enhanced the baseline network’s ability to
delineate minor features, resulting in peak Se. Additionally,
the MAD module somewhat improved the baseline network’s
generalization capability.

5.3 Key Parameter Analysis

From the above, it is clear that within our proposed EFE,
capability for features extraction can be modulated by varying
the number of layers dedicated to feature fusion. Therefore, we
performed some experiments with this parameter to measure its
impact on model performance, implementing different numbers
of fusion layers on three publicly available datasets.

Figure 7a illustrates that the EFE module’s initial configuration
had three fusion layers for the DRIVE dataset. This yielded
performance metrics of 94.43% Acc, 86.14% Se, 81.45% F1 score,
and 81.18%mIoU. Adjusting the fusion layer count to two resulted
in improvements: an increase of 0.64% in Acc, 3.63% in Se, 0.70%
in F1, and 0.90% in mIoU. Finally, reducing the number of fusion
layers from two to one resulted in an increase in Acc of 0.41%,
F1 of 0.10%, and mIoU of 0.32%. Compared to the initial setting
of three layers, the performance metrics showed an increase in
Acc of 1.05%, F1 of 0.80%, and mIoU of 1.22%. It is important
to note that Se is at its peak when two layers are fused in the
EFE module, demonstrating improved detection of fine vascular

TABLE 8 Model performance and computational complexity.

Layers Acc (%) FLOPs (G)

1 95.48 316.005
2 95.07 317.872
3 94.43 319.638

features, albeit at the expense of overall network performance.
Figure 7b,c shows that the EFE fusion layer count of one achieved
optimal results for Acc, F1, and mIoU in the CHASEDB1 and
STARE datasets, highlighting the network’s superior edge feature
extraction capability in this configuration. Furthermore, Table 8
demonstrates that having only one fusion layer not only decreases
the computational requirements of the model but also improves
its accuracy. Consequently, we’ve set the number of fusion layers
in the EFE module to one, improving EANet’s edge feature
extraction efficiency and accelerated processing speed.

5.4 Comparison of Iteration Speed

Thoroughly evaluating the effectiveness of our proposed method,
we examined the convergence rates of EANet versus competing
methodologies across three datasets.We specifically evaluated the
Acc, F1, and mIoU metrics. Figure 8 shows that EANet achieves
superior metric values on the DRIVE and STARE datasets
at an early speed during the onset of convergence. Further-
more, in these datasets, EANet’s performance indicators show
smoother convergence trajectories than alternative strategies.
This demonstrates that our methodology converges more quickly
and exhibits greater stability. For the CHASEDB1 dataset, the
convergence curve fluctuations between EANet and ConvMixer
are similar, indicating that ConvMixer is equally stable in this
dataset. However, the data on convergence demonstrate that
EANet achieves higher F1 and mIoU values. In conclusion, the
proposed EANet demonstrates accelerated convergence speed
and enhanced stability. Its superior performance across various
datasets illustrates the model’s robust generalization capacity,
ensuring unparalleled overall efficacy.

6 Conclusion

This article introduces a multi-scale network, EANet, that
integrates edge features and attention mechanisms for precise
segmentation of retinal vessels. The EANet proposed in this
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FIGURE 7 Analysis of key parameters on three datasets.

FIGURE 8 Analysis of iteration speed on three datasets.

study enables the effective integration of shallow edge attributes
with multi-level features by efficiently harvesting more precise
contextual details. Additionally, EANet amplifies the capability
to restore detailed characteristics. EANet consists of three key
modules: EFE,MSE, andMAD.During the feature extraction and

encoding phases, the EFE and MSEmodules are introduced. The
EFE module uses the ParNet module to expand the network’s
receptive field, capturing extensive contextual data. Enhanced
the network’s accuracy in extracting small vessels. In MSE,
dynamic serpentine convolution is employed to capture the rich
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tubular features of vessels, while GAMF is used to integrate
multi-scale contextual information, reducing the loss of detailed
information and improving the network’s ability to extract multi-
scale features. During the encoding phase, we introduced MAD.
Thismodule leveragesmultiple attentionmechanisms to improve
the decoder’s ability to fuse both global and local features,
while minimizing background noise and preservingmore details.
EANet demonstrates superior segmentation performance on
three public datasets. However, this study has several limitations:
the large number of model parameters results in lower train-
ing efficiency and increased resource consumption, the model
struggles with complex pathological conditions, and there is a
risk of overfitting. Consequently, in future research, we will focus
on model simplification, enhance data augmentation techniques
to improve the model’s generalization capability, and optimize
the hyperparameter tuning process to mitigate the risk of
overfitting.
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