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 A B S T R A C T

Graph neural network has become the mainstream model of Knowledge-aware Recommendation because of its 
ability to capture higher-order information. Contrastive learning, due to its self-supervised learning paradigm, 
has been successfully employed to alleviate the sparse supervision signal problem in Knowledge-aware 
Recommendation models based on graph neural network. While graph neural networks and contrastive learning 
have advanced knowledge-aware recommendation, two critical limitations persist: (1) indistinguishable node 
representations due to data sparsity exacerbate the long-tail problem, and (2) suboptimal contrastive perfor-
mance caused by non-uniform node distributions in embedding space. To mitigate the aforementioned issues, 
we propose the novel recommender system based on Noise Enhancement and Multi-View Graph Contrastive 
Learning (MNCL), the first framework that jointly optimizes node distribution uniformity and multi-view 
semantic alignment. Specifically, we inject uncertainty-aware noise into some graphs to achieve topology-
invariant uniform representations and construct structural diversity-driven view for contrastive preference 
disentanglement. Unlike existing GNN-based contrastive methods that rely on heuristic augmentation or 
single-view alignment, MNCL dynamically regulates distribution entropy via noise intensity and preserves 
heterogeneous graph semantics through multi-view sampling. Extensive experiments on three public datasets 
show that our model achieves better results compared with the mainstream methods.
1. Introduction

As an effective information filtering technology, recommendation 
systems are widely applied in areas such as service recommenda-
tion [1], social relationship prediction [2,3], third-party library rec-
ommendation [4], and review-based e-commerce recommendation [5,
6]. Traditional personalized recommendation algorithms (e.g., collab-
orative filtering algorithms) rely on users’ historical behavioral data 
(e.g., ratings, clicks, purchases, etc.) to discover similarities among 
users or items. However, due to the presence of difficulties such as cold 
start, data scarcity [7], and long-tail dispersion [8,9], these traditional 
personalized recommendation algorithms are not able to perform well 
based on limited interaction data. In order to alleviate these problems, 
many of the recommendation algorithm using neural network modeling 
ability in high dimensional feature [10] incorporate various auxiliary 
information to improve the accuracy of recommendation [3,11,12]. 

∗ Corresponding author at: School of Information Management, Wuhan University, Wuhan 430072, China.
∗∗ Corresponding author.

E-mail addresses: dtclee1222@whu.edu.cn (D. Li), wxguang@whu.edu.cn (X. Wang), foboshi99@whu.edu.cn (F. Shi).

Since knowledge graphs (KGs) contain a wealth of external knowledge 
information [13], they offer a useful method for simulating users and 
items more precisely [14].

Early recommendation systems based on KG (also known as
knowledge-aware recommendation) mainly include recommendation 
models based on KG feature representation and models that integrate 
multi-source information. The former primarily focuses on utilizing en-
tity relationships and attribute information in the KG to construct rep-
resentations. These algorithms typically utilize embedding techniques, 
such as TransE [15], SHGNet [16], SDFormer [17], ConvHLE [18], 
etc., to map entities from the KG to low-dimensional vector spaces, 
after which the similarity between users and items is computed using 
these vectors. The latter combines information from different data 
sources to construct richer and more accurate representations with the 
intention of making recommendations perform better. However, some 
of the above methods overlook the modeling of global information in 
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the KG, specifically the higher-order connectivity information among 
entities [19]. With the emergence and development of graph neural 
networks (GNNs) [20] and graph contrastive learning [21], their appli-
cation in recommendation algorithms and KG has become increasingly 
widespread. GNN-based recommendation models can effectively utilize 
the graph structure information in KG, thereby making it possible 
to extract higher-order connectivity information from graph data and 
produce more precise, tailored recommendations.

However, GNN-based recommendation models face the issue of 
extremely sparse supervision signals because of the extreme sparsity 
of interaction data in recommendation systems. The main challenge 
in mitigating the supervised signal sparsity problem is the lack of 
training labels. Liu et al. [22] presented a contrastive learning tech-
nique that allows model training without the need for explicit label-
ing. It maximizes the distance between negative samples and min-
imizes the distance between positive samples, learning discrimina-
tive embedding representations from unlabeled sample data. In ad-
dition, KHDNN [23] and MKRec [24] enhance knowledge-aware rec-
ommendations by leveraging hyperbolic and multi-space learning to 
model diverse relations, high-order signals, and geometric structures 
for improved representation learning.

Since contrastive learning does not rely on labeled data, it has a 
significant advantage in addressing data sparsity issues, leading many 
researchers to attempt its application in knowledge graph-based rec-
ommendation tasks. The KGCL [25] model utilizes contrastive learning 
methods to extract useful signals for predicting user preferences from 
the KG, hence lessening the recommendation system’s exposure to noisy 
information. Additionally, Zou et al. proposed the MCCLK [26] model 
to conduct contrastive learning in a hierarchical manner, taking into 
account the entity graph’s structural information. To alleviate the prob-
lem of the dominant user–item view during training, the KACL [27] 
model makes advantage of contrastive learning to increase the ex-
pressive capacity of the model by appending a learnable embedding 
vector to every relationship in the KG. These recommendation models 
utilize contrastive learning to mitigate the noise impact from external 
data in the KG and the problem of sparse interaction data, ultimately 
improving the learning of user–item vectors. However, existing GNN-
based recommendation models integrating contrastive learning still 
have the following two limitations: Firstly, due to data sparsity, in the 
process of GNN information aggregation, the learning representations 
of all items tend to converge towards popular items, resulting in the 
issue of identical node feature representations degrading [28], which is 
detrimental to long-tail items. Secondly, the performance of contrastive 
learning methods is affected by the quality of samples, and the uni-
form distribution of samples in the embedding space also affects the 
performance of contrastive learning models [29].

Considering the issues mentioned, we proposes a multi-view noise-
enhanced knowledge-aware recommendation method based on graph 
contrastive learning, named MNCL. Firstly, this article innovatively 
employs three views, user–item, user–item–entity, and item–entity, 
for multi-context feature extraction. These various contextual features 
provide high-quality positive and negative samples for subsequent con-
trastive learning, significantly enhancing its effectiveness. Secondly, a 
lightweight Light-GCN is utilized to reduce computational complexity. 
To address the inherent issue of homogeneity in learned embeddings 
caused by GCN, which makes user or item representations difficult to 
distinguish, this article proposes a simple noise augmentation method 
that effectively mitigates this problem, thereby improving GCN’s fea-
ture learning capability. Furthermore, this enhances the quality of 
contrastive learning samples. Finally, the empirical outcomes on vari-
ous publicly accessible datasets also substantiate the potency of MNCL.1 
The main contributions of our work are concluded as follows:

1 Source code will be available at https://github.com/dacilab/MNCL.
2 
• We introduces a new recommendation model, MNCL, which uti-
lizes multi-view and noise enhancement to generate high-quality 
positive and negative samples for contrastive learning, ultimately 
employing multi-negative instance contrastive learning methods 
to fully learn information across different views.

• Considering the importance of uniform distribution of samples 
during the information aggregation process, we propose noise 
enhancement methods in this process to optimize the uniformity 
of sample distribution.

• Multifaceted experiments: Numerous experiments were carried 
out on Movielens, Book-Crossing, and Last.FM. The outcomes 
demonstrate the dominance of MNCL in representation learn-
ing, demonstrating the potency of optimized contrastive learning 
methods.

In the subsequent chapters, Section 2 will showcase related works 
relevant to this investigation. Sections 3 and 4 will provide detailed 
explanations of the components and tasks of the MNCL model. Section 5 
will cover experimental settings, results, and analysis, including abla-
tion experiments and hyperparameter experiments. The final two Sec-
tion will summarize the content of this article and discuss its practical 
significance.

2. Related work

This section focuses on two main topics: knowledge-aware rec-
ommendation systems and contrastive learning-based recommendation 
techniques.

2.1. Knowledge-aware recommendation

According to the representation forms of KG, recommendations 
based on KG are mainly divided into those based on KG embedding 
methods and path-based recommendation methods.

KG embedding methods [15,17,18,34,35] are commonly employ 
knowledge embeddings as bearers of knowledge for entities and re-
lationships within the KG, which are then utilized directly to enrich 
the information in recommendation systems, capturing the structural 
information of the KG. As the respective embedding-based method, 
DKN [30] uses entity features and title features in news recommen-
dation, specifically using TransD to obtain the embedding of enti-
ties and relations in the KG and calculating the attention coefficients 
of candidate items for users to form the final news representation. 
Conversely, CKE [31] integrates entity, text, and image features into 
the item’s feature representation, employing collaborative filtering for 
recommendations.

Path-based recommendation models construct user and item his-
torical interactions into heterogeneous information networks (HINs), 
where users and items serve as nodes within the network, and the 
connections among different nodes represent the information about the 
possible feature between users and items. Path-based recommendation 
models, which depend on artificially crafted meta-paths, which are 
used through leveraging the interconnected properties of HINs, face 
challenges in real-world recommendation scenarios and are difficult 
to deploy on a large scale [36–38]. With advancements in GNNs, 
GNN-based recommendation models have become more efficient at 
leveraging the auxiliary information in KG. The KGCN [39] model 
focuses on user preferences for relationships within the KG, aggregating 
multi-hop neighbors of items associated with the KG using GNN-based 
information aggregation. KGAT [32] constructs a collaborative KG and 
utilizes GNNs along with attention mechanisms to iteratively propagate 
across the collaborative KG, mining the latent features of users and 
items. In order to generate detailed representations of users and items, 
KGIN [40] iteratively combines neighbors on the entity graph with 
an attention method. However, GNN-based recommendation meth-
ods face the challenge of sparse supervision signals when targeting 
tail data in long-tail datasets, as constructing accurate user and item 
representations is difficult with extremely sparse training labels.

https://github.com/dacilab/MNCL
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Table 1
Comparison of mainstream recommendation methods based on knowledge graph. 
 Reference Scenario Method Advances Drawbacks  
 DKN [30] News 

Recommendation
Embeds knowledge 
graph into news 
recommendation using CNN

Integrates both 
semantic and 
knowledge-based features

Limited scalability, struggles 
with long-tail data

 

 CKE [31] Collaborative 
Filtering

Integrates collaborative filtering 
with knowledge embeddings

Combines text, image, and 
structure-based information

Relies heavily on 
feature engineering

 

 KGAT [32] General 
Recommendation

Uses GNN with attention 
mechanisms

Efficient aggregation of 
user–item interactions

Performance deteriorates 
with sparse data

 

 SimGCL [33] Contrastive Learning 
for Recommendation

Applies contrastive learning Reduces bias, improves 
representation 
uniformity

High computational 
complexity

 

 Our Method Multi-view 
Recommendation

Uses multi-view 
contrastive learning 
with noise augmentation

Enhanced user–item embeddings 
through multi-view learning 
and noise augmentation

Computationally expensive 
in large-scale datasets

 

2.2. Contrastive learning-based recommendation

Contrastive learning methods derive node representations by con-
trasting positive and negative instances. The self-supervised graph 
learning (SGL) [41] model utilizes three distinct graph augmentation 
strategies: node dropping, edge dropping, and random walks, to create 
various views of the same node, facilitating deeper exploration of 
node information. Lin et al. [42] integrate underlying architectural and 
meaningful neighboring nodes into contrastive learning to obtain the 
architectural and meaningful information of higher-order neighbors. 
SEPT [43] suggests an approach that utilizes users’ social information to 
enrich data views, facilitating socially aware contrastive learning. Con-
sidering that in the context of recommendation systems, the contrastive 
loss function is more critical to performance than data augmentation. 
The XSimGCL model [29] does not rely on graph data augmentation 
to improve model accuracy but focuses on optimizing the contrastive 
loss function to reduce bias in representation distribution. MKGCL [44] 
enhances contrastive learning-based recommendation by integrating 
knowledge-augmented views and mixed-curvature spaces, effectively 
addressing data sparsity and improving graph structure scalability for 
better recommendation accuracy. However, these contrastive learning 
models overlook the importance of ensuring a uniform distribution of 
samples in the representation space, which directly impacts the final 
outcome of the contrastive learning process.

Our method, MNCL, is a significant departure from traditional meth-
ods in terms of its approach to learning from multiple views and apply-
ing noise augmentation during the graph convolution process. The use 
of multi-view learning allows for a more comprehensive understanding 
of the relationships between users, items, and entities. Additionally, 
the introduction of noise augmentation helps mitigate degradation in 
the model’s performance, ensuring more uniform distribution of node 
features in the embedding space. This is a distinct innovation compared 
to other methods which either focus on single view learning or rely on 
noise addition without sufficient optimization. Table  1 shows the dif-
ferences between our proposed approach and other related approaches 
in scenario, method, advances, and drawbacks.

3. Problem formulation

In this section, two basic categories of structured data are intro-
duced: the user–item interaction matrix and the knowledge graph. 
Subsequently, we describe the tasks for contrastive learning that make 
use of the KG.

User–item interaction data: In typical recommendation tasks, the 
sets of users and items are defined as  = {𝑢1, 𝑢2,… , 𝑢𝑀} and  =
{𝑣1, 𝑣2,… , 𝑣𝑁}, respectively, where 𝑀 is the number of users and 𝑁
is the number of items. The user–item interaction matrix 𝐑 ∈ R𝑀×𝑁

is outlined based on user implicit feedback, where 𝑦𝑢𝑣 = 1 illustrates 
that a user has interacted with an item, such as selecting or making a 
purchase; otherwise, 𝑦 = 0.
𝑢𝑣

3 
Knowledge Graph: In terms of KG, besides considering historical 
interactions, information related to items (such as item attributes) is 
stored in the graph as a heterogeneous KG. Let  = {(ℎ, 𝑟, 𝑡)|ℎ, 𝑡 ∈
 , 𝑟 ∈ } represent the KG, where ℎ, 𝑡, and 𝑟 respectively stand for the 
head, tail, and relation of knowledge triples;  and  refer to the sets 
of entities and relations within . In many recommendation scenarios, 
items 𝑣 ∈  matching entities 𝑒 ∈  in the KG. By aligning items with 
entities in the KG, the graph can provide supplemental information for 
interaction data and descriptions of the items.

Knowledge graph-based contrastive learning recommendation: 
Given 𝐑 and , the goal is learning a function 𝑦̂𝑢𝑣 = 𝑓 (𝑢, 𝑣) that aims to 
predict how likely a user would interact with a specific item.

4. Methodology

This section introduces the Multi-View with Noise-Enhanced Graph 
Contrastive Learning Knowledge-Aware Recommendation Model
(MNCL). Fig.  1 shows the flowchart of the MNCL model. The multi-view 
mechanism enables the model to capture features from different con-
texts, providing higher-quality positive and negative samples for con-
trastive learning. Specifically, it constructs multiple views, including 
user–item interaction graphs, item–entity views, and user–item–entity 
views. Various data augmentation strategies are applied to enhance 
the diversity of contrastive samples. The user–item view optimizes 
the uniformity of data distribution through noise-enhanced Light-
GCN [45], while the user–item–entity view employs random edge and 
node dropping for structural enrichment. Different graph encoders 
are then used to learn contextualized node representations. The user–
item view utilizes noise-enhanced Light-GCN to mitigate the issue of 
embedding homogeneity, ensuring more distinguishable user and item 
embeddings, thereby improving the quality of contrastive samples. 
The user–item–entity view leverages a Path-aware GNN to capture 
structured user–item relationships, and the item–entity view employs 
a Relation-aware GNN to extract richer item representations from 
the knowledge graph. The following sections will provide a detailed 
explanation of these components.

4.1. Noise-enhanced light-GCN

For graph network aggregation, this work utilizes the mainstream 
Light-GCN [45] for node feature aggregation. Light-GCN, known for its 
straightforward message passing and aggregation mechanisms, requires 
no feature transformations or nonlinear activations, making it not 
only efficient but also cost-effective in terms of computation. Node 
aggregation in this model is primarily executed recursively. At each 𝐿th 
layer of aggregation, the process can be articulated as follows: 

𝐞(𝑙+1)𝑢 =
∑

𝑖∈𝑢

1
√

|

|

𝑢
|

|

|

|

𝑖
|

|

𝐞(𝑙)𝑖 , (1)

𝐞(𝑙+1)𝑖 =
∑

𝑢∈

1
√

| | | |

𝐞(𝑙)𝑢 , (2)

𝑖

|

𝑢| |𝑖|
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Fig. 1. MNCL model diagram.
where 𝐞(𝑙)𝑢  and 𝐞(𝑙)𝑖  indicate the embeddings of user 𝑢 and item 𝑖 at the 
𝑙th layer, while 𝑢 and 𝑖 denote the neighbors of user 𝑢 and item 𝑖, 
respectively. For the convenience of implementation of Light-GCN, we 
provide the matrix form of Eqs. (1) and (2) as follows: 

𝐞(𝑙+1) = 𝐀̃𝐞(𝑙), (3)

where 𝐀̃ is the normalized sparse graph adjacency matrix, 𝐀̃ =

(𝐃)−
1
2 𝐀(𝐃)−

1
2 , 𝐀 =

(

0 𝐑
𝐑T 0

)

, and 𝐑 ∈ R𝑀×𝑁  is the matrix of user 
interactions. After 𝐿 layers Light-GCN, the embeddings from various 
layers are summed to produce the final feature vectors 𝐞𝑢 and 𝐞𝑖, as 
shown below: 

𝐞𝑢 =
𝐿
∑

𝑙=0
𝑎𝑙𝐞(𝑙)𝑢 , (4)

𝐞𝑖 =
𝐿
∑

𝑙=0
𝑎𝑙𝐞

(𝑙)
𝑖 , (5)

where 𝑎𝑙 represents the weights of the vector representations across 
different layers, empirically set to 1

𝐿 + 1 according to Ref. [45]. To 
mitigate the degradation issue caused by multi-layer aggregation and to 
increase sample diversity, noise enhancement 𝜑 is introduced in each 
layer of Light-GCN message aggregation. The expression for 𝜑 at the 
layer 𝑙 has the following expression: 

𝜑 = sign
(

𝐞(𝑙)
)

⊙ 𝛾 ⊙ 𝛽, (6)

where 𝐞(𝑙) indicates the input vector matrix at the layer 𝑙. 𝛾 is a 
normalized random matrix with the same dimensions as 𝐞(𝑙), and 𝛽 is 
the noise enhancement coefficient. After adding noise enhancement 𝜑, 
the Light-GCN aggregation process at the 𝑙th layer can be described as 
below: 

𝐞(𝑙+1) = 𝐀̃𝐞(𝑙) + 𝜑. (7)

By applying simple noise enhancement, the issue of overly ho-
mogeneous distributions caused by GCN can be effectively mitigated, 
thereby improving feature distinguishability and quality. After sum-
ming and averaging the matrix representations aggregated over 𝐿
layers of Light-GCN, the following is how the final embedding is 
4 
obtained: 

𝐞 = 𝐞(0) + 𝐞(1) +⋯ + 𝐞(𝐿)
𝐿

=
𝐞(0) +

(

𝐀̃𝐞(0) + 𝜑
)

+⋯ +
(

𝐀̃𝐿𝐞(0) + 𝐀̃𝐿−1𝜑 +⋯ + 𝐀̃2𝐞(0) + 𝐀̃𝜑 + 𝜑
)

𝐿
.

(8)

The final feature vector 𝐞 encompasses the ultimate user feature vector 
𝐞𝑠𝑢 from the user–item view and the final item feature vector 𝐞𝑠𝑖 .

4.2. Relation-aware GNN

KG not only include information about entities but also possess ex-
tensive relational information between these entities. To fully leverage 
the auxiliary information from KG and address the data sparsity in 
the original interaction graph, this chapter introduces a relation-aware 
GNN module. This model, in its message aggregation process, maintains 
the relational information between these entities in addition to aggre-
gating data from nearby entities. Specifically, the model recursively 
learns item representations from the KG  over 𝐾 iterations, where the 
formula for the 𝑘th iteration of relation-aware aggregation is described 
below: 
𝐞(𝑘+1)𝑖 = 1

|

|

𝑖
|

|

∑

(𝑟,𝑗)∈𝑖

𝐞𝑟 ⊙ 𝐞(𝑘)𝑗 , (9)

𝐞(𝑘+1)𝑖 = 1
|

|

|

𝑗
|

|

|

⎛

⎜

⎜

⎝

∑

(𝑟,𝑗)∈𝑖

𝐞𝑟 ⊙ 𝐞(𝑘)𝑗 +
∑

(𝑟,𝑖)∈𝑗

𝐞𝑟 ⊙ 𝐞(𝑘)𝑖

⎞

⎟

⎟

⎠

, (10)

where 𝐞(𝑘)𝑖  and 𝐞(𝑘)𝑗  respectively represent the representations of items 𝑖
and entities 𝑗, which store relational signals propagated from their (𝑘−
1) hop neighbors. After the item–entity view undergoes relation-aware 
GNN aggregation, it employs Light-GCN for 𝑘th order aggregation to 
enhance item representations. The message passing and aggregation 
process at the 𝑘th level in each layer can be explained below: 
𝐞(𝑘+1)𝑖 =

∑

𝑗∈ (𝑖)
𝐒̃𝐞(𝑘)𝑖 , (11)

where  (𝑖) represents neighboring items, 𝐒̃ is the normalized sparse 
graph adjacency matrix within the formula, and 𝐞(𝑘) indicates the 
𝑖
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Fig. 2. Multi-negative example Contrastive Learning.

representation of item after the 𝑘th message aggregation in each layer 
of Light-GCN. Subsequently, by summing the representations of item 
𝑖 from the 𝑘 aggregation operations, the final feature vector 𝐞𝑔𝑖  of the 
item–entity view is derived.

KG often contain excessive noise interference; adding noise en-
hancement could introduce additional disruptive information, poten-
tially reducing the model’s performance. This is also evident in how 
adding noise enhancement in the user–item view can impact the final 
outcome of message aggregation. However, appropriate levels of noise 
enhancement can optimize the uniform distribution of samples.

4.3. Path-aware GNN

Considering that solely using relation-aware GNNs for extracting in-
formation from knowledge graphs leads to knowledge modeling during 
training, but research indicates low utilization of this information dur-
ing training, therefore, this study adopts a path-aware GNN [26], which 
learns and aggregates information from neighbor nodes ℎ times while 
also preserving path information, specifically the user–item–entity con-
nections. The aggregation process for each ℎth iteration at every layer 
can be represented as follows: 

𝐞(ℎ+1)𝑢 = 1
|

|

𝑢
|

|

∑

𝑖∈𝑢

𝐞(ℎ)𝑖 , (12)

𝐞(ℎ+1)𝑖 = 1
|

|

𝑖
|

|

∑

(𝑟,𝑢)∈𝑖

𝛿(𝑖, 𝑟, 𝑢)𝐞𝑟 ⊙ 𝐞(ℎ)𝑗 , (13)

where 𝐞(ℎ)𝑖  and 𝐞(ℎ)𝑗  respectively represent the representations of items 
and entities, storing relational signals propagated from (ℎ−1) neighbor 
aggregations, thus capturing global information from multi-hop paths. 
To apply weights to each relation and entity, attention weights 𝛿(𝑖, 𝑟, 𝑢)
are calculated in the manner described below: 
𝛿(𝑖, 𝑟, 𝑢) = sof tmax

(

(

𝐞𝑖 ∥ 𝐞𝑟
)𝑇

⋅
(

𝐞𝑢 ∥ 𝐞𝑟
)

)

=
exp

(

(

𝐞𝑖 ∥ 𝐞𝑟
)𝑇

⋅
(

𝐞𝑢 ∥ 𝐞𝑟
)

)

∑

(𝑢,𝑟)∈̂ (𝑖) exp
(

(

𝐞𝑖 ∥ 𝐞𝑟
)𝑇

⋅
(

𝐞𝑢 ∥ 𝐞𝑟
)

) ,
(14)

where ∥ indicates concatenate operation, ̂ (𝑖) denotes the set of neigh-
boring entities  (𝑖) and item 𝑖 itself. Then all layers’ representations 
are sum up to obtain the global representations 𝐞(𝑚)𝑢  and 𝐞(𝑚)𝑖 .

4.4. Multi-negative sample contrastive learning

The aforementioned process results in the embedding vectors for 
both the user–item view and the item–entity view. In the user–item 
view, the final feature vector for the user is 𝐞(𝑠)𝑢 , and for the item is 𝐞(𝑠)𝑖 . 
In the item–entity view, the item’s final feature vector is 𝐞(𝑔)𝑖 , and in the 
user–item–entity view, the final feature vector of the user is 𝐞(𝑚)𝑢 , and 
the final feature vector of the item is 𝐞(𝑚). All vectors above are then 
𝑖
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mapped to a space for computing contrastive loss, where positive and 
negative samples are subsequently defined. As demonstrated in Fig.  2, 
for any user node 𝐮(𝑠)𝑖  in view 𝑆, its positive sample for comparison 
is the same node embedding 𝐮(𝑔)𝑖  learned in another view 𝐺. In both 
views, embeddings of nodes other than 𝐮(𝑠)𝑖 , specifically 𝐮

(𝑠)
𝑗  and 𝐮(𝑔)𝑗 , 

are considered negative samples. It is posited in this study that the 
weights of negative samples differ between views, with the weight 
in the original view defined as 𝜔. Having defined the positive and 
negative instances, this chapter delineates the contrastive loss into 
global contrastive loss 𝐺 and KG contrastive loss 𝐾𝐺, illustrated by 
the items’s loss, with the specific formula as follows: 

𝐺
𝑖 = − log

exp
(

𝑠
(

𝐞𝑠𝑖 ,𝐞
𝑚
𝑖
)

∕𝜏
)

exp
(

𝑠
(

𝐞𝑠𝑖 ,𝐞
𝑚
𝑖
)

∕𝜏
)

+𝜔
∑

𝑖≠𝑗 exp
(

𝑠
(

𝐞𝑠𝑖 ,𝐞
𝑠
𝑗

)

∕𝜏
)

+
∑

𝑖≠𝑗 exp
(

𝑠
(

𝐞𝑠𝑖 ,𝐞
𝑚
𝑗

)

∕𝜏
) , (15)

𝐾𝐺
𝑖 = − log

exp
(

𝑠
(

𝐞𝑠𝑖 ,𝐞
𝑔
𝑖
)

∕𝜏
)

exp
(

𝑠
(

𝐞𝑠𝑖 ,𝐞
𝑔
𝑖
)

∕𝜏
)

+𝜔
∑

𝑖≠𝑗 exp
(

𝑠
(

𝐞𝑠𝑖 ,𝐞
𝑠
𝑗
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∕𝜏
)

+
∑

𝑖≠𝑗 exp
(

𝑠
(

𝐞𝑠𝑖 ,𝐞
𝑔
𝑗

)

∕𝜏
) , (16)

where 𝜏 represents the temperature coefficient. 𝑠(⋅) denotes the 
calculation of cosine similarity. 𝑗 represents nodes other than 𝑖. The 
contrastive loss 𝐺

𝑢  for computing user feature vectors is similar to that 
of 𝐺

𝑖 , simply replace 𝑖 with 𝑢 in the formula. The overall contrastive 
loss is: 
𝐶𝐿 = 𝐺

𝑖 + 𝐺
𝑢 + 𝐾𝐺

𝑖 . (17)

4.5. Model prediction

After multi-layer aggregation and contrastive learning optimization 
of the user–item view, item–entity view, and user–item-relationship 
view, multiple embeddings for users, 𝐞(𝑠)𝑢  and 𝐞(𝑚)𝑢 , and multiple embed-
dings for items, 𝐞(𝑠)𝑖 , 𝐞

(𝑚)
𝑖 , and 𝐞(𝑔)𝑖 , are obtained. These optimized feature 

vectors are then combined to generate the ultimate feature vectors for 
users and items, and the final prediction scores are obtained through a 
prediction function, as shown in the calculation process below: 
𝐞𝑢 = 𝐞𝑠𝑢 ‖‖𝐞

𝑠
𝑢
‖

‖

𝐞𝑚𝑢 , (18)

𝐞𝑖 = 𝐞𝑠𝑖 ‖‖𝐞
𝑚
𝑖
‖

‖

𝐞𝑔𝑖 , (19)

𝑦̂(𝑢, 𝑖) = 𝐞T𝑢 𝐞𝑖. (20)

The multi-task training approach is what we use to optimize the 
overall model. In order to reconstruct historical data and encourage 
higher prediction scores for user’s historical items than for unobserved 
items, therefore, we uses BPR loss to build the loss function: 
𝐵𝑃𝑅 =

∑

− log 𝜎
(

𝑦̂
(

𝑢, 𝑖+
)

− 𝑦̂ (𝑢, 𝑖−)
)

, (21)

where 𝑖+ represents the items that have interacted with user 𝑢 observed 
during training, and 𝑖− represents the items that were not observed dur-
ing training. By integrating 𝐵𝑃𝑅 loss in contrastive loss, the ultimate 
goal function can be expressed as follow: 
𝑀𝑁𝐶𝐿 = 𝐵𝑃𝑅 + 𝛼𝐶𝐿 + 𝜆‖𝛩‖

2
2, (22)

where 𝛩 represents the model parameters, while 𝛼 and 𝜆 are hyper-
parameters employed to counterbalance the 𝐿2 regularization terms 
and contrastive loss.

5. Experimental settings

5.1. Experimental datasets

The datasets include the MovieLens-1M, the Book-Crossing, and the 
Last.FM, detailed as follows:

(1) MovieLens-1M: This dataset contains 6036 users and 2445 items, 
with users rating items from 1 to 5.
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Table 2
Basic statistical data of three public datasets.
 Movilens-1M Book-Crossing Last.FM 
 # Users 6036 17,860 1872  
 # Items 2445 14,967 3846  
 # Interactions 753,772 139,746 42,364  
 # Entities 182,011 77,903 9366  
 # Relations 12 25 60  
 # Triples 1241,996 151,500 15,518  

(2) Book-Crossing: Originating from the Book Crossing community, 
this dataset features real ratings by 17,860 users for approxi-
mately 15,000 books, with ratings ranging from 0 to 10.

(3) Last.FM: This dataset comprises listening information for 3846 
songs by 1872 listeners from the Last.FM community, including 
ratings for music and data on user and music attributes.

Since interactions in MovieLens-1M, Book-Crossing, and Last.FM 
involve explicit feedback, this chapter adopts the RippleNet method 
to convert them into implicit feedback. Here, a label of 1 denotes 
positive user feedback for an item, while a label of 0 denotes negative 
feedback. For MovieLens-1M, a rating threshold of 4 is set, such that 
if a user’s rating for an item exceeds 4, the sample label is assigned 
a 1. Considering the sparse data of Last.FM and Book-Crossing, no 
thresholds be set. Any interaction record (rating behavior) receives 
a label of 1, while no interaction results in a label of 0. Regarding 
negative instances, for user, we randomly selects items they have not 
viewed, with the quantity matching their number of positive samples. 
This chapter employs FreeBase to construct a KG. Initially, items’ IDs 
in the dataset are paired with IDs in FreeBase, followed by filtering 
sub-knowledge graphs related to these items from the knowledge base. 
During the filtering process, items involving multiple entities or those 
that cannot be matched to any entity are excluded. Subsequently, the 
items’ IDs are matched with the IDs of the head entities in triples within 
the subgraph, and corresponded triples are chosen. The statistical data 
for above datasets are concluded in Table  2.

5.2. Evaluation metrics

The following scenario was used to evaluate our model: for click-
through rate (CTR) prediction, the trained model is applied to forecast 
every interaction in the test set. Two commonly used measures are used 
to evaluate the effectiveness of CTR prediction: F1 and AUC.

AUC stands for area under the ROC curve, which displays the true 
positive rate (TPR) against the false positive rate (FPR). A larger AUC 
value indicates superior performance of the model, ranging between 0 
and 1. AUC evaluates the classifier’s ability to rank samples overall and 
is effective in handling class imbalance issues.

Recall refers to the proportion of true positives correctly identified 
by the classifier among all actual positive instances. It is also known as 
sensitivity. Recall values vary from 0 to 1, with higher values reflecting 
a better capacity of the model to detect positives. The formula for Recall 
is as follows: 
Recall = TP

TP + FN
, (23)

where TP (True Positives) denotes correctly predicting positive in-
stances as positive, FN (False Negatives) are erroneously predicting 
positive instances as negative, and Recall represents the proportion of 
correctly predicted positives in the sample.

Precision is a metric used to assess the correctness of positive 
predictions made by a classification model. It shows the percentage of 
true positive samples that are anticipated to be positive. Following is 
the formula: 
Precision = TP , (24)
TP + FP
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where FP (False Positives) indicates predicting negative instances as 
positive, Precision represents the proportion of truly positive samples 
among those predicted as positive. The F1-score evaluation metric com-
prehensively considers the results of Precision and Recall to calculate 
a measure score, mathematically representing the harmonic mean of 
both, as shown in the formula below: 

F1 =
2PR
P + R

, (25)

where P and R stand for Precision and Recall, respectively.

5.3. Experimental model comparison

5.3.1. Comparison method
To validate the MNCL model, this work selects 10 models for 

comparative analysis. These models include recommendation models 
based on collaborative filtering algorithms(BPRMF), recommendation 
models based on knowledge graphs(CKE, RippleNet, PER), recommen-
dation models based on GNNs(KGCN, KGNN-LS, KGAT, KGIN), and 
the latest knowledge-aware recommendation models using contrastive 
learning methods(MCCLK). (1)∼(12) are the comparison methods, and 
(13)∼(16) are the method and variants proposed in this work.

(1) 𝐁𝐏𝐑𝐌𝐅 [46]: It is a conventional approach based on Collabora-
tive Filtering (CF) that only considers interactions between users 
and items, without involving KG.

(2) 𝐏𝐄𝐑 [36]: A common path-based approach that represents con-
nections between users and items using meta-path-based at-
tributes.

(3) 𝐂𝐊𝐄 [31]: This algorithm integrates collaborative filtering with 
text, structured, and visual information within a recommenda-
tion framework.

(4) 𝐑𝐢𝐩𝐩𝐥𝐞𝐍𝐞𝐭 [47]: Incorporates KG into the recommendation algo-
rithm, using preference propagation methods to automatically 
model user interest features.

(5) 𝐊𝐆𝐂𝐍 [39]: Applies graph convolutional networks to extract 
high-level features in KG and distinguishes the importance of 
different entity features.

(6) 𝐊𝐆𝐍𝐍 − 𝐋𝐒 [19]: Utilizes label propagation algorithms to in-
troduce new supervisory signals as a loss function to prevent 
overfitting.

(7) 𝐊𝐆𝐀𝐓 [32]: An approach that integrates neighbors on the 
user–item–entity graph with an attention mechanism to derive 
user/item embeddings based on GNN.

(8) 𝐊𝐆𝐈𝐍 [40]: The model represents user intent graphs by using in-
teractions between users and items, enhancing recommendation 
performance by mining the semantics of long-range connections 
in the graph and capturing the interaction features between users 
and items.

(9) 𝐌𝐂𝐂𝐋𝐊 [26]: A sophisticated GNN-based method that performs 
contrastive learning in a layered manner, fully keeping in mind 
the user–item–entity graph’s architectural features.

(10) 𝐌𝐮𝐥𝐭𝐢 − 𝐑𝐞𝐜 [48]: Utilizing graph recommendation models by 
integrating hybrid curvature manifolds and graph convolutional 
networks effectively leverages the geometric structure of KG to 
enhance recommendation performance.

(11) 𝐂𝐮𝐫𝐯𝐑𝐞𝐜 [49]: The knowledge-aware recommendation model, 
by integrating hybrid curvature manifolds and graph convolu-
tional networks, effectively leverages the geometric structure of 
KG to enhance recommendation performance.

(12) 𝐊𝐆𝐈𝐄 [50]: A model founded on interaction embeddings in 
graph neural networks integrates knowledge graphs and user–
item interaction matrices to optimize neighborhood aggregation 
methods, aiming to improve the precision and context sensitivity 
of recommendation systems.
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Table 3
Parameter settings for the MNCL model.
 Dataset 𝛼 𝐾 𝐿 𝛽 𝜔  
 MovieLens-1M 0.1 2 4 1.5 0.7 
 Book-Crossing 0.1 2 4 1.5 0.8 
 Last.FM 0.1 2 4 1.5 0.8 

(13) 𝐒𝐢𝐦𝐆𝐂𝐋 [33]: SimGCL generates contrast views by adding noise 
to embedded vectors without graph enhancement, simplifying 
the model structure and improving recommendations by learn-
ing a more uniform representation.

(14) 𝐗𝐒𝐢𝐦𝐆𝐂𝐋 [29]: XSimGCL maintains the same input and ad-
jacency matrix as the SimGCL method, but changes the con-
trast learning of the last layer to cross-layer contrast, making 
the model more lightweight while still performing better than 
SimGCL.

(15) 𝐌𝐂𝐋: The MCL model is a multi-view contrastive learning 
knowledge-aware recommendation model without the
Path-aware GNN module.

(16) 𝐌𝐍𝐂𝐋𝑁
𝑤∕𝑜: Variants of the MNCL. To investigate the impact of 

noise enhancement, a variant without noise enhancement has 
been designed.

(17) 𝐌𝐍𝐂𝐋𝐺
𝑤∕𝑜: Variants of the MNCL. To investigate how multi-view 

affects the accuracy of models, we designed a variant model that 
removes the user–item–entity view module.

(18) 𝐌𝐍𝐂𝐋: The model presented in this article thoroughly exploits 
features and structural information across three distinct views. 
Noise augmentation is applied within the graph convolutional 
neural network to enhance the learning of discriminative em-
bedding representations.

5.3.2. Parameter settings and complexity analysis
In the experimental section, MNCL and all baseline models were 

implemented using PyTorch, with careful adjustment of key parame-
ters. The embedding size of all models in this chapter is fixed to 64, 
and the Xavier approach is implemented to initialize the embedding 
settings. Adam optimizer is utilized in this chapter to optimize the 
algorithm, with a batch size set to 4096. Grid search was used to 
verify the ideal parameter configurations, adjusting the learning rate 
𝜂1 among {0.001, 0.003, 0.01, 0.03} and the 𝐿2 regularization term 𝜂2
between {10−7, 10−6, 10−5, 10−4, 10−3}. Additional hyperparameter con-
figurations are offered in Table  3.

𝛼: weight of the contrastive loss, 𝐾: number of layers in the item–
entity view Light-GCN, 𝐿: number of layers in the noise-enhanced 
Light-GCN, 𝛽: optimization parameter, 𝜔: weight of the original view.

The complexity calculation of the MNCL algorithm involves several 
key components. Firstly, the complexity of the GCN is 𝑂(𝐿 × |𝐸| ×𝐷), 
where 𝐿 is the number of GCN layers, |𝐸| is the number of non-zero 
elements in the user–item interaction matrix, and 𝐷 is the embedding 
dimension of each node. Secondly, the complexity of the contrastive 
learning loss is 𝑂(𝑁2 +𝑁 × 𝐷), where 𝑁 is the number of nodes, and 
𝐷 is the dimension of each node. The complexity of the BPR loss is 
𝑂(𝐵 × 𝐷), where 𝐵 is the batch size during training. In summary, the 
total complexity of the MNCL algorithm is 𝑂(𝐿 × |𝐸| × 𝐷 + 𝑁2 + 𝑁 ×
𝐷 + 𝐵 ×𝐷).

5.4. Experimental results and analysis

5.4.1. Comprehensive comparison of experimental results
Table  4 displays our comparison of the MNCL model’s results on 

benchmark datasets with the previously described comparable experi-
mental models. To guarantee the validity of the experimental findings, 
we conducted multiple independent randomized trials for all models 
and ultimately reported the best-performing results.
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Table 4
Performance comparison of all methods on three public datasets. 
 Model MovieLens-1M Book-Crossing Last.FM

 AUC F1 AUC F1 AUC F1  
 BPRMF [46] 0.8923 0.7894 0.6586 0.6117 0.7562 0.7014  
 LibFM [51] 0.9015 0.8213 0.6615 0.6182 0.7759 0.7103  
 PER [36] 0.7126 0.6670 0.6052 0.5732 0.6408 0.6042  
 CKE [31] 0.9072 0.8026 0.6752 0.6098 0.7423 0.6715  
 RippleNet [47] 0.9195 0.8420 0.7209 0.6472 0.7765 0.7021  
 KGCN [39] 0.9095 0.8375 0.6842 0.6321 0.8025 0.7095  
 KGNN-LS [19] 0.9152 0.8413 0.6765 0.6269 0.8053 0.7219  
 KGAT [32] 0.9146 0.8433 0.7318 0.6524 0.8148 0.7426  
 KGIN [40] 0.9162 0.8435 0.7264 0.6608 0.8492 0.7608  
 MCCLK [26] 0.9351 0.8631 0.7625 0.6777 0.8763 0.7964  
 Multi-Rec [48] 0.9326 0.8598 0.7546 0.6812 0.8465 0.7554  
 CurvRec [49] 0.9349 0.8619 0.7607 0.6726 0.8530 0.7658  
 KGIE [50] 0.9338 0.8621 0.7590 0.6736 0.8682 0.7925  
 SimGCL [33] 0.9234 0.8489 0.6462 0.5901 0.9213 0.7975  
 XSimGCL [29] 0.9167 0.8406 0.6606 0.5942 0.9230 0.8041  
 MCL (𝑜𝑢𝑟𝑠) 0.9360 0.8632 0.7629 0.6781 0.8751 0.7934  
 MNCL (𝑜𝑢𝑟𝑠) 0.9396 0.8700 0.7736 0.6892 0.8951 0.8095 

Table 5
The impact of MNCL and its ablation variants.
 Model MovieLens-1M Book-Crossing Last.FM

 AUC F1 AUC F1 AUC F1  
 MNCL𝑁

𝑤∕𝑜 0.9351 0.8655 0.7624 0.6798 0.8837 0.7992  
 MNCL𝐺

𝑤∕𝑜 0.9367 0.8659 0.7656 0.6813 0.8829 0.7986  
 MNCL 0.9396 0.8700 0.7736 0.6892 0.8951 0.8095 

Comparing CKE and RMF, it is known that the importance of intro-
ducing KG as auxiliary features. After integrating the auxiliary features 
embedded in the KG into MF, the performance of CKE is superior to 
MF, whether it is on the sparse MovieLens-1M or the dense Last.FM 
dataset, which proves that introducing KG as auxiliary information can 
effectively improve the recommendation performance. Furthermore, 
comparing KGCN and KGAT with CKE, it can be found that GNN 
has strong node representation capability. Most GNN-based methods 
perform better than methods based on knowledge graph embedding 
(CKE) and path-based methods (such as PER), indicating that GNN can 
enhance the ability of high-order information modeling of graph nodes.

Comparing the dual-view model MCL with the triple-view model 
MNCL, it is evident that the addition of appropriate views allows 
for further exploration of user and item embeddings. Simultaneously, 
learning more comprehensive and richer samples from different per-
spectives for contrastive learning can help exploring the potential of 
contrastive learning. In addition, compared with the graph contrast 
learning recommendation methods SimGCL and XSimGCL based on fu-
sion noise, this work further improves the accuracy of recommendation 
due to the use of three views and multiple negative cases contrast 
learning methods.

On all three datasets, the MNCL model presented in this article has 
good performance. Compared to the latest MCCLK model, it performs 
better on all three datasets. Experimental results prove that adding a 
certain degree of noise enhancement during the aggregation process 
of graph neural networks does not reduce the model’s performance; 
instead, it improves it, proving the effectiveness of noise enhancement, 
which effectively alleviates the problem of node degradation. Further-
more, optimizing the uniform distribution of nodes in the embedding 
space is beneficial to the performance of contrastive learning, thereby 
learning more accurate node representations, and also alleviating the 
long-tail problem, thereby enhancing the effectiveness of the model.

5.4.2. Ablation studies
To verify the influence of each module, this section conducts abla-

tion experiments. It compares several variants of the MNCL model and 
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Fig. 3. Impact of Contrastive Learning Weight 𝛼 on model performance.
Fig. 4. The influence of noise enhancement coefficient on model performance.
analyzes the effects of these modules. 𝐌𝐍𝐂𝐋𝑁
𝑤∕𝑜 denotes replacing the 

noise-enhanced Light-GCN module with a regular Light-GCN module. 
𝐌𝐍𝐂𝐋𝐺

𝑤∕𝑜 denotes removing the global view to evaluate the impact of 
multiple views. The outcomes are listed in Table  5.

The ablation experiment outcomes in Table  5 point out that various 
modules contribute to the MNCL model. The following conclusions can 
be drawn: Removing noise enhancement results in a noticeable decline 
in model recommendation performance, particularly evident in sparse 
datasets like MovieLens-1M and Book-Crossing. The severe node degra-
dation issue after message aggregation on sparse datasets underscores 
the efficacy of our suggested data augmentation approach in mitigating 
degradation caused by indistinguishable nodes. Optimizing node uni-
formity in the embedding space benefits long-tail items, thus enhancing 
recommendation accuracy. The decline in model performance upon re-
moving the user–item–entity view module underscores the contribution 
of each view to more accurate recommendations. Users and items can 
enrich the final vector representation by learning different perspectives 
of information from diverse views. Moreover, a comprehensive and di-
verse sample set facilitates the contrastive learning ability. In addition, 
by injecting noise into the node embeddings, we increase the diversity 
of the node representations, which helps differentiate between items, 
especially in sparse scenarios. This process ensures that the model does 
not produce overly similar embeddings for all nodes, even those that 
are rarely interacted with, which is a common issue in alleviate the 
long-tail problem.

5.4.3. Hyperparameter analysis
(a) Sensitivity Analysis of Contrastive Learning Weight 𝛼. This 

chapter employs a multi-task training strategy to train the entire model. 
This section describes a parameter tuning experiment based on the con-
trastive learning weight ratio 𝛼, which varies in {0.001, 0.01, 0.1, 0.5, 1}, 
to explore the impact of contrastive learning in the multi-task learning 
process. The experimental results are depicted in Fig.  3. Across three 
public benchmark datasets, the model performs best when is set to 0.1; 
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increasing further leads to a sharp decrease in performance, suggesting 
that prioritizing the recommendation task in a multi-task environment 
enhances the model’s effectiveness.

(b) Sensitivity analysis of noise enhancement coefficient 𝛽. Although 
noise enhancement can alleviate the long-tail problem, excessively 
strong or weak noise may adversely affect the feature extraction of 
GNN. To investigate the impact of the noise enhancement coefficient 
𝛽 on model performance, this section varies 𝛽 between [0, 0.1, 0.5, 
1, 1.5, 2]. Experimental outcomes are displayed in Fig.  4, indicating 
that the MNCL performs best on the MovieLens-1M, Book-Crossing, 
and Last.FM datasets when 𝛽 = 1.5 With the increase of 𝛽, significant 
performance improvements are observed on both the dense Last.FM 
dataset and the extremely sparse MovieLens-1M dataset. The model 
obtains optimal performance when 𝛽 reaches 1.5, demonstrating the 
generalizability of the data augmentation approach. However, with 
continuous growth of 𝛽, the performance significantly declines. It may 
be because larger values of 𝛽 introduce excessive noise interference, 
affecting the final recommendation performance. This also explains 
why we did not incorporate noise enhancement into GNNs in the KG 
to learn the final representations. Since there is already considerable 
noise in the KG, adopting noise enhancement would instead impede 
the learning of the final vector of items in the KG.

(c) Sensitivity analysis of the number of layers 𝐿 in noise-enhanced 
Light-GCN. For the user–item view in noise-enhanced Light-GCN, we 
conducted a sensitivity analysis of the number of layers 𝐿 and its effect 
on the efficiency of the model. This section adjusted the range of 𝐿
in [1, 2, 3, 4, 5]. Fig.  5 displays the outcomes of the experiment. It 
demonstrates that the model obtains optimal results on the three public 
datasets when 𝐿 = 4. Owing to the extremely low amount of data 
on user–item interactions, learning more accurate embedding represen-
tations often requires deeper graph neural networks, especially after 
adding noise enhancement, where node distributions become more 
uniform, highlighting the advantages of deeper networks. However, the 
model performs considerably worse after more than four network lev-
els. The analysis suggests that this result may be due to the increasing 
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Fig. 5. The influence of the number of layers in noise-enhanced Light-GCN on model performance.
Fig. 6. The influence of the number of layers in the item–entity view Light-GCN on model performance.
Fig. 7. The influence of the weight 𝜔 for contrastive learning in the original view on model performance.
difficulty in distinguishing node representations as embedding vectors 
delve deeper into multi-layer graph neural networks, consequently 
affecting node representation learning and reducing model prediction 
accuracy. The above analysis reflects the ongoing degradation issue 
in GNN-based recommendation models. Our proposed noise enhance-
ment method effectively alleviates this problem under appropriate 
circumstances.

(d) Sensitivity analysis of the number of layers 𝐾 in the item-view 
Light-GCN. Fig.  6 illustrates the effect of the number of layers 𝐾 in 
the item–entity view module of Light-GCN. The model performs best 
on all three datasets when 𝐾 = 2. Hence, it can be inferred that one 
to two hops are sufficient for integrating neighbor information in this 
view. As the number of layers in the Light-GCN increases in the item–
entity view, performance noticeably declines. The primary reason is the 
presence of a significant amount of noisy information in the KG, which 
is encoded into the embedding vectors, thereby affecting the final rating 
prediction. Hence, we did not consider adding noise enhancement to 
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Light-GCN in the item–entity view, as this might cause degradation of 
performance.

(e) Sensitivity analysis of the weight 𝜔 for contrastive learning in 
the original view. We proposes a multi-negative-instance contrastive 
learning method and analyzes the impact of negative instance weights 
in the original view on the final performance of contrastive learning. 
Fig.  7 shows that the contrastive learning performance is optimal at 
𝜔 = 0.8 on the Last.FM dataset and 𝜔 = 0.7 on the MovieLens-1M and 
Book-Crossing datasets. The weight explains the influence of samples 
from different views on the performance of contrastive learning. In clas-
sical contrastive learning methods, most models only utilize negative 
samples from the contrastive view, often overlooking other potential 
information in the positive sample view. Our proposed multi-negative-
instance contrastive learning method aligns with the idea of multi-view, 
both aiming to learn more comprehensive and richer user and item 
vector representations from different perspectives, thereby enhancing 
recommendation accuracy.
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6. Conclusion and future work

This work emphasizes the importance of applying contrastive learn-
ing in recommendation models and effectively addresses the issue of 
indistinct node differentiation due to sparse interaction data. However, 
real-world recommendation scenarios are complex, and the research 
methods may not necessarily be applicable. Our proposed MNCL model 
requires constructing different views, which is computationally costly, 
and in real-world scenarios, time is also a criterion for evaluating mod-
els. To enhance the applicability and robustness of the MNCL, future 
work should consider optimizing the structure of the model and de-
signing more suitable contrastive learning methods in conjunction with 
actual factors. In addition, neural estimation [52] and self-contrastive 
learning [53] methods are considered in the future to improve the 
performance of contrastive learning. Of course, exploring how to ap-
ply multi-perspective techniques [54,55] to knowledge graph-based 
recommendation will also be the focus of our next work.
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