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Abstract

With the development of federated learning techniques and
the increased need for user privacy protection, the feder-
ated recommendation has become a new recommendation
paradigm. However, most existing works focus on user-level
federated recommendation, leaving platform-level federated
recommendation largely unexplored. A significant challenge
in platform-level federated recommendation scenarios is se-
vere label skew. Users behave in various ways on different
platforms, bringing up the rating and item bias problem. In
this work, we propose FREIB (Federated Recommendation
with Explicitly Encoding Item Bias). The core idea is explic-
itly encoding item bias during federated learning, addressing
the problem of fuzzy item bias, and achieving consistent rep-
resentation in label skew scenarios. We achieve this by uti-
lizing global knowledge guidance to model common rating
patterns and by aligning feature prototypes to enhance item
encoding at the same rating level. Extensive experiments con-
ducted on three public datasets demonstrate the superiority of
our method over several state-of-the-art approaches.

Introduction
Federated recommendation, a new recommender system
paradigm incorporating advanced federated learning tech-
niques (McMahan et al. 2017a), has demonstrated signifi-
cant potential in protecting user privacy and providing per-
sonalized recommendations. In scenarios where data sources
for recommender systems are decentralized and come from
different clients, federated recommendation models deploy
algorithms on each client for training and co-tuning on the
server side. This schema ensures user privacy while deliver-
ing personalized recommendations.

In addition to user-level federated recommendation, real-
world scenarios also involve platform-level federated rec-
ommendation tasks, where users interact on different plat-
forms, exhibiting label skew (Kairouz et al. 2019). As shown
in Fig. 1, users behave differently on various platforms, lead-
ing to the item bias and rating bias learning problem. Items
tend to get similar ratings across platforms because of their
characteristic, which indicates item bias. Users score strictly
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Figure 1: Illustration of platform-level federated learn-
ing. Users behave differently on various platforms, leading
to the label skew problem. (a) Users give different ratings ac-
cording to the characteristics of movies, which shows item
bias. (b) The tendency of user scoring varies across plat-
forms, resulting in rating bias between platforms.

on some platforms and are prone to low scores, while they
score leniently on others and are prone to high scores, show-
ing the rating bias. However, the co-existence of item bias
and rating bias will confuse item embedding learning. For
example, the classic movie Titanic should be widely liked
and have high ratings on different platforms. However, this
is susceptible to the rating bias of different platforms, where
items learned on platforms with strict scoring habits have
lower scores, affecting the item representation and caus-
ing inconsistent item bias. Consequently, the gradient of the
model on each platform falls in a different direction, making
it challenging for the server to learn accurate item represen-
tations and make effective rating predictions.

Previous work on federated recommender systems has fo-
cused on privacy protection at the individual user level and
deploying models to user clients for recommendation (Lin
et al. 2021; Chai et al. 2021; Zhang et al. 2024c,b). How-
ever, these approaches face new challenges in platform-level
federated recommendation scenarios requiring accurate gen-
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eralized recommendations. Firstly, the user and item en-
coders constructed by these methods model users and items
at a coarse-grained level, ignoring the intrinsic bias of the
items. Items attract users not only due to user-specific in-
terests but also due to their intrinsic qualities, which are
platform-independent. Secondly, these methods fail to effec-
tively mine the potential associations among items with the
same-level ratings in a rating task.

When modeling items, their objective existence is eas-
ily affected by different platforms, obfuscating the consis-
tency that exists across platforms. To address this, we intro-
duce an additional explicit item bias encoder to character-
ize item features at a finer granularity. By explicitly mod-
eling item bias, we can get rid of inconsistent item embed-
ding learned across platforms. In addition, considering that
user behaviors interacting with and rating items should be
similar across platforms, we utilize global knowledge guid-
ance. Specifically, we fix the global server’s model after
each round of communication epoch and utilize it to guide
the current client during training the local recommenda-
tion model. This training mode allows our model to learn
a generalized pattern for users to rate items and platform-
independent item bias.

Furthermore, items that receive the same ratings should
have similar feature embedding of item bias due to their po-
tential relationships. Therefore, we construct feature proto-
types of item bias based on their ratings on the local plat-
form, aggregate them and generate global prototypes on the
server. While training the local model on different platform
clients, we align the local prototypes of item bias to their
corresponding global prototypes.

In a nutshell, we propose a novel method named Feder-
ated Recommendation with Explicitly Encoding Item Bias
(FREIB ). Our contributions are summarized as follows:

• We focus on the label skew problem in the platform-level
federated recommendation and demonstrate that it hinders
the generalization of federated learning methods, leading
to performance degradation.

• We present a simple yet effective model FREIB to handle
item bias and rating bias in the platform-level federated
recommendation. Our model explicitly models the item
bias, utilizes global knowledge guidance, and aligns fea-
ture prototypes.

• We conduct extensive experiments on three public
datasets, and the results show the superiority of our model
over state-of-the-art methods.

Related Work
In this section, we review related work of federated learning
and federated recommendation.

Federated Learning
Federated learning has become a popular field being re-
searched with the increase in data heterogeneity scenar-
ios and privacy preservation needs (Konečný et al. 2016;
Kairouz et al. 2019; Li et al. 2020a; Long et al. 2020; Huang,
Ye, and Du 2022; Hao et al. 2022; Liang et al. 2023; Hu
et al. 2024c; Wang et al. 2024a,b; Hu et al. 2024b; Liang

et al. 2024). FedAvg (McMahan et al. 2017b) pioneers the
training of global models from decentralized data by ag-
gregating the parameters of local models. However, it per-
forms poorly on non-i.i.d (identically and independently dis-
tributed) data, which attracts a lot of work to explore further
(Luo et al. 2021; Li et al. 2022; Ma et al. 2022; Wu et al.
2023; Dai et al. 2023a; Tan et al. 2023; Hong et al. 2023;
Hu et al. 2023a, 2024a). Based on FedAvg, existing mod-
els mainly utilize global penalty terms to solve the data het-
erogeneity problem. SCAFFOLD (Karimireddy et al. 2020)
addresses ’client-drift’ using control variates, reducing com-
munication rounds and demonstrating robustness to data het-
erogeneity and client sampling. FedProx (Li et al. 2020b)
considers the data heterogeneity and system heterogeneity
and proposes a proximal term to guarantee the aggregation
of the partial information of those incomplete computations
in FedAvg. FedStar (Tan et al. 2023) exploits and exchanges
the common latent structure information for inter-graph fed-
erated learning tasks. Besides, pFedME (T. Dinh, Tran, and
Nguyen 2020), FedDyn (Acar et al. 2021) also employ dis-
tinct mechanisms for computing global parameter stiffness,
thereby exerting control over the disparities that may arise
among the distributed models. From another perspective,
MOON (Li, He, and Song 2021), FedUFO (Zhang et al.
2021), FedProto (Tan et al. 2022), FedProc (Mu et al. 2023),
FedNH (Dai et al. 2023b) enhance feature-level consen-
sus between local and global models by prioritizing them.
This emphasis on consistency of features at the micro level
promotes robustness and consistency within the federation
framework. For the label skew problem, FedConcat (Diao,
Li, and He 2024) addresses it by concatenating local models,
leveraging clustering for collaborative training within client
groups based on label distributions. In this paper, we focus
on the label skew problem of platform-level scenes in feder-
ated recommendation.

Federated Recommendation
With the increase of distributed data scenarios and privacy
protection requirements, the federated recommendation be-
comes a new recommendation paradigm (Sun et al. 2024;
Zhang et al. 2024a). FCF (Ammad-ud-din et al. 2019) first
introduces a collaborative filtering method in the federated
recommendation setting and employs FedAvg to train the
global model. FedRec (Lin et al. 2021) proposes user aver-
aging and hybrid filling strategies to protect the information
of rating records. FedRec++ (Liang, Pan, and Ming 2021)
further introduces an innovative lossless federated recom-
mendation method that allocates certain denoising clients to
eliminate noise. FedMF (Chai et al. 2021) utilizes the matrix
factorization and further protects user privacy with homo-
morphic encryption techniques during the updating process.
P-NSMF (Hu et al. 2022) introduces group-wise concealing
and aggregates in a secure way to conduct non-sampling ma-
trix factorization. FedNCF (Perifanis and Efraimidis 2022)
applies NCF (He et al. 2017) in the federated recommen-
dation, using a neural network to learn user and item em-
bedding. FedPerGNN (Wu et al. 2022) encrypts the infor-
mation of user neighbors to the third-party server to con-
struct a graph neural network on each client. PerFedRec
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NotationDescription
M number of platforms
θm private model of the mth participant
θE global model
D set of rating records
Pm(r) label distribution of platform m
E number of communication epochs
T number of local rounds
d vector dimension
Pm local feature prototypes of item bias in the mth participant
G global feature prototypes of item bias
ru,i rating of item i by user u
Lm

CE loss of the basic NCF model
Lm

bias loss of the predictions with item bias
Lm

distill loss of global knowledge guidance
Lm

proto loss of feature prototype alignment
Lm loss of the mth participant

Table 1: Notations and descriptions used in the paper.

(Luo, Xiao, and Song 2022) jointly learns the representation
through a collaborative graph and performs users clustering
to generate personalized recommendation. P-GCN (Hu et al.
2023b) utilizes item-based user representation and privacy-
preserving graph convolution approach to handle federated
item recommendation. P2FCDR (Chen et al. 2023) utilizes
an optimizable orthogonal mapping matrix to transform the
knowledge across domains and provides privacy protection
by applying the local differential privacy technique. FPPDM
(Liu et al. 2023) exploits user preferences in the local mod-
eling and combines user characteristics across domains in
the global server. F2PGNN (Agrawal et al. 2024) integrates
personalized graph neural networks (GNNs) with differen-
tial privacy techniques to mitigate inherent bias across de-
mographic groups. PFedRec (Zhang et al. 2023) only shares
the item encoder in the communication epoch and learns the
score function locally. Our work focuses on the scenario of
platform-level data distribution, which has not been well ex-
plored.

Method
In this section, we propose a novel framework named Feder-
ated Recommendation with Explicitly Encoding Item Bias
(FREIB ). We will define the platform-level federated rec-
ommendation and describe the modules in the following
subsections.

Problem Formulation
For the federated recommendation in a platform-level set-
ting, we follow the typical federated learning framework.
Suppose there are M platforms (indexed by m). Each plat-
form has a local model θm and a set of rating records
Dm = {(u, i, ru,i)|u ∈ RNu , i ∈ RNi , ru,i ∈ RNr}, where
Nu and Ni denote the numbers of users and items, respec-
tively, and Nr denotes the rating levels. The label skew ex-
ists in this scenario, meaning that label distribution Pm(r)
on the clients is distinct. To mimic the label skew, we follow
the common experiments setting and use Dirichlet sampling
(Balakrishnan, Kotz, and Johnson 2019). The primary goal

is to optimize the models θm of each platform and aggregate
them into the server-side model θE using certain strategies
for better generalization and recommendation in the test set
D0 = {(u, i, ru,i)}. We describe the notations used in the
paper in Tab. 1.

As NCF (He et al. 2017) has demonstrated its superiority
in recommendation with a simple framework, we adopt it as
our basic backbone. The calculation of NCF can be simpli-
fied as:

r̂ou,i = NCF (u, i) = fo(GMF (u, i)⊕MLP (u, i)), (1)

where ⊕ denotes the concatenate operation, GMF and
MLP stand for the generalized matrix factorization model
and the multi-layer perceptron, and r̂ou,i is the prediction
score for user u on item i. Further, the loss of model can
be formulated as:

Lm
CE =

∑
(u,i)∈Dm

ru,i − r̂ou,i. (2)

Explicit Item Bias Encoder

Roughly modeling an item as a whole tends to ignore the in-
herent bias within the item itself. The overall embedding of
the item can be distorted by the label distribution of different
platforms, making it difficult to learn a generalizable repre-
sentation through gradient descent. Therefore, we introduce
the extra Explicit Item Bias Encoder (EIBE) to portray the
intrinsic item bias, which remains consistent across different
platforms.

First, for each item i, we explicitly construct the item bias
embedding, formulated as:

Ebias = Embedding(i1, i2, · · · , iNi
), (3)

where Ebias ∈ Rdbias is the item bias embedding matrix
for items, dbias is the dimension of the item bias embedding
vector.

Before the score function takes user features and item fea-
tures as input and generates predictions, we introduce an ad-
ditional score function for item bias embedding,

r̂ibias = Sbias(E
i
bias), (4)

where r̂bias is the item bias score for item i, and Sbias is the
item bias score function. After acquiring the item bias score
function, the prediction for rating of user u and item i with
item bias can be formulated as:

r̂biasu,i = r̂ou,i + r̂ibias, (5)

where r̂ou,i is the original prediction score.
For the loss function of the predictions with item bias, we

adopt the MSE loss, which for the m-th participant can be
formulated as:

Lm
bias =

∑
(u,i)∈Dm

ru,i − r̂biasu,i . (6)
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Figure 2: Architecture illustration of Federated Recommendation with Explicitly Encoding Item Bias (FREIB ). To learn
the consistent and platform-independent item bias, we introduce the extra Explicit Item Bias Encoder (EIBE) to generate
predictions with bias. In each communication epoch, we fix the global model and utilize the Global Knowledge Guidance
(GKG) to learn the common behavior mode of users. Besides, we construct local feature prototypes of item bias during local
rounds. Participants upload local prototypes to the server, and the server aggregates them to generate global prototypes, which
are used for Feature Prototype Alignment (FPA) in the next communication epoch. Best viewed in color. Zoom in for details.

Global Knowledge Guidance
Although the label skew causes label distributions to differ
across platforms, the Global Knowledge Guidance (GKG)
can still direct the training process. The common behavior
mode of users rating items and the platform-independent
item bias can be well adjusted through the aggregation of
global knowledge. In particular, we utilize the server-side
model parameters after the first communication epoch. We
fix the server-side model during local training and generate
predictions, and the process can be formulated as:

Netfixed = θE , (7)

(r̂biasu,i )fixed = Netfixed(u, i), (8)

where (r̂biasu,i )fixed is the prediction of the server-side model.
By applying the MSE loss between the participant’s predic-
tions and the server’s predictions, the global knowledge can
guide the local training process of participant m:

Lm
distill =

∑
(u,i)∈Dm

r̂biasu,i − (r̂biasu,i )fixed. (9)

Feature Prototype Alignment
Naturally, items within the same rating level should exhibit
some potential similarities. Inspired by prototype learning,
we construct feature prototypes of item bias according to
their labels and conduct the Feature Prototype Alignment

(FPA). In the communication epoch, each participant learns
the local feature prototypes of item bias,

Pm
k =

1

|Nk|
∑

i∈Dm,ru,i=k

eibias, (10)

Pm = {Pm
1 ,Pm

2 , · · · ,Pm
K }, (11)

where Nk denotes the number of items rated as k and K is
the total rating levels. The global server then aggregates all
the local prototypes during the updating process:

Gk =
1

M

M∑
m=1

Pm
k , (12)

G = {G1,G2, · · · ,GK}. (13)
Given the global prototypes of item bias, the participant can
align the features of the item bias during local training:

Lm
proto =

K∑
k=1

∑
i∈Dm,ru,i=k

eibias − Gk. (14)

Considering the proposed modules above, the final opti-
mization loss function for participant m can be formulated
as:

Lm = Lm
CE + Lm

bias + Lm
distill + τLm

proto, (15)
where τ is the weight hyper-parameter. The optimization
process of FREIB is demonstrated in Algorithm 1.
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Algorithm 1: Model training in FREIB
Input: Communication epochs E, local rounds T , number

of participants M , the mth participant private data
Dm(u, i, ru,i), private model θm

Output: The final global model θE

for e = 1, 2, ..., E do
Participant Side;
for m = 1, 2, ..., N in parallel do

θem,Pm ← LocalUpdating(θe, G)
Server Side;
θe+1 ← 1

M

∑M
m=1 θ

e
m

/* Global prototypes */

G = 1
M

∑M
m=1 P

m

LocalUpdating(θe, G):
θem ← θe ; // Distribute global parameter
Netfixed ← θe ; // Fix global parameter
for t = 1, 2, ..., T do

for (u, i) ∈ Dm do
eibias in Eq. (3)

r̂ou,i ← NCF

r̂biasu,i in Eq. (5)

(r̂biasu,i )fixed in Eq. (8)

Lm
CE ← (r̂ou,i, ru,i) in Eq. (2)

Lm
bias ← (r̂biasu,i , ru,i) in Eq. (6)

Lm
distill ← (r̂biasu,i , (r̂biasu,i )fixed) in Eq. (9)

Lm
proto ← (eibias,G) in Eq. (14)

Lm ← (Lm
CE ,Lm

bias,Lm
distill,Lm

proto)in Eq. (15)

θem ← θem − η∇Lm

Pm = {} ; // Initialize local prototypes
/* Local prototypes */
for k = 1, 2, ...,K do
Pm

k = 1
|Nk|

∑
i∈Dm,ru,i=k e

i
bias

return θem,Pm

Experiment
We set up various experiments on commonly used datasets
to evaluate FREIB , search the optimal hyper-parameter,
conduct the ablation study to verify the effectiveness of pro-
posed modules, and explore the robustness of our method
with local differential privacy in this section.

Experimental Setup
Datasets. We evaluate our proposed method on three pub-
lic datasets: MovieLens-100K, MovieLens-1M(Harper and
Konstan 2015), and Amazon-Beauty (Ni, Li, and McAuley
2019). MovieLens-100K contains 100,000 ratings of 1,682
movies from 943 users while MovieLens-1M contains 1 mil-
lion ratings of 3,952 movies by 6,040 users. The Amazon
dataset contains user reviews, ratings, and other metadata of
products from Amazon.com. We select Amazon-Beauty ac-
cording to the category, which has about 2,000,000 records
and 260,000 items. The statistics of datasets are listed in

Dataset MovieLens-100K MovieLens-1M Beauty

#Users 943 6,040 40,226

#Items 1,682 3,952 54,542

#Interactions 100,000 100,000,209 353,962

Table 2: Statistics of datasets

Tab. 2. We remove users with less than five interactions
to ensure the federated learning setting of label skew. The
datasets are randomly split with the ratio of 8:2 into the
training set and the test set, following the common setting
in machine learning.

Comparison Methods. We compare FREIB with meth-
ods in platform-level federated settings, all utilizing only
rating records for information. For federated learning meth-
ods, we compare with FedProx (Li et al. 2020b) (ML-
Sys’20), FedMF (Chai et al. 2021) (IEEE Intell Syst’21),
FedProto (Tan et al. 2022) (AAAI’22), FedNCF (Perifa-
nis and Efraimidis 2022) (KBS’22), FedPerGNN (Wu et al.
2022) (Nat. Commun.’22), as well as the recently proposed
PFedRec (Zhang et al. 2023) (IJCAI’23).

Evaluation Metrics. We adopt two widely used metrics
for rating prediction: MAE (Mean Absolute Error) and
RMSE (Root Mean Squared Error). MAE evaluates the ab-
solute deviation between rating predictions and ground-truth
labels, while RMSE measures the variance of the deviation.
Both of them measure the model’s performance on the rating
prediction task.

Implementation Details. For a fair comparison, we set
the number of participants to 5, conduct the communication
epochs E = 50, and perform 10 local rounds (T = 10) for
the federated setting. We adopt the linear layer as the score
function. Besides, the initial embedding size is fixed at 32 for
all methods, except the embedding size of item bias is set as
10. We use the SGD (Robbins and Monro 1951) optimizer
with a learning rate lr = 0.001 except PFedRec (Zhang et al.
2023), which employs a larger learning rate with the item en-
coder based on the scale of datasets. The weight decay is set
to 1e−5 and the momentum to 0.9. The training batch size is
64. For the weight hyper-parameter, τ is set as 10 in FREIB .
For standardized comparisons, we adopt NCF as the back-
bone in FedProx and FedProto, while the hyper-parameters
for regularization and prototype learning weights in FedProx
and FedProto are also set to 10. We conduct prototype learn-
ing according to labels and the averaging in FedProto. We
implement the federated learning methods on different plat-
forms by applying the Dirichlet sampling with common pa-
rameter β = {1.0, 0.5}. We fix the seed to ensure reproduc-
tion and conduct experiments on the NVIDIA 3090.

Results
Performance Comparison. We compare the performance
of FREIB on three datasets, and the results are reported
in Tab. 3. From the results, we have the following obser-
vations. FREIB outperforms all the baseline methods in
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β=1 β=0.5

MovieLens-100K MovieLens-1M Beauty MovieLens-100K MovieLens-1M BeautyMethods
MAE↓ RMSE↓ MAE↓ RMSE↓ MAE↓ RMSE↓ MAE↓ RMSE↓ MAE↓ RMSE↓ MAE↓ RMSE↓

FedProx 0.9425 1.1245 0.9491 1.1193 1.1865 1.3785 0.9811 1.1742 0.9482 1.1184 1.4337 1.5347

FedMF 0.9434 1.1253 0.9450 1.1173 1.1766 1.3756 0.9716 1.1507 0.9421 1.1159 1.4305 1.5319

FedProto 0.9426 1.1249 0.9479 1.1189 1.1849 1.3782 0.9795 1.1671 0.9474 1.1186 1.4499 1.5496

FedNCF 0.9429 1.1245 0.9498 1.1200 1.1848 1.3781 0.9809 1.1735 0.9492 1.1190 1.3977 1.5036

FedPerGNN 0.9371 1.1243 0.9477 1.1182 1.1837 1.3738 0.9677 1.1441 0.9157 1.1113 1.3007 1.4333

PFedRec 1.1708 1.4694 0.8650 1.0949 1.0969 1.3427 0.9191 1.1626 0.8431 1.0680 1.2962 1.4272

FREIB 0.7369 0.9395 0.7275 0.9241 0.9579 1.3180 0.7926 0.9912 0.7454 0.9406 1.1635 1.4233

Table 3: Comparison with the state-of-the-art methods on MovieLens-100K, MovieLens-1M and Beauty datasets. The best
results in federated setting are bolded and the suboptimal results are underlined.

Figure 3: MAE and RMSE of MovieLens-1M and Beauty
in the training

.

the platform-level federated setting, indicating the effective-
ness of our framework. Due to the label skew existing in
platform-level federated scenarios, methods simply utiliz-
ing the matrix factorization, NCF framework, and graph net-
works perform badly in the experiments, showing the chal-
lenge of learning consistent item embedding. PFedRec ob-
tains sub-optimal results in most datasets because it isolates
the learning of item embedding and sore function, high-
lighting the need for differentiated learning item embedding.
It suffers severe performance degradation in MovieLens-
100K, and this may be due to the fact that it over-amplifies
the learning rate of the item, resulting in the failure to learn
the accurate and consistent item embedding in the federated
recommendation scenario of label skew. Besides, applying
the prototype learning paradigm directly to the NCF frame-
work, FedProto does not work well either due to ignoring
the importance of item bias embedding. This also proves that
simply applying prototype learning does not lead to signifi-
cant performance improvements.

Figure 4: Results of different τ in MovieLens-100K and
MovieLens-1M (β = 0.5).

Furthermore, we count the values of the MAE and RMSE
during the training process for methods on the MovieLens-
1M and Beauty dataset (β = 1), as shown in Fig. 3. The
curves of the four graphs show a similar trend. The re-
sults indicate that methods like FedPerGNN that do not
model items separately struggle to converge in the platform-
level federated recommendation scenario, while PFedRec
and FREIB converge effectively. Meanwhile, the trend of
a similar curve of PFedRec further proves the effectiveness
of the learning of separated item embedding. Due to the syn-
ergistic effect of our introduced modules, FREIB converges
fast and steadily.

Hyper-Parameter Setting. As for the hyper-parameter
τ , we conduct experiments in MovieLens-100K and
MovieLens-1M with Dirichlet sampling parameter β =
0.5. We search the best hyper-parameter in the range of
[1, 5, 10, 15]. From Fig. 4, we can observe that MAE de-
creases as τ increases from 1 to 10, and it will increase when
τ exceeds 10 in both datasets. These two similar curve trends
are because when τ is relatively small, Lm

proto occupies a rel-
atively small proportion, and FREIB cannot align the proto-
type well. When τ is too large, it will focus too much on the
prototype alignment and ignore the learning of other compo-
nents, affecting the model’s generalization ability and lead-
ing to performance degradation. Therefore, we choose 10 as
the best hyper-parameter in FREIB .

Ablation Study. To better understand the performance of
the modules of FREIB , we conduct a series of ablation ex-
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MovieLens-100K MovieLens-1M
Bias Distill Proto MAE RMSE MAE RMSE

✘ ✔ ✘ 0.9449 1.1253 0.9272 1.1129
✔ ✘ ✔ 0.7767 0.9904 0.7788 0.9999
✔ ✔ ✘ 0.7597 0.9530 0.7419 0.9491
✔ ✔ ✔ 0.7369 0.9395 0.7275 0.9241

Table 4: Ablation Study on MovieLens-100K and
MovieLens-1M datasets(β = 1). ✘ denotes removing the
corresponding module while ✔ means keeping it.

Figure 5: Influence of the LDP ratio in the training of
MovieLens-100K and MovieLens-1M. The higher LDP ra-
tio indicates stronger noises and the lower MAE indicates
better performance.

periments and the results are demonstrated in Tab. 4. We re-
move the item bias encoder and prototype alignment module
to completely isolate the influence of item bias. This leads
to the most significant performance degradation, highlight-
ing the importance of introducing explicit item bias. The ex-
plicit item bias encoder avoids the effect of label distribution
of different platforms and ensures consistent bias representa-
tions for items. This also shows that the direct application of
distillation to the ordinary NCF model still cannot solve the
problem of learning item bias. Besides, without the global
knowledge guidance, FREIB fails to learn the common be-
havior patterns in rating items and the consistent item bias,
resulting in worse performance. Additionally, removing the
feature prototype alignment reveals that rating bias prevents
both clients and the server from learning similar item fea-
tures.

Protection with Local Differential Privacy. To improve
the protection of user privacy, we apply Local Differen-
tial Privacy(LDP) (Choi et al. 2018) in our framework.
Concretely, we combine the parameters of clients with the
Laplacian noise before uploading to the server. The Lapla-
cian noise can be formulated as Laplace(0,λ), and λ is
the LDP ratio, which represents the noise strength. We set
λ = [0.01, 0.02, 0.05, 0.10, 0.20] to test our framework in
MovieLens-100K and MovieLens-1M. As shown in Fig. 5,
FREIB outperforms the baseline even with added noise. Al-
though performance degrades as the LDP ratio increases, it
remains acceptable, striking a balance between privacy pro-
tection and recommendation accuracy.

Discussion
Relationship with relative federated prototype learning.
The core idea of prototype learning is to store a set of rep-
resentative samples (prototypes) and use these prototypes to
perform tasks such as classification, regression, or cluster-
ing. The main advantage is its ability to effectively handle
complex data distributions, especially when there is overlap
or imbalance between data categories. Different from previ-
ous works like FedProto(Tan et al. 2022), which learn proto-
types according to categories, we specifically consider rating
bias and item bias in the platform-level federated learning
scenario and aggregate the features of item bias as proto-
types regarding their labels. We apply prototype learning to
enhance feature learning of item bias, learn potential simi-
larities between items with the same label, and achieve re-
markable results in experiments.

Conception Differences. Previous federated recommen-
dation works have mostly focused on providing federated
recommendation models for individual-level users, with less
attention paid to platform-level federated recommendation
issues. These works utilize various federated training meth-
ods and graph network technologies (Liang, Pan, and Ming
2021; Wu et al. 2022; Zhang et al. 2023) to bring improve-
ments to personalized federated recommendation. However,
our focus is on the platform-level federated recommenda-
tion scenario of label skew, where the phenomena of item
bias and rating bias are more prominent. However, previous
works have not been able to provide specialized solutions to
these two issues. We explicitly model item bias for these two
phenomena and further solve the label skew problem using
global knowledge guidance and feature prototype alignment.

Limitations. The components we introduced bring extra
time cost, but they result in stable performance improve-
ments on multiple datasets, demonstrating the promising
potential of our approach. Besides, we explicitly encode
the item bias, which can effectively alleviate label skew in
platform-level federated scenarios. In addition, there is a
lack of semantic interpretation of the embedding of item bias
and its prototype, which can be further explored in future
work.

Conclusions and Future Work
In this paper, we propose a federated recommendation
method with explicit item bias, namely FREIB , focusing on
the scenario of platform-level federated learning. FREIB is
capable of handling the item bias and rating bias existing in
the platform-level federated recommendation. We conduct
various experiments and the results show that our method
outperforms state-of-the-art methods.

While our introduced modules bring significant perfor-
mance gains, they also introduce additional time and space
overheads that can be further optimized in future work. In
addition, the semantic interpretability of item bias and pro-
totype in federated recommendations needs to be further ex-
plored.
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