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Abstract
Purpose – Reviews, serving as authentic user feedback, encompass rich semantic information, including
descriptions of user preferences and item characteristics. Introducing reviews as auxiliary information into
recommendation systems can enhance the modeling of user and item feature representations. However,
existing methods insufficiently account for the semantic variations of review words across different contextual
scales, often leading to suboptimal representations of review information. In addition, they fail to effectively
integrate review features with interaction features, resulting in a semantic gap between the two modalities. To
address these issues, this paper aims to propose a novel review-based recommendation model that incorporates
a multi-scale context-aware network and a cross-attentionmechanism (MSCA).

Design/methodology/approach –MSCA uses a multi-scale convolutional network to capture the semantic
representations of words in reviews across different contextual scales. It then uses a self-attention layer to learn
the associations among reviews, enhancing the representation of review features. Subsequently, MSCA
deploys a cross-attention mechanism to emulate personalized attention across different users and items,
effectively fusing interaction features with the semantic features of reviews.

Findings – Experiments on five Amazon review data sets demonstrate that the proposed model outperforms
baseline methods in terms of evaluationmetrics.

Originality/value – The authors propose MSCA, a novel recommendation model that more effectively
extracts review features using a multi-scale context-aware network. It also uses a cross-attention mechanism to
fuse semantic information with interaction features from two modalities, thereby improving the performance
of recommendation systems.

Keywords Review-based recommender, User preferences, Attention mechanism, Rating prediction

Paper type Research paper

1. Introduction
Recommendation systems (Wu et al., 2022, 2023; Liang et al., 2024), as effective tools to
alleviate information overload, are extensively employed across scenarios like e-commerce
websites, social platforms and video media. Numerous existing approaches commonly rely
solely on user–item interaction data to model personalized user preferences. Primarily based
on collaborative filtering, these recommendation methods use techniques like matrix
factorization on historical rating data to acquire representations of user preferences and
characteristics of the items, yielding commendable performance in recommendation tasks.
However, these methods face a data sparsity challenge, which is due to the continuously
growing number of items and extremely sparse user interaction information. To tackle this
issue, an increasing number of researchers are integrating diverse auxiliary information like
user reviews (Liu et al., 2022b; Li et al., 2021, 2024a), social networks (Liu et al., 2022c,
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2023a, 2023b) and knowledge graphs (Wang et al., 2023a) into recommendation systems.
This integration aims to enrich representations of user preferences and characteristics of the
items, ultimately improving model accuracy. User reviews contain rich semantic
information. They typically outline user preferences, encompassing their diverse interests in
different aspects of items. Hence, in scenarios of extreme scarcity in user interaction data,
further modeling of user preferences and characteristics of the items can be achieved through
review data.

Figure 1 illustrates the significance of user reviews for recommendations. To predict user
Alice’s rating for the ”Hat”, the recommendation system holistically models Alice’s
preferences and the characteristics of the Hat, using a prediction module to output a rating.
Traditional collaborative filtering methods learn interaction features from the rating matrix.
Nevertheless, as a single number, a rating provides limited information and cannot convey
the user’s detailed feelings toward the item. Especially when two items have the same
ratings, the distinctions between the two are imperceptible, thus constraining the
performance of the recommendation system. In contrast, review texts are rich with semantic
information, offering multifaceted portrayals of items regarding their utility, quality and size,
along with expressions of the users’ preferences, emotions and needs. By leveraging the
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Figure 1. Example of a recommender system integrating review information and user interactions
Source(s):Authors’ own work
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semantic information from reviews, the recommendation system can more precisely capture
user preferences and item characteristics, thereby enhancing the accuracy of
recommendation systems.

In the early stages, recommendation methods relying on review information primarily
used topic models to learn topic distributions and build semantic features for users and items.
These methods (McAuley and Leskovec, 2013; Ling et al., 2014; Bao et al., 2014)
successfully integrated review information into recommendation systems. However, a
limitation of topic models is their inability to consider the sequential order of words and the
contextual connections between them. In the past few years, deep learning techniques have
been used for feature extraction from user reviews. DeepCoNN (Zheng et al., 2017) uses
CNN to extract semantic features from reviews, yielding promising outcomes. However, it
treated all parts of reviews equally, making them vulnerable to irrelevant reviews unrelated
to user preferences or item features. Subsequent studies, exemplified by Seo et al. (2017),
Chen et al. (2018) and Liu et al. (2019, 2022a), use attention mechanisms to assign different
weights to review features, which improve the extraction of valuable features and filter out
less crucial features. Despite advances, they rely on pretrained word embedding models or
fixed-size convolutions to extract local features, without accounting for the fact that words
can have different meanings in different contexts. They also overlook the semantic relations
between reviews of the same user or item. As a result, these methods struggle to learn
accurate semantic representations for users and items. Moreover, these methods commonly
use pooling operations to compress semantic feature sequences into feature vectors,
inevitably leading to semantic loss. In addition, these methods merge interaction and review
features in a straightforward manner, either through concatenation or nonlinear mappings,
overlooking spatial dimension consistency in representation and lacking deep interaction
across feature dimensions.

To address the mentioned limitations, we propose a recommendation model that
incorporates a multi-scale context-aware network and a cross-attention mechanism (MSCA).
First, we design a module comprising multiple TextCNNs (Zheng et al., 2017; Kim, 2014)
with varying window sizes to extract features from the review word embedding sequences,
ensuring that the semantics of each word are preserved in the context of various local scales.
Subsequently, we use a self-attention encoder (Vaswani et al., 2017) to encode the semantic
feature sequences of each user and item, aiming to capture the global contextual relationships
between reviews, which enables a more accurate understanding of user preferences and item
characteristics from historical reviews. Although texts and rating interactions originate from
distinct modalities, their high-dimensional representations are related. To more effectively
fuse the information from the two modalities, we use a cross-attention mechanism (Lu et al.,
2016; Chen et al., 2021; Kim et al., 2022). The rating interaction feature vector serves as the
query, whereas the semantic feature sequence acts as both the key and value. When using the
user (item) as the query, item (user) reviews are used as the key and value. This not only
integrates modal information but also models the user-item interaction. As the query is a
single token, not a sequence, the cross-attention mechanism directly generates the semantic
vector, thus bypassing the need for pooling. Below is a summary of the main contributions of
this paper:

• We propose MSCA, a novel recommendation model that uses a multi-scale
convolutional network and a self-attention encoding module to extract semantic
information across different contextual scales.

• We address deep interactions between review and interaction features using a cross-
attention module. The user (or item) interaction features are fed as queries and the
item (or user) review features are fed as keys and values into the attention network.
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This simulates personalized attention to semantic features from various user (or
item) perspectives, while deeply integrating both sets of features.

• Extensive experimental validation was performed on five Amazon datasets,
comparing the MSCA model with several baseline methods. The MSCA model
consistently outperformed across all datasets. Furthermore, we analyzed the
effectiveness of the model’s modules and discussed the critical parameters involved.

The structure of the subsequent parts of this paper is organized as outlined below: Section 2
discusses related work on review-based recommendation systems, encompassing
methodologies leveraging topic modeling and deep learning techniques. Section 3 details
MSCA’s architecture. Subsequently, in Section 4, the experimental design employed to
demonstrate the proposed model’s effectiveness is described. Section 5 concludes the paper.

2. Related work
This paper’s related works predominantly concentrate on user review-based
recommendation methods, encompassing two categories: methods based on topic models
and methods based on deep learning. In subsequent subsections, we will detail the research
progress, strengths, and limitations of existing methods.

2.1 Topic models for review-based recommendation
To mitigate challenges like data sparsity inherent in traditional collaborative filtering
recommendation algorithms reliant solely on rating information, recent studies have begun
to incorporate auxiliary information encompassing user preferences and the characteristics of
items, notably including user reviews. Initial methods predominantly employ topic modeling
techniques for feature modeling of reviews. HFT (McAuley and Leskovec, 2013) gathers
reviews from a user or an item and compiles them into the user’s or the item’s review
document. The LDA topic model was used to conduct topic modeling for both user and item
documents. By integrating with a latent-factor model, it consolidates both rating and review
features for recommendations. Expanding on HFT, RMR (Ling et al., 2014) uses a mixture
of Gaussians to model rating data, positing that the mixture proportions align with the review
topic distribution. This approach enables the model to deliver accurate recommendations
even when only a few ratings are available. TopicMF (Bao et al., 2014) uses non-negative
matrix factorization (MF) to identify topics from individual reviews. Concurrently, it
leverages MF to derive latent features from ratings, using a transformation function to bridge
the latent feature spaces between reviews and ratings.

The methods described above construct representations of user preferences and item
characteristics by learning latent topics related to users or items from reviews, yielding
significant results. Nevertheless, topic models fail to account for the sequence of words and
the contextual relationships, resulting in a loss of semantic information and a challenge in
capturing the complex emotions and nuanced expressions present in reviews.

2.2 Deep learning methods for review-based recommendation
In recent years, with the continual advancement and widespread deployment of deep
learning technologies across various domains, such as knowledge graph (Wang et al., 2023b;
Li et al., 2024c, 2024b), computer vision, natural language processing, deep learning has also
been increasingly used in recommendation systems (Liu et al., 2024), especially for feature
extraction from user reviews.
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Convolutional neural networks (CNN) and attention mechanisms have been widely used
in existing studies. DeepCoNN (Zheng et al., 2017) uses two parallel TextCNNs to
separately extract semantic features from reviews about users and items, respectively.
Subsequently, TransNets (Catherine and Cohen, 2017) extends DeepCoNN by adding a
target network to learn the embedding of target reviews. It minimizes the difference between
the embedding of the target review and the semantic features learned by the source network.
D-Attn (Seo et al., 2017) incorporates a dual local and global attention mechanism before
TextCNNs, individually learning representations of review word sequences under each
attention type. These representations are then unified through a fully connected layer to
facilitate rating prediction. Acknowledging the diverse contributions of each review,
NARRE (Chen et al., 2018) extends DeepCoNN by incorporating an attention pooling layer
that allocates distinct weights to each review and condenses these review features into user
and item representation vectors. Alternatively, ANR (Chin et al., 2018) acknowledges that
words exhibit varied semantic nuances across different aspects. It maps word embeddings
from review texts into multiple semantic spaces and calculates attention for words within
each space, thereby gleaning a variety of aspect-specific semantic features. DAML (Liu
et al., 2019) also uses two distinct attention mechanisms for learning review representations.
Differing from D-Attn, it begins with a local attention layer for initial learning and then
employs a mutual attention layer to link user and item review features. AHAG (Liu et al.,
2022a) uses a gated network for the dynamic fusion of review features and uses hierarchical
attentionmechanisms to model the long-term dependencies among review sequences.

Recently, graph neural networks (GNN) (Li et al., 2023) have also been introduced to
review-based recommendation tasks. RMG (Wu et al., 2019) and RGCL (Shuai et al., 2022)
use GNN to learn feature representations of users and items. Specifically, RGCL introduces
contrastive learning techniques, creating additional self-supervised signals from limited
interaction behaviors. Taking into account the sequential information of words within
reviews, RGNN (Liu et al., 2023c) creates a review graph based on the interrelated order of
word co-occurrences from user reviews. It uses a type-aware graph attention network to learn
representations of the graph and produces subgraphs via personalized graph pooling.
Subsequently, it combines these graph representations with user/item embeddings to
construct comprehensive user/item features aimed at predicting ratings.

These review-based recommendation methods comprehensively model user preferences
and characteristics of items. Nevertheless, they neglect the specific meanings of words in
various contexts when learning semantic features. Furthermore, these models simply
combine interaction features with semantic features, failing to deeply integrate both types of
features for more effective recommendations.

3. Our approach
This study introduces the MSCAmodel, which leverages user reviews as side information to
extract semantic features, enhancing the modeling of user preferences and item
characteristics and ultimately improving rating prediction accuracy. The model comprises
four components:

(1) embedding layer;

(2) multi-scale context-aware layer;

(3) cross-attention feature fusion layer; and

(4) rating prediction layer.
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This section provides a detailed explanation of the model’s framework, specifying the inputs,
outputs, relevant notations and illustrating the details of each module. The structure of the
MSCAmodel is illustrated in Figure 2.

3.1 Problem formulation
Task: Rating prediction. The objective is to construct representations for users and items
from historical interaction data, including review texts, and to accurately predict ratings for
unseen user-item pairs.

Each historical interaction is represented as a four-tuple iu,v = (u,v, ru,v, su,v) [ I . u denotes
the ID of user, v. indicates the ID of item, ru,v refers to the rating that user u assigns to item v,
typically an integer between 1 and 5, su,v represents the related review text and I
encompasses the collection of all historical interactions. U = {u1, u2, …, uM} is used to
denote the set of users, with M indicating the total number of users, V = {v1, v2, …, vN} for
the set of items and N representing the total number of items. We compile the historical
reviews associated with user u into a review set, denoted asDu. Likewise, we get the review
set of item v, denoted asDv. The model takes (u, v, ΔDu,Dv) as its input and producesbru; v as
its output, representing the predicted rating of user u for item v. Table 1 presents the notations
defined in our method and their descriptions.

3.2 Embedding layer
Employing two embedding layers, we convert interaction and review text information into
feature vectors and matrix forms, serving as inputs for the subsequent neural network layers.

3.2.1 Interaction feature embedding. Two trainable embedding matrices are used to map
each user and item into an embedding vector. In this setup, Euser 2 RM×di denotes the user
embedding matrix and Eitem 2 RN ×di is the item embedding matrix, with di indicating the
dimensionality of the embedding layer. By inputting the current user and item IDs, u and v,
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we can extract the respective user interaction feature embedding eu 2 R1×di and item
interaction feature embedding ev 2 R1×di . The process formula is as follows:

eu =Euser uð Þ; (1)

ev =Eitem vð Þ: (2)

3.2.2 Semantic feature embedding. The word2vec model pretrained on Google News
is used to map words from reviews into a low-dimensional real-valued feature space. It
is extensively used across various natural language processing tasks. Given the varying
lengths of review documents, a maximum review document length, denoted as the number of
words L, is established to facilitate model training. When the length of collected user or item
reviews falls short of L, zero-padding is performed at the end of the review document. Using
user u as an example, Du is inputted into the word embedding layer, resulting in the review
embedding matrix Xu 2 Rd1 ×L. As illustrated, xn signifies the vector representation of the
n-th word in the review document. Similarly, the review embedding matrix Xv 2 Rd1 ×L for
an item can also be derived:

Xu = � � � xn− 1 xn xn+ 1 � � �� � 2 Rd1 ×L: (3)

Table 1. Notations and description

Notations Description

u, v User u, item v
iu; v; ru; v; su; v; bru; v Interaction between user u and item v, user u’s rating for item v, user u’s review

on item v, predicted rating of item v by user u
U, V, I User set, item set, interaction set
M, N Number of users, number of items
Du,Dv Set of reviews authored by user u, set of reviews targeting item v
Euser, Eitem User embedding matrix, item embedding matrix
d1, d2 Word embedding dimensionality, semantic feature sequence dimensionality
di, ds Interaction feature vector dimensionality, semantic feature vector

dimensionality
eu, ev User u’s interaction feature vector, item v’s interaction feature vector
L Maximum length of review documents
C, K Number of TextCNN modules, number of convolutional kernels in each

TextCNN module
Xu, Xv Review embedding matrix of user u, review embedding matrix of item v
PE Positional encodingbHu; bHv Review feature sequence of user u, review feature sequence of item v
Ou,Ov Encoded semantic sequence of user u, encoded semantic sequence of item v
qu, qv Query for user u in the cross-attention layer, query for item v in the cross-

attention layer
puv; p

v
u Semantic feature vector of item v that incorporates the personalized preferences

of user u, semantic feature vector of user u by taking into account the
characteristics of item v

L Loss function

Source(s):Authors’ own work
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3.3 Multi-scale context-aware layer
3.3.1 Multi-scale text convolutional networks. We use convolutional layers of different
scales to learn semantic representations of word combinations and phrases in various
contexts. This module, called multi-scale TextCNNs (MTC), consists of C parallel TextCNN
modules, each using convolution kernels of different window sizes. It is denoted as MTC =
{F 1,F 2,…,FC}, whereF c = fWc

kjk 2 1; K½ �g.Wc
k 2 Rd1 × tc denotes the k-th convolution

kernel, where tc denotes the number of words in the convolution window, with ta ≠ tb when
a ≠ b.F c signifies the collection of convolution kernels in the c-th TextCNNmodule.

Convolutions are applied across each F , producing output matrices. These outputs are
concatenated into a new feature sequence, which becomes the output of the MTC layer. The
input matrix, either Xu or Xv, is extended by adding (tc − 1) zero vectors at the end to ensure
consistency in output sizes. The calculation process is as illustrated below:

hki =f Wc
k � X :; i: i + tc − 1ð Þð Þ +bk

� �
; (4)

hk = hk1; h
k
2; � � � ; hki ; � � � ; hkL

� �⊤
; (5)

Hc = h1; h2; � � � ; hK
� �

; (6)

the symbol * denotes the convolution operation, which involves the element-wise
multiplication of twomatrices, followed by their summation. bk signifies the bias value andf
denotes the ReLU. hk signifies the text feature extracted by the k-th convolution kernel. Hc

denotes the semantic features of reviews extracted following the processing of input X by
F c. Subsequently, the outputs from all TextCNN modules are concatenated to form bH, as
depicted in the formula below:

bH =Concat H1; H2; …; HCð Þ=MTC Xð Þ 2 RL× d2; (7)

theConcat signifies the concatenation operation of matrices, where d2 = (C·K).
As the review text matrices Xu and Xv for users and items come from the same semantic

embedding space, a shared MTC module is used for both. Consequently, this yields the
respective outputs bHu and bHv.

3.3.2 Self-attention encoder. The self-attention mechanism is particularly effective for
processing long text sequences, as it captures global dependencies, enhancing the model’s
ability to understand and represent review text. Leveraging this, two parallel self-attention
modules are used to encode the user and item review feature sequences, with bHu for user u
and the same process applied to item v. For simplicity, we use user u as an example in the
following steps.
Positional encoding is added to preserve token positions, created using sine and cosine
functions, resulting in the sequence Su:

PE pos;2ið Þ = sin pos=100002i=d2
� �

; (8)

PE pos;2i + 1ð Þ =cos pos=100002i=d2
� �

; (9)
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Su = bHu +PE: (10)

Subsequently, Su is input into a multi-head self-attention layer and the specific calculation
process is as follows:

Attention Q; K; Vð Þ= sof tmax
QK⊤ffiffiffiffiffi

dk
p

 !
V; (11)

MultiHead Suð Þ=Concat head1; …; headHð ÞWO; (12)

headj =Attention SuW
Q
j ; SuW

K
j ; SuW

V
j

� �
; (13)

where WQ
j 2 Rd2 ×dk , WK

j 2 Rd2 ×dk , and WV
j 2 Rd2 ×dv are the weight matrices of the j-th

attention head, transforming Su into query, key, and value, with dk = dv = d2/H and H being
the number of heads. The concatenated attention heads are linearly transformed by
WO 2 Rd2 ×d2 to produce the output, followed by a residual connection and layer
normalization. The output then passes through a feedforward neural network, followed by
another round of residual and layer normalization, producingOu:

bSu = LayerNorm MultiHead Suð Þ+Suð Þ; (14)

Ou = LayerNorm f bSuW1 +b1
� �

W2 +b2 + bSu

� �
; (15)

whereW1 2 Rd2 ×df andW2 2 Rdf × d2 represent the learnable weights within the feedforward
network, b1 2 R1×df and b2 2 R1×d2 signify the bias.

The user feature Ou is obtained from Xu, capturing context semantics, and the
corresponding item featureOv is obtained fromXv through parallel networks.

3.4 Cross-attention feature fusion layer
The cross-attention mechanism is used for the deep integration of interaction features and
semantic features. The user’s interaction feature embedding eu is used as the source of the
query. The key and value are derived from the item’s semantic feature sequence Ov. The
calculation process is as follows:

qu = euWpWQ
u ; Kv =OvWK

v ; Vv =OvWV
v ; (16)

auv = sof tmax
quK

⊤
vffiffiffiffiffi

d2
p

 !
; (17)

ouv = ∑L
i = 1a

u
v i½ �Vv i; :½ �; (18)

where WQ
u 2 Rd2 ×d2 , WK

v 2 Rd2 ×d2 and WV
v 2 Rd2 ×d2 represent the weight matrices.

Wp 2 Rdi × d2 is a linear transformation matrix used for mapping dimensions. auv represents
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the attention weight that user u assigns to different tokens inOv. And ouv 2 R1×d2 represents
the key features of item v from the perspective of user u.

We subsequently apply layer normalization to ouv . Then, we input it into a feedforward
network with residual connections and perform layer normalization once again. Finally,
we project it into a fixed ds-dimensional real-valued space using a linear layer as shown
below: bouv = LayerNorm LayerNorm ouv

� �
W0

1 +b01
� �

W0
2 +b02

� �
; (19)

puv = bouvWl + bl; (20)

where W0
1 2 Rd2 ×df and W0

2 2 Rdf × d2 represent the learnable weights within the
feedforward network, b01 2 R1×df and b02 2 R1×d2 signify the bias. Wl 2 Rd2 ×ds and bl
are the parameters of linear layer. puv 2 R1×ds represents the semantic feature vector of item
v that incorporates the personalized preferences of user u.

Similarly, we reverse the roles of user and item, using a symmetric network structure. We
obtain the semantic feature vector pvu for user u by taking into account the characteristics of
item v.

3.5 Rating prediction layer
A fully connected layer is used to integrate various features derived from previous modules.
This includes user and item interaction feature embeddings eu and ev, as well as the review
feature vectors pvu and p

u
v for user u and item v. They are concatenated into yu; v 2 R1×dy and

then inputted into the linear network, where dy = 2(di + ds), with the process described as
follows:

yu; v =Concat pvu; eu; p
u
v; ev

� �
; (21)

bru; v =f yu; vWp + bp
� �

+bu + bv; (22)

whereWp 2 Rdy × 1 and bp represent the weight matrix and bias of the linear layer, bu and bv
respectively represent the user bias and item bias and ru,v denotes the predicted rating of user
u for item v.

3.6 Model training and loss function
This paper focuses on the rating prediction task in recommendations. The MSCA model is
defined as bru; v = fMSCA u; v; Du; Dvð Þ, with model training represented as Rtrain = fMSCA(U,
V, Duser, Ditem), where Rtrain represents the actual ratings from training data set. As rating
prediction is a regression task, mean squared error (MSE) is used as the objective function, as
shown below:

L= ∑
ru; v2Rtrain

ru; v −bru; vÞ2 + λ∥Θ∥22:
�

(23)

ru,v denotes the actual rating given by user u to item v. Θ represents all the learnable
parameters within the model. λ∥Θ∥22 is the regularization term used to constrain the
parameters in the model, serving to prevent overfitting in the model, where λ is the
regularization coefficient.

Finally, the procedure of theMSCAmodel is delineated in Algorithm 1:
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Algorithm 1: MSCA Procedure

4. Experiment
We carried out comprehensive experiments on five Amazon data sets from various product
categories to assess the performance of MSCA and to analyze its modules. This section
provides a detailed description of the experimental data sets, evaluation metrics, baseline
methods, experimental setup, experimental results and analysis. To evaluate the MSCA
model, we designed experiments to answer the following questions:

RQ1. How much does MSCA’s performance vary compared to baseline methods on five
Amazon data sets?

RQ2. What role do different modules play in influencing the performance ofMSCA?

RQ3. How areMSCA’s outcomes influenced by changes in hyperparameter settings?
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RQ4. How do different network structures of the prediction layer affect the performance
ofMSCA?

4.1 Data set
We conducted experimental validation of the proposed model and baseline models on
Amazon data sets (McAuley et al., 2015; He and McAuley, 2016), which are widely applied
in the research of recommendation systems. We selected five data sets from different
domains for our experiments, which are Beauty, Cell_Phones_and_Accessories (Phones),
Clothing_Shoes_and_Jewelry (Clothing), Toys_and_Games (Toys) and Video_Games
(Video). The experiments were conducted on five-core data sets where each user and item
had a minimum of five interactions. Basic statistics of the data sets are outlined in Table 2.
The sparsity of each data set is defined as the ratio of the actual number of interactions to the
total possible interactions, which is determined by the product of the number of users and
the number of items. From each data set, 80% was randomly chosen as the training set, with
the remaining 20% divided equally into a 10% validation set and a 10% test set.

4.2 Evaluation metrics
For assessing the model’s effectiveness, our experiments use MSE and mean absolute error
(MAE) as evaluative metrics. They are widely used for evaluating the performance of value
prediction models in regression tasks. Lower values of MSE and MAE signify better
predictive capability of the model. In addition, MSE corresponds with the loss function L.
The definitions are as follows:

MSE=
1

jRj ∑
ru; v2R

ru; v −bru; v� �2 (24)

MAE=
1

jRj ∑
ru; v2R

jru; v −bru; vj (25)

4.3 Tested methods
To validate the performance of the MSCA model proposed in our paper, we compared it
against the following methods:

• PMF (Mnih and Salakhutdinov, 2007): a method based on probability matrix
factorization that learns latent vector representations of users/items by maximizing
the posterior probability of observed ratings.

Table 2. Statistics of the selected datasets

Data set # of users # of items # of Ratings and reviews Sparsity (%)

Beauty 22,363 12,101 198,502 99.927
Phones 27,879 10,429 194,439 99.933
Clothing 39,387 23,033 278,677 99.969
Toys 19,412 11,924 167,597 99.928
Video 24,303 10,672 231,780 99.911

Source(s):Authors’ own work
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• SVD (Koren, 2008): decomposes the rating matrix into three matrices (user features,
singular values and item features), then uses user and item features for rating
prediction.

• SVD++ (Koren, 2008): extends SVD with neighborhood models and incorporates
explicit interaction feedback to improve prediction accuracy.

• DeepCoNN (Zheng et al., 2017): uses two TextCNNs to learn features of users
(items) from respective review documents and then inputs these features into a
factorization machine (FM) to predict ratings.

• NARRE (Chen et al., 2018): uses two TextCNNs and an attention-based review
pooling layer for feature extraction from reviews. These features are then fed into a
latent factor model (LFM) to predict ratings.

• DAML (Liu et al., 2019): uses a dual attention strategy that integrates both local and
mutual attention to extract features from reviews. The semantic features from
reviews are then fused with interaction features, and ultimately, the combined
features are inputted into a neural factorization machine (NFM) for rating prediction.

• AHAG (Liu et al., 2022a): uses a gated network for the dynamic fusion of review
features and uses hierarchical attention mechanisms to model the long-term
dependencies among review sequences, achieving dynamic interaction of features
for rating prediction.

• RGNN (Liu et al., 2023c): builds graphs from the words of user reviews based on
words’ co-occurrence relations. Using a type-aware graph attention network and a
personalized graph pooling operation, it learns representations for both user and item
features. Subsequently, these representations are used in an FM to predict ratings.

• MSCA: the model proposed in this paper. MSCA uses a multi-scale convolution
network to learn the semantic features from review texts, encoding the features by a
multi-head self-attention encoder. In addition, it uses a cross-attention module to
fuse semantic features and interaction features deeply, culminating in the prediction
of ratings.

4.4 Experiment settings
For the baseline methods, we conducted experiments with the parameters cited in the
respective papers. For unspecified parameters, we resorted to the default settings from the
corresponding open-source codes. For models requiring word embeddings, we use either
word2vec or GloVe pre-trained models as dictated by the specifications within the code of
each test method. For models incorporating CNN modules, we used the same parameters as
in DeepCoNN, with the convolutional layer having 100 output channels and a convolution
window size of 3.

In the MSCAmodel proposed in this study, the multi-scale convolutional layer uses three
convolutional modules with window sizes [3, 4, 5], respectively, each configured with 30
convolution kernels. We use coordinate descent to optimize the model’s hyperparameters.
The learning rate is tuned within [0.0001, 0.001, 0.01, 0.1], the dropout rate is explored
within [0.2, 0.4, 0.6, 0.8] and the dimensionalities of the interaction and review feature
vectors are searched from the range [8, 16, 32, 64, 128]. All modules of MSCA are
implemented in Python3 and PyTorch.
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4.5 Overall comparison (RQ1)
Table 3 illustrates the performances of the MSCA model and the baseline methods
introduced in this study across five data sets. The best results on each data set are highlighted
in italics, and the second-best results are underlined. Experimental results demonstrate that
the MSCA model consistently achieves the best MSE across data sets, except for the Toys
data set where it performs comparably to AHAG. For MAE, our model achieves the best
results on the Phones and Clothing data sets and results close to the best-performing method
on the Beauty and Video data sets. We computed the average improvement of MSCA across
all data sets compared to baseline models. The results showed that MSCA’s overall
performance exceeded that of all baseline approaches. In terms of MSE, compared to the
classic PMF algorithm, MSCA achieved a 14.6% improvement. When compared with SVD
and SVD++, it saw an improvement of over 7%. Compared to baseline methods based on
review-based recommendations, our model achieved a 2.29% to 5.56% improvement in
MSE. In terms of MAE, our model achieved varying degrees of improvement compared to
all methods except AHAG. These demonstrate the superiority of the proposed model.

Compared to MAE, our model achieves a more significant advantage in terms of MSE.
This observation may be due to the use of squared error as the loss function, which makes
MSE more aligned with the model’s optimization goal. The greater sensitivity of MSE to
larger errors, compared to MAE, suggests that our model is particularly effective at reducing
large prediction errors.

In addition, the experimental results show that methods relying solely on rating
interactions for recommendations through matrix factorization, such as PMF, SVD and SVD
++, exhibit higher MSE compared to methods that use review information. This suggests a
notable enhancement in recommendation system accuracy upon integrating reviews as
auxiliary information. We observe that SVD and SVD++ perform better in terms of MAE,
which indicates that they are effective at reducing medium-sized errors but less effective at
handling large errors. DeepCoNN ranks as the least effective among all the deep learning-
based methods, which aligns with our expectations. Because it relies solely on CNNmodules
for feature extraction from reviews without acknowledging the different importance of
different review sections or interaction features. In contrast, DAML, NARRE and AHAG
use attention modules to identify key features within numerous reviews and filter out noise,
integrating interaction features into their models, thereby achieving significant performance
improvements over DeepCoNN and securing competitive outcomes. Among them, AHAG’s
combination of gated networks with hierarchical attention outperforms DAML’s dual
attention structure. NARRE assigns varied weights to each review based on an attention
operation, mitigating noise from less critical reviews and achieving stable and excellent
performance. Meanwhile, RGNN begins with individual words in reviews, considers their
co-occurrence and uses a graph attention network to learn review features, thereby also
securing competitive results.

4.6 Ablation study (RQ2)
To understand how modules in MSCA contribute to performance improvement, we designed
three variants for ablation tests, which were validated on all experimental data sets. At this
stage of the experiment, MSE is used as the evaluation metric. All variants use the same
settings as the best parameters of the MSCA model to make a fair comparison. We carried
out experiments to examine how the multi-scale context-aware layer and the cross-attention
feature fusion layer affect model performance. The variants are described as follows:

• w/o MC: This variant eliminates both the multi-scale context-aware and the cross-
attention feature fusion layers. It uses a pooling operation to obtain semantic feature
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vectors from the review sequences output by the embedding layer. Then, the vectors
are aligned in dimension through linear mapping before being input into the
prediction layer.

• w/o M: This variant removes the multi-scale context-aware layer, replacing it with a
linear mapping operation for aligning the feature dimensionalities of text sequences,
which are then fed into the cross-attention feature fusion layer.

• w/o C: This variant removes the cross-attention feature fusion layer, replacing it with
an average pooling operation to compress text feature sequences into semantic
feature vectors, which are then input to the prediction layer.

The experimental results are displayed in Figure 3. First, all three variants underperform
compared to MSCA. Furthermore, except for w/o C performing worse than w/o MC on the
Clothing data set, both w/o M and w/o C outperform w/o MC on the other data sets. This
confirms that both the multi-scale context-aware layer and the cross-attention feature
fusion layer independently contribute to improved prediction accuracy. Moreover,
combining these two modules resulted in higher accuracy than either module alone,
validating the effectiveness and compatibility of both components. The more noticeable
performance decline in w/o C compared to w/o M indicates that the cross-attention feature
fusion layer significantly boosts model performance. This demonstrates its capability to
effectively fuse information from two modalities, and more accurately model user
preferences and item characteristics. Next, we conduct more detailed experimental
analyses of these two modules.

4.6.1 Analysis of the multi-scale context-aware layer. To investigate the contribution of
the two components in the multi-scale context-aware layer to model performance, we
designed corresponding ablation variants and conducted experiments. For the multi-scale
text convolutional networks, as described in Section 4.4, we used convolutional networks
with window sizes of 3, 4 and 5 in the experiments, each with 30 convolution kernels, and
concatenated their outputs. In this section, we used single-scale convolutional networks with
these three window sizes as variants, setting the number of convolution kernels to 90 to
maintain a constant total dimension, to verify the effect of multi-scale convolution operation.
In addition, we removed the self-attention encoder as an experimental variant to verify its
role in encoding semantic features at a global context scale. We evaluated these variants
usingMSE as the metric. The variants are described as follows:

• 3-w: We replace multi-scale text convolutional networks with a single-scale
convolutional network that has a window size of 3 and 90 convolution kernels.
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Figure 3. Performance comparison of w/oMC, w/oM, w/o C andMSCA on five data sets

Note(s): (a) Beauty, (b) Phones, (c) Clothing, (d) Toys, (e) Video
Source(s):Authors’ own work
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• 4-w: We replace multi-scale text convolutional networks with a single-scale
convolutional network, which has a window size of 4 and 90 convolution kernels.

• 5-w: We replace multi-scale text convolutional networks with a single-scale
convolutional network, which has a window size of 5 and 90 convolution kernels.

• w/o self: Removes the self-attention encoder, using the output of the multi-scale
convolution directly as input to the cross-attention module.

The experimental results are shown in Figure 4. Overall, each variant exhibits varying
degrees of performance degradation compared to MSCA across most data sets. Although
4-w and 5-w perform similarly to MSCA on the Beauty data set, the results across multiple
data sets collectively demonstrate the effectiveness of both the multi-scale text convolution
and the self-attention encoder components. We observed that the performance ranking of the
first three variants varies across data sets, indicating that the optimal context window size for
semantic feature extraction using CNNs is not consistent across different scenarios. This
suggests that the multi-scale approach in MSCA, by leveraging convolutional layers of
various window sizes and a self-attention mechanism, enhances the model’s ability to
capture diverse contextual information and adapt to different data sets effectively.

4.6.2 Analysis of the cross-attention module. The cross-attention feature fusion layer is
composed of two symmetrical modules: the item semantic learning module, which uses user
interaction feature embeddings as the query and item review semantic sequences as both key
and value; and the user semantic learning module, which uses item interaction features as the
query with user review semantic sequences as both key and value. To further explore the
distinct impacts of these two symmetrical modules on model performance, as well as to
delineate the differences between user and item perspectives, we devise two variants. Each
variant removes one side of the cross-attention modules for experimental purposes, detailed
as follows:

(1) w/o CU: This variant eliminates the user semantic learning module within the
cross-attention feature fusion layer, using average pooling to condense the semantic
sequence of user reviews into a user semantic vector.

(2) w/o CI: This variant removes the item semantic learning module and uses an
average pooling operation to condense the semantic sequence of item reviews into
an item semantic vector.

Using MSE as the evaluation metric, the experimental results are presented in Figure 5.
Besides comparing with MSCA, we also conducted comparisons of the two variants against
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Figure 4. Performance comparison of 3-w, 4-w, 5-w, w/o self andMSCA on five data sets
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w/o C. We noted that both variants exhibited varying levels of decreased accuracy compared
to MSCA, demonstrating the positive impact of the two modules on model performance.
Specifically, w/o CU experienced a more pronounced performance drop, which suggests that
using item embeddings as attention queries facilitates the learning of critical user semantic
features. Meanwhile, the performance drop of w/o CI is more pronounced in the Video and
Clothing data sets than in others, likely due to the distinct preferences among users for
products within the clothing and video game categories. For products within the other three
data set sectors, the key semantic features of the items exhibit minimal variation across
different users.

In addition, we discovered that the performance of w/o CU was significantly inferior to
w/o C across multiple data sets. To determine whether this performance degradation is due
to inherent differences between user and item entities or issues within the module itself,
we conducted further experiments on the MSCA model and its two variants, w/o CU and
w/o CI. Specifically, we replaced the cross-attention module with MLP and LSTM
modules. The rationale for this replacement is that MLP is a fundamental and widely used
structure in deep learning, whereas LSTM is a classic structure for processing sequential
features. In this way, we obtained six variants, named case-x (where x ranges from 1 to 6).
The detailed descriptions are as follows:

• case-1: Based on w/o CU, we replace the cross-attention module that processes item
semantic sequences with an MLP module.

• case-2: Based on w/o CU, we replace the cross-attention module that processes item
semantic sequences with an LSTMmodule.

• case-3: Based on w/o CI, we replace the cross-attention module that processes user
semantic sequences with an MLP module.

• case-4: Based on w/o CI, we replace the cross-attention module that processes user
semantic sequences with an LSTMmodule.

• case-5: Based on MSCA, we replace the cross-attention layer with two MLP
modules, one for learning user features and the other for item features.

• case-6: Based on MSCA, we replace the cross-attention layer with two LSTM
modules.

We conducted experiments on all data sets with these six variants, and the results are
presented in Figure 6. The results indicate that for the Beauty, Toys and Video data sets, the
performance of case-1 and case-2 is inferior to that of w/o C. In the other two data sets, case-
1 performs worse thanw/o C,whereas the improvement of case-2 is negligible. In addition, it
is observed that across all data sets, case-3 outperforms case-1 and case-4 outperforms case-
2. This is consistent with the previously mentioned finding that the performance ofw/o CU is
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Figure 5. Performance comparison of w/o C, w/o CU, w/o CI andMSCA on five data sets
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inferior to both w/o C and w/o CI. This suggests that the performance degradation in the w/o
CU variant is not directly attributable to the cross-attention module, but rather to inherent
differences in the semantic features of users and items. Based on the experimental results, we
infer that in rating prediction tasks, user semantic features are likely the dominant
influencing factor. This implies that without effectively extracting user semantic features,
using the corresponding module for items fails to extract effective features. Consequently,
the MSCA model, which integrates both modules, surpasses all variants, indicating that
when user semantic features are effectively extracted, item semantic features serve as a
valuable supplementary feature. The synergy between the two modules thus achieves
optimal performance. Furthermore, the performance of case-5 and case-6 is inferior to that of
MSCA, demonstrating that cross-attention is superior to these two classic network structures
in overall effectiveness.

In conclusion, neither classic network structures nor cross-attention can mitigate the
performance degradation observed in the w/o CU condition, indicating that this phenomenon
is unrelated to the cross-attentionmodule.

4.7 Parameter analysis of MSCA (RQ3)
4.7.1 Self-attention encoder.We investigate the impact of the number of heads and layers in
the self-attention encoder on two representative data sets, Beauty and Phones, which are
frequently used in experimental validation of recommendation research. In the experiments,
the number of attention heads is selected from [1, 3, 6, 9], and the number of layers is
searched in [1, 2, 3]. UsingMSE as the evaluation metric, the results shown in Figure 7 show
an increase in MSE with more layers, with the optimal performance achieved at only one
layer. This discovery implies that one layer already adeptly captures contextual features. A
higher number of layers might increase the model’s complexity, potentially leading to
overfitting or reducing the model’s generalization ability. The influence of the heads’
numbers is relatively minor, and no uniform optimal value exists across different numbers of
layers. With the number of layers at 1, the optimal results are obtained with six heads.
Therefore, for subsequent experiments in this study, we establish the ideal configuration as
one layer and six heads.

1.160

1.165

1.170

1.175

1.180

1.185

1.190

w/o C case-1 case-2 case-3 case-4 case-5 case-6 MSCA

M
SE

1.280

1.290

1.300

1.310

1.320

1.330

1.340

w/o C case-1 case-2 case-3 case-4 case-5 case-6 MSCA

M
SE

1.040

1.060

1.080

1.100

1.120

1.140

w/o C case-1 case-2 case-3 case-4 case-5 case-6 MSCA

M
SE

0.792

0.796

0.800

0.804

0.808

0.812

w/o C case-1 case-2 case-3 case-4 case-5 case-6 MSCA

M
SE

1.064

1.066

1.068

1.070

1.072

1.074

1.076

w/o C case-1 case-2 case-3 case-4 case-5 case-6 MSCA

M
SE

(a) (b) (c)

(d) (e)
Figure 6. Performance comparison of w/o C,MSCA and six case variants across five data sets
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4.7.2 Dimensionalities of interaction and semantic vectors. We explore the optimal
dimensionality for interaction di and semantic features ds within the MSCA model across
five data sets. The findings are illustrated in Figures 8 and 9, respectively. For the Beauty,
Phones and Toys data sets, the lowest MSE is observed when di is set to 32. Although it is not
optimal for the Clothing and Video data sets, the MSE is only marginally different from the
best result. For example, in Video, the difference between 1.0689 (di = 32) and 1.0687 (di =
8, 16, 128) is less than 0.2‰. Across the four data sets, excluding Video, the lowest MSE is
achieved when the semantic feature dimensionality, ds, is set to 16. It is also evident that
MSCA exhibits relative insensitivity to these two parameters. In light of these experimental
findings, and to reduce model parameters for faster training while mitigating overfitting, we
configure di at 32 and ds at 16 as the optimal parameters for theMSCAmodel.

Figure 7. Impact analysis of the number of heads and layers within the self-attention encoder ofMSCA
Note(s): (a) Beauty, (b) Phones
Source(s):Authors’ own work
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Figure 8. Dimensionality impact analysis on interaction feature vectors

Note(s): (a) Beauty, (b) Phones, (c) Clothing, (d) Toys, (e) Video
Source(s):Authors’ own work
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Figure 9. Dimensionality impact analysis on semantic feature vectors
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4.8 Influence of different prediction modules (RQ4)
The prediction layer is crucial in recommendation systems, as it needs to capture the
relationships between user and item features to predict ratings effectively. In the MSCA
model, the design of the prediction layer directly impacts the prediction accuracy. To
evaluate the effectiveness of different structures, we conducted experiments on six common
feature interaction modules across five data sets. Through these experiments, we analyzed
the ability of each module to capture the relationships between user and item features and
identified the most suitable prediction module for theMSCAmodel. Specifically, we take the
users’ and items’ semantic feature vectors from the cross-attention layer, along with their
interaction feature vectors from the embedding layer, as inputs for the prediction layer. The
six structures are described as follows:

(1) Linear: concatenates all features and feeds them into a linear neural network with
an output dimension of 1. The real-number output, adjusted by a bias, serves as the
final predicted rating score.

(2) LFM: calculates the dot product of user and item latent vectors. The resulting dot
product, combined with a bias term, provides the predicted rating score. It is
commonly used in early recommendation methods based on matrix factorization.

(3) MLP: captures intrinsic relationships between features via fully connected hidden
layers and nonlinear activation functions, outputting the final result through an
output layer. It is a commonly used neural network structure.

(4) FM (Rendle, 2010): maps features into a low-dimensional space and forms second-
order cross-terms to simulate feature interactions. The combination of bias, linear
terms and second-order terms constitutes the final prediction.

(5) NFM (He and Chua, 2017): building upon FM, uses neural networks to learn
complex nonlinear relations among features, thereby bolstering the modeling of
feature interactions.

(6) AFM (Xiao et al., 2017): An enhancement to FM, it integrates an attention
mechanism, allocating distinct weights to different feature interaction terms to
more effectively identify relationships among crucial features.

The experimental results are presented in Table 4, using MSE as the metric for evaluation.
On every data set, LFM performed the poorest because its dot product computation does not
factor in the interactions and weights among feature dimensions. Meanwhile, Linear
demonstrates the lowest MSE. In addition, we observe that the more complex NFM and
AFM underperform compared to the simpler FM. These findings indicate that for the MSCA
model, enhancing the complexity and the number of parameters in the prediction layer does
not improve performance; it may even lead to overfitting. This effect could be due to the
preceding modules in MSCA already efficiently capturing interactions among features.
Consequently, based on these results, we select the Linear as the prediction layer’s structure
ofMSCA.

5. Conclusion
We propose MSCA, a rating prediction recommendation model, which mines user interests
from historical reviews, jointly modeling these with interaction information to represent user
preferences and item characteristics. To accomplish this objective, MSCA uses a multi-scale
context-aware network to derive the semantic feature representations about users or items
from reviews. A cross-attention mechanism is used, simulating differentiated preferences
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among users and integrating interaction and review features. Our extensive experiments
demonstrate that MSCA outperforms all baseline methods. Compared to review-based
recommendation methods, MSCA achieves improvements in MSE ranging from 2.29% to
5.56%. The ablation study shows the contribution of each module and parameter
experiments identify the optimal hyperparameter configuration. These results highlight the
model’s effectiveness and potential for advancing recommendation systems.

However, there are some limitations to our approach. First, although we treat reviews from
the same user or item as a whole for context learning, we overlook their temporal aspect. User
preferences can change over time, but our model does not account for this change. This presents
an important direction for future research, especially in dynamic user behavior. Second,
although our model focuses on integrating interaction and semantic features, the learning
module for interaction features remains relatively simple. Although this structure provides a
solid baseline, adopting more advanced methods to model user-item interactions may further
enhance themodel’s ability to capture the collaborative relationships between users and items.

For future research, we will explore integrating large language models (LLMs) into
review-based recommendation systems. With the ongoing development and widespread
adoption of LLMs, we aim to leverage their capabilities to process large volumes of reviews
and generate higher-quality text. In addition, we will investigate replacing traditional
embedding methods, such as word2vec, with embeddings derived from LLMs. Although the
semantic information in reviews is rich, interaction information remains a crucial signal in
recommendation systems. We will explore graph-based models and other approaches that
better capture the collaborative relationships between users and items and integrate them
with the semantic features from reviews.
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