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TGformer: A Graph Transformer Framework
for Knowledge Graph Embedding

Fobo Shi , Duantengchuan Li , Xiaoguang Wang, Bing Li, and Xindong Wu , Fellow, IEEE

Abstract—Knowledge graph embedding is efficient method for
reasoning over known facts and inferring missing links. Existing
methods are mainly triplet-based or graph-based. Triplet-based
approaches learn the embedding of missing entities by a single triple
only. They ignore the fact that the knowledge graph is essentially
a graph structure. Graph-based methods consider graph structure
information but ignore the contextual information of nodes in the
knowledge graph, making them unable to discern valuable entity
(relation) information. In response to the above limitations, we pro-
pose a general graph transformer framework for knowledge graph
embedding (TGformer). It is the first to use a graph transformer
to build knowledge embeddings with triplet-level and graph-level
structural features in the static and temporal knowledge graph.
Specifically, a context-level subgraph is constructed for each pre-
dicted triplet, which models the relation between triplets with the
same entity. Afterward, we design a knowledge graph transformer
network (KGTN) to fully explore multi-structural features in
knowledge graphs, including triplet-level and graph-level, boosting
the model to understand entities (relations) in different contexts.
Finally, semantic matching is adopted to select the entity with the
highest score. Experimental results on several public knowledge
graph datasets show that our method can achieve state-of-the-art
performance in link prediction.

Index Terms—Knowledge graph, graph transformer, link
prediction.

I. INTRODUCTION

KNOWLEDGE Graph Embedding (KGE) serves as an ef-
ficient method for representing multi-relational graph [1],

which finds applications in numerous downstream tasks. These
tasks rely on knowledge modeling as a potent approach to
incorporate common-sense knowledge. For instance, KGE is
valuable in recommendation systems [2], [3] and enhancing
large language models [4], [5].

Knowledge Graphs (KGs) like WordNet [6] and Freebase [7]
offer publicly available datasets for storing information in the
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form of (subject entity, relation, object entity), typically seen as
ordered sequences. In KGs, it’s common for an entity to appear
in multiple different triplets. In real-world KGs, entities often
appear multiple times in distinct triplets, and we refer to such
entities as co-occurring entities. However, these entities usually
assume different roles in various triplets, potentially creating
ambiguities when interpreting them in different contexts [8].
Therefore, it is necessary to construct corresponding knowledge
representations for different entities and relational contexts, in
order to capture the meaning of each triplet in its unique context.

A plethora of remarkable KGE models have been introduced.
Early KGE models primarily operated at the triplet level and
included models like TransE [9], TuckER [10], ConvE [11],
and InteractE [12]. These models aim to construct their feature
representations by focusing on the interactions between different
subject entities and relations.

For instance, let’s consider the prediction of the triplet (Taylor
Swift, PlaceOfBirth, ?) as depicted in Fig. 1(a). In this scenario,
the birthplace of Taylor Swift is predicted based solely on the
subject entity Taylor Swift and the relation PlaceOfBirth within
the triplet. However, despite their reliance on entity-relation in-
teractions, these approaches often struggle to deliver satisfactory
results when confronted with intricate relations (e.g., one-to-
many, many-to-many relations, etc.) within knowledge graphs.
Models like ComplEx [13] and RotatE [14] offer theoretical un-
derpinnings for entity-relation interactions, rooted in relational
patterns. These models aim to theoretically embody a variety
of relational patterns, encompassing symmetry/antisymmetry,
inversion, and composition. Nonetheless, extensive experiments
discussed in [15] have uncovered a disconnect between these
theoretically complete models and their practical performance.
This difference can be attributed to the locality of entity-relation
interactions. It is difficult to obtain knowledge representations
that satisfy multiple relation patterns through a single entity-
relation interaction solely [16]. As a result, recent research has
increasingly focused on graph neural networks that can capture
global knowledge representations utilising graph-level structure.

In recent years, there has been a growing trend towards seek-
ing global entity information within graph-level structures [17],
[18] to mitigate the limitations of localized interactions. These
methods leverage graph neural networks (GNNs) [19], [20], [21]
to represent the knowledge graph’s topology, treating entities
as nodes and relations as edges. Several studies [18], [22],
[23] assert that incorporating GNNs can effectively capture
graph-level structures, outperforming triplet-level KGE models.
This is primarily attributed to the multi-layer GNN’s capacity
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Fig. 1. Examples of knowledge graph triplet-level and graph-level structures
with Taylor Swift as a co-occurring node in the anchor triplet (the triplet to be
predicted)are in (a) and (b), respectively. (c) is the anchor triplet (Taylor Swift,
PlaceOfBirth, ?) as the context-level subgraph of the node, which contains the
triplet-level and graph-level structure of Taylor Swift.

for aggregating information and expanding the scope of entity-
relation interactions.

Typically, traditional GNN-based KGE methods [8], [18],
[24] follow a direct aggregation approach. They gather infor-
mation from multi-hop neighbors in various contextual triplets
to construct co-occurring entity representations. More precisely,
as illustrated in Fig. 1(b), when predicting the triplet (Taylor
Swift, PlaceOfBirth, ?), GNN-based techniques [17], [18], [24]
consider all the multi-hop neighbors of the co-occurring entity
Taylor Swift when modeling her representation. However, this
approach inevitably introduces entity-independent noise into the
entity representations. For example, features from entities like
California, New York University, and New York are incorporated
into Taylor Swift’s representation, potentially affecting the rank-
ing of the correct answer, Pennsylvania, as these entities contain
toponymically relevant features similar to Pennsylvania.

Based on the above analysis, there are two main challenges
for existing KGE models to the comprehension of contextual
information. On the one hand, the entity-relation interaction
modeling approach based on the triplet-level structure is a partial
interaction approach, as the entity-relation interactions of each
sample only appear in a single triplet. Even though methods such
as [12], [25] have demonstrated that increasing the number of en-
tity interactions can boost the performance of the model, it is still
essentially a short-range partial interaction, which makes it diffi-
cult to capture the complete global contextual information of the
entities. On the other hand, although the graph operation used by
the GNN-based KGE model is able to learn the interaction infor-
mation of the anchor node with all its neighbors, it is difficult to
extend the interactions globally due to the over-smoothing [26]
limitation of the multi-layer graph neural network. Meanwhile,
the indiscriminate way of considering the information aggre-
gation of all neighbors incorporates a lot of unnecessary noise
information [27], which leads to a bad performance.

To overcome the challenges posed by the aforementioned
KGE models, we introduce a novel graph transformer frame-
work, TGformer,1 designed for knowledge graph embedding.
TGformer’s primary objective is to extend entity-relation in-
teractions from the triplet level to a global scale while min-
imizing the aggregation of noisy information when captur-
ing contextual triplets. The process begins by constructing a
context-level subgraph(as shown in Fig. 1(c)) for each predicted
triplet, centered around the co-occurring entity, which serves
as its contextual anchor. These subgraphs are then fed into the
triplet-level transformer module, which learns semantic features
of the co-occurring entity within various contextual contexts. To
address the issue of noisy contextual triplets within subgraphs,
we implement a graph-level transformer that integrates relational
features from the knowledge graph, thereby introducing an
inductive bias. In parallel, when modeling the embedding of
the co-occurring entity for the predicted triplets, we choose to
aggregate co-occurring entities from different triplets rather than
neighboring entities. This approach helps mitigate the inherent
heterogeneity of knowledge graphs. Ultimately, we employ se-
mantic matching to score the predicted entities, with the entity
receiving the highest score becoming the final prediction.

In summary, the main contributions of this article are as
follows:
� A novel graph transformer framework is proposed to build

knowledge embeddings with triplet-level and graph-level
structural features in the static and temporal KGs. As far
as we know, it is the first to adopt a graph transformer to
model KGE tasks.

� To alleviate the hindrance of noise information caused
by graph-level aggregation, we construct a context-level
subgraph for each to-be-predicted triplet, with prediction
triplets as an anchor linking neighbor triplets that have
similar contexts.

� we design a knowledge graph transformer network
(KGTN), which successfully extends entity-relation inter-
actions at the triplet-level to the global.

1Code will be available at https://github.com/dacilab/TGformer.
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� After comprehensive experiments and extensive analysis of
the static and temporal KG datasets, the TGformer model
outperforms the state-of-the-art baseline model in the link
prediction task.

II. RELATED WORK

A. Knowledge Graph Embedding

The existing knowledge graph embedding models are mainly
divided into three families: triplet-level structure models, graph-
level structure models, and transformer-based models and their
variants.

1) Triplet-Level Structure Models: Triplet-level structure
models predict the corresponding missing entities by model-
ing tensor operations between entity embeddings and relation
embeddings to simulate entity-relation interactions. TransE [9]
is inspired by the translation invariance of word representa-
tions [28] and defines the structure of sequences within a triple
as ‖s+ r− o‖L1/L2

. In order to capture different relational pat-
terns, ComplEx [13] projects the embedding of entities and rela-
tions into the complex domain, which theoretically demonstrates
that tensor operations on the complex domain can satisfy mul-
tiple relational patterns of entity-relation interactions. Another
interesting perspective is to view knowledge graph embedding as
a three-way tensor decomposition problem, where TuckER [10]
employs the Tucker tensor decomposition to inverse the entity-
relation interaction process. At present, deep learning technol-
ogy is widely used in various fields [29], [30], [31]. Inspired
by image convolution in computer vision, ConvE [11] projects
the spliced subject s and relation r into the embedding space
of the object entity o by employing a convolutional neural
network. Other similar KGE models, including DistMult [32],
RotatE [14], HypER [33], InteractE [12], and NFE [34] which
utilize different kinds of operators to incorporate the relation r
into the embedding of subject entity s. However, all of these ap-
proaches deal independently with triplet-level structures within
a single triplet. As a result, the interaction between entities and
relations is localized, ignoring the associations between rich
contextual triplets, thereby generating low-quality embeddings.

2) Graph-Level Structure Models: Intuitively, Graph Neural
Networks (GNNs) appear to be a highly promising category of
models for acquiring knowledge representations of entities and
relations in knowledge graphs (KGs). Notable methods in this
category include R-GCN [17], SACN [24], CompGCN [18],
and SE-GNN [23]. Given the topological similarities between
GNNs and KGs, it is a natural choice to employ GNNs for KGE
tasks. R-GCN [17] aggregates neighbor information by using
different diagonal matrices for various relations. To understand
the significance of different neighbors, SACN [24] calculates
weights during neighbor aggregation. CompGCN [18] takes
into account both in-degree and out-degree nodes when aggre-
gating neighbors, effectively extending GCN from undirected
graphs to directed graphs like knowledge graphs. SE-GNN [23],
aiming to enhance knowledge graph embeddings, introduces
three levels of semantic evidence for entities, relations, and
triplets. These semantic cues are used to design the neighbor-
hood schema for the GNN aggregation function, resulting in

more comprehensive knowledge representations. Furthermore,
alternative approaches [16], [35], rooted in GNNs, have also
successfully explored knowledge embeddings with graph-level
structure by devising diverse neighbor aggregation techniques.
However, after extensive experimentation on the relationship
between adjacency tensors and graph-level structure, [36] found
that while Graph Convolutional Neural Networks (GCNs) can
indeed produce effective knowledge embeddings, their primary
strength within the KGE model lies not in the capacity to model
graph-level structure.

3) Transformer-Based Models and Their Variants: CoKE
[37] focuses on embedding entities using their textual descrip-
tions as a reference. To imbue the model with human-like
comprehension of textual descriptions, [38] introduced a variant
of the transformer to identify logical rules within the knowledge
graph. N-Former [39] adopts knowledge distillation, concur-
rently leveraging transformer [40] and BERT [41] models, to
learn entity and relation embeddings. These models incorporate
textual descriptions of entities and relations as supplementary
information, enhancing their ability to grasp the semantics of
entities and relations in the human context.

Addressing the scalability challenges in knowledge graphs,
[42] devised a transformer architecture with numerous self-
attention heads to capture interactions between entities and rela-
tions in multiple directions. Consequently, these approaches of-
ten exhibit superior performance in language-based knowledge
graphs like WN18 and WN18RR. However, it’s important to
note that these models are typically characterized by their large
scale, necessitating significant storage space and computational
resources to accommodate the additional textual auxiliary data.
Additionally, transformer-based techniques tend to compress
graph structures into sequential structures during knowledge
representation learning, potentially causing the loss of valuable
graph structure information inherent in KGs.

B. Graph Transformer

Transformer [40] is a recently emerged model that is ex-
tremely suitable for processing sequence-based data structures,
and its powerful model representation has attracted a lot of
attention in the fields of computer vision and natural language
processing. Some existing works have successfully applied the
transformer-based model to process data with Euclidean struc-
ture, such as text [41], and image [43]. The success of the
transformer for euclidean structured data has led to an attempt
to utilize it for more complex non-euclidean structured data,
such as social networks, knowledge graphs, etc. Ying et al. [28]
argued that the core of applying transformer architecture to
graph data is how to encode graph structures correctly. They
designed Graphormer to encode three graph structures, spatial
encoding, edge encoding, and centrality encoding, into the at-
tention mechanism and achieved better performance in graph
representation learning. However, these existing approaches are
proposed for homogeneous graphs, while the knowledge graph is
a heterogeneous graph with complex and diverse types of entities
and relations. Few models have been constructed for such hetero-
geneous graph relations as knowledge graphs. Therefore, how
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Fig. 2. A graph transformer framework for knowledge graph embedding. It consists of two components: (a) is the context-level subgraph construction process.
The architecture of Knowledge Graph Transformer Network in (b).

to effectively perform feature aggregation for heterogeneous
nodes of the knowledge graph is the key to enriching knowledge
representation.

III. OUR APPROACH

In this section, we introduce TGformer to build knowledge
embedding with triplet-level and graph-level structural features
in the knowledge graph. As shown in Fig. 2, we first construct
a context-level subgraph to fully consider the multi-context
information of subject entities and relations in the anchor triplets
(Section III-A). On this basis, the Knowledge Graph Trans-
former Network (KGTN) is designed to enrich the embedding
representation of entities and relations from two levels of triplet
and graph structure, respectively (Section III-B). To fill the gap
between graph-level representations and triplet-level represen-
tations in the knowledge graph, we employ a semantic matching
approach as a decoder to score the embedding of the entity

(Section III-C). Finally, The optimization and inference process
of TGformer is described in Section III-D.

A. Context-Level Subgraph Construction

In real-world KGs, it is a common phenomenon that the same
entity may appear multiple times in different triplets, and we call
such entities the co-occurring entity. To facilitate the knowl-
edge graph transformer network to aggregate neighbor triplets,
we adopt whether there are co-occurring between triplets in KG
as the judgment criterion to construct context-level neighbor
subgraphs for the anchor triplet (the triplet to be predicted).

As shown in Fig. 2(a), the subgraph construction at the
triplet level can be divided into two parts. Specifically, (1)
Graph2Triplets: In this part, the subject entity of the anchor
triplet n is treated as a co-occurring entity s1n. The other triplets
within KG that contain the co-occurring entity s1 are found, and
these triplets are regarded as the neighbors of the anchor triplet
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n. (2) Triplets2Context: For triplets with co-occurring entity s1n,
a subgraph is constructed, which considers the information of
the entities in different contexts. This completes the transforma-
tion of KG, a directed heterogeneous graph, into an undirected
context-level subgraph.

B. Knowledge Graph Transformer Network

To extend entity-relation interactions from anchor triplets
to a global scale and concurrently address the noise issue
associated with GNN-based aggregation, we’ve introduced a
Knowledge Graph Transformer Network (KGTN). This net-
work comprises two key components: a triplet-level trans-
former and a graph-level transformer. The triplet-level trans-
former is designed to model more robust entity-relation in-
teractions, thereby facilitating a deeper understanding of the
significance of the co-occurring entity within different contex-
tual triplets. On the other hand, the graph-level transformer’s
purpose is to expand entity-relation interaction information to
a global context by aggregating semantic content pertaining
to the co-occurring entity across various contexts. Addition-
ally, in order to mitigate the impact of noise during the ag-
gregation process, the relation embedding within the context
triplet serves as a distinguishing feature for valuable contextual
triplets.

1) Triplet-Level Transformer: Transformer [40] and
BERT [41] have shown excellent capabilities in encoding
data with sequence-type structures. Inspired by the MLM task
in BERT, given the anchor triplet j : (sij , rj , o

?
j). We replace the

predicted entity with the mask token [mask] to get the triplet
(sij , rj , o

[mask]
j ) as the input to the transformer encoder. The

formula is as follows:⎧⎪⎨
⎪⎩
[
es

i

j , erj , e
o[mask]]
j

]
= Tformer

(
sij , rj ,o

[mask]
j

)
,SKG[

es
i

j , erj , e
o[mask]
j , etj

]
= Tformer

(
sij , rj ,o

[mask ]
j , tj

)
,TKG

,

(1)
where es

i

j , erj , and eo
[mask]

j ∈ Rd×1 denote the embedding of

the co-occurring entity sij , relation rj , and the entity o
[mask]
j

in the anchor triplet j, respectively. Tformer(·) denotes the
triplet-level transformer we designed, which is similar to the
transformer encoder. It is worth noting that the process of
encoding eo

[mask]

j considers only the triplet-level structure infor-
mation, ignoring the fact that the co-occurring entity si appears
not only in the anchor triplet but as well as in the contextual
triplets.

Therefore, we attempt to learn the embedding of the co-
occurring entity sij of the anchor triplet j based on its contextual
triplets. Specifically, given the set of contextual triplets

Ncon_triplets =
{(

sik, rk, o
l
k

)
|i,

l = 1, . . . , |E|, k = 1, . . . , |T |
}
, (2)

where sik and olk represent the subject entity and object entity
within the contextual triplet k, with their corresponding entity
IDs denoted as i and l. rk stands for the relation in triplet k.
Concerning the contextual triplets, we substitute the entity ID

of the co-occurring entity in these triplets with a masking token,
denoted as [mask]. Subsequently, we input this modified triplet
into the triplet-level transformer to derive the embedding of the
co-occurring entity within the contextual triplet.

If the co-occurring entity is the subject entity in the contextual
triplets, that is[

es
[mask]

k , erk, e
ol

k

]
= Tformer

(
s
[mask]
k , rk,o

l
k

)
. (3)

If the co-occurring entity is the object entity in the neighbor
triplets, that is[

es
i

k , erk, e
o[mask]

k

]
= Tformer

(
sik, rk,o

[mask]
k

)
, (4)

where es
[mask]

k and eo
[mask]

k represent the embeddings of the

co-occurring entities s[mask]
k and o

[mask]
k within different con-

textual triplets following the triplet-level transformer. By mod-
eling the anchor triplet and its associated contextual triplets, we
can obtain the embeddings of co-occurring entities in various
contexts. Given that entity-relation interactions occur within
each individual triplet, the knowledge representation of the
co-occurring entity, derived from the anchor triplet and its
contextual triplets, is limited and may only be applicable to
the current context. To facilitate the learning of co-occurring
entity knowledge embeddings that can be employed across
multiple contexts, we have designed graph-level transformers
to aggregate the embeddings of co-occurring entities from dif-
ferent contexts. In the following sections, we will elucidate the
process of aggregating graph-level structural information from
triplets.

2) Graph-Level Transformer: Entity-relation interactions
typically exhibit spatial limitations in triplet-based models,
which process each triplet independently, and thus may fail to
capture the rich graph structure information in KGs. We design a
graph-level transformer that extends entity-relation interactions
to the global level. The features of entities and relations are
then employed as inductive biases, which helps the model in-
corporate graph structure information into the transformer while
effectively mitigating the introduction of noisy information due
to global graph operations.

Knowledge Graph Structure Learning: As shown in Fig. 2(b),
we connect the embedding of the co-occurring entity in the
anchor triplet and its contextual triplet together as the input
to the graph-level transformer. Since the order of the input
sequences has no substantial effect on learning the embedding
of the co-occurring entity (there is no obvious ordering property
of the context information in the triplet-level subgraph), the
graph-level transformer removes the positional encoding of the
input sequences in the traditional transformer. The formula is
that

H(0) =
[
es

i

k , es
i

j , . . . es
i

n

]T
, (5)

where H(0) ∈ Rn×d denotes the layer 0 input to the graph-level
transformer, which is composed of the d−dimensional embed-
ding of n the co-occurring entities in the anchor triplet and its
contextual triplets. es

i

k is the embedding of the co-occurring
entity in the anchor triplet, es

i

j and es
i

n are the embeddings of
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the co-occurring entity in the contextual triplets. The number of
selected contextual triplets will vary depending on the dataset,
which will be discussed in detail in the experimental section.

On this basis, we model knowledge graph structure informa-
tion from two perspectives, namely entity-level and relation-
level. Among them, the entity-level similarity is used as the ad-
jacency matrix of the subgraph, and the relation-level similarity
as knowledge graph inductive bias.

Entity-level similarity. The most valuable co-occurring entity
embedding is determined by calculating the similarity between
the co-occurring entity in the anchor triplet and the co-occurring
entities in the contextual triplets. This similarity can be com-
puted as follows:

αent
jk =

exp
((
es

i

k

)T
es

i

j

)
∑

esi

k ∈Nent
exp

((
es

i

k

)T
es

i

j

) , (6)

whereNent denotes the set of co-occurring entity embeddings of
the contextual triplets. es

i

j and es
i

k denote the embedding of the
co-occurring entity si in the anchor triplet j and the contextual
triplet k, respectively. αent

jk is the similarity of the co-occurring
entity in triplets j and k.

For relation similarity bias, it determines the importance of
the co-occurring entity in different triplets by evaluating the
similarity between the relation embedding erj of the anchor
triplet and the relation embedding erk of contextual triplets,
which is defined as follows:

breljk =
exp

((
erk

)T
erj
)

∑
er
k∈Nrel

exp
((
erk

)T
erj
) , (7)

where Nrel denotes the set of relation embeddings of the con-
textual triplets. erj and erk denote the relation embedding in the
anchor triplet j and the contextual triplet k, respectively. breljk is
the similarity of the relation embedding in triplets j and k.

Graph-level Transformer Layer: The basic architecture of the
graph-level transformer is similar to that of the classical Trans-
former [40] encoder. The main structure of the Graph-level trans-
former layer consists of the multi-head self-attention (MHA) and
the feed-forward network (FFN). Layer normalisation (LN) [44]
is used after MHA and FFN. The details are as follows:

H′(l) = LN
(
MHA

(
H(l−1)

))
+H(l−1), (8)

H(l) = LN
(
FFN

(
H′(l)))+H′(l), (9)

where H(l) and H′(l) are the outputs of the MHA and FFN of
the lth graph-level transformer layer, respectively. In addition,
We design a novel MHA that takes into account the structure of
the knowledge graph, which uses the above relational similarity
as the inductive bias of the transformer. That is:

Q = H ·WQ, K = H ·WK , V = H ·WV , (10)

where the input H (equivalent to H(0) = [es
i

k , es
i

j , . . . es
i

n ]T in
(5) if it is the input of the first layer) is projected by WQ ∈
Rd×dQ ,WK ∈ Rd×dK and WV ∈ Rd×dV into the three corre-
sponding embedding representations of Q, K and V. In order
to incorporate entity similarity and relation similarity into the

TABLE I
CLASSICAL SEMANTIC MATCHING APPROACH

self-attention weights, we designed the calculation as follows:

Attention(H) = softmax(A) ·V, (11)

A =
Q ·KT

√
dK

+B, (12)

Ajk =

((
es

i

k

)T
WQ

)((
es

i

k

)T
WQ

)T
√
dK

+ breljk , (13)

whereAjk is the (j, k)-element of the attention weightA, which
denotes the co-occurring entity similarity between anchor triplet
j and its contextual triplet k. breljk is the (j, k)-element of the
inductive bias B, which denotes the relation similarity between
anchor triplet j and its contextual triplet k.

C. Semantic Matching

This section describes how to use the output embedding of the
triplet-level and graph-level transformer to perform the task of
searching from (s, r, ?) to o or from (?, r, o) to s for prediction.
This process is called the Knowledge Graph Completion (KGC)
task.

We have selected several classical methods from traditional
KGE for semantic matching to match queries (s, r) and answers
o, including addition [11], multiplication [32], ConvE [11], and
TuckER [10]. The semantic matching methods adopted by these
models are detailed in Table I. Through extensive experiments,
we have observed that the semantic matching approach of
TuckER enables our TGformer to achieve superior performance
on most datasets. For a more in-depth understanding, we refer
the reader to the experimental section, and here we present the
semantic matching approach of TGformer as follows:

eo
[mask]

both =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

Add(es, r) = es
i

k + erk

Mul(es, r) = es
i

k × erk

ConvE(es, r) = f
([

es
i

k ; erk

]
�Ω

)
TuckER(es, r) = W ×1 e

si

k ×2 e
r
k

, (14)

where eo
[mask]

both denotes the predicted entity embedding that
contains both triplet-level and graph-level features. Add(·) and
Mul(·) represent addition and multiplication semantic matching
approaches.

D. Optimization and Inference

In this section, to assess the quality of the embedding of the
predicted entity, we employ a semantic matching approach to
score the embedding of the co-occurring entity in the anchor
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TABLE II
STATISTICAL INFORMATION FOR STATIC AND TEMPORAL KNOWLEDGE GRAPHS

triplet and its contextual triplets. If only triplet-level features are
considered, the embedding eo

[mask]

i of the co-occurring entity
of the anchor triplet and its contextual triplets, is calculated as
follows:

qtriplet = softmax
(
Ment · eo

[mask]

i

)
, (15)

where Ment ∈ R|E|×|E| denotes the entity embedding matrix,
the parameters of the fully connected layer are W1 and b1, σ(·)
is the activation function, and qtriplet denotes the scoring of
the predicted entity with triplet-level features. The embedding
eo

[mask]

both containing both triplet-level and graph-level features is
scored as follows:

qgraph = softmax
(
Ment · eo

[mask]

both

)
, (16)

where W2 and b2 are the parameters of the fully connected
layer. qgraph denotes the scoring of the predicted entity with
graph-level and triplet-level features. The process of training
TGformer needs to consider both triplet and graph structural
features. Therefore, the cross-entropy loss function with label
smoothing for optimization is applied to speed up model con-
vergence. That is written as

{
Ltriplet = CrossEntropy (ylabel,qtriplet)

Lgraph = CrossEntropy (ylabel,qgraph) ,
(17)

where ylabel is the id of the ground truth in the entity set.
Combining triplet-level loss and graph-level loss function, the
TGformer loss is defined as

LKGE =
∑

(s,r,o)∈T
(Ltriplet + Lgraph) . (18)

It is worth noting that TGfromer does not negatively sample
during the training process, which also boosts the efficiency
of the model. Following CompGCN [18], for subject entity
prediction: given (?, r, o), predict s, we convert the subject entity
prediction to object entity prediction: given (s, r, ?), predict o.

IV. EXPERIMENTS

A. Experimental Setup

Datasets: Six static and four temporal KG datasets are se-
lected, namely, FB15k-237 [45], WN18RR [11], WN18 [9],
FB15k [9], UMLS [11], Kinship [46], ICEWS14 [47],
ICEWS05-15 [47], YAGO11k [48], Wikidata12k [48]. The sta-
tistical information of these datasets is given in Table II. The
specific dataset details are as follows:

1) The FB15k-237 [45] dataset is a subset of FB15k [9].
Toutanova and Chen [45] first pointed out that WN18
and FB15k have a test set leakage problem. Therefore,
they extracted FB15k-237 from FB15k.

2) The WN18RR [11] dataset is a subset of WN18 [9]. All
inverse relations in the WN18 dataset were removed by
Dettmers et al. [11] to obtain the WN18RR dataset.

3) The FB15k [9] dataset is a subset of Freebase [7], which
contains 14951 entities and 1345 relations. It describes
knowledge about movies, sports, etc.

4) The WN18 [9] dataset is a subset of WordNet [6], which
contains 40943 entities and 18 relations. It is a linguistic
knowledge graph with rich linguistic knowledge.

5) The UMLS [11] dataset is a mini-KG containing medical
semantic knowledge, which consists of 135 entities and
46 relations.

6) The Kinship [46] dataset covers the relationships be-
tween people who are members of a particular tribe
and is made up of 10,686 triplets. It consists of 104
entities representing tribal members and 26 relation types
representing kinship relations.

7) The ICEWS14 [47] dataset is a specialized subset of the
Integrated Crisis Early Warning System dataset, focusing
on political events that occurred in the year 2014. It
provides a rich source of event-based data with specific
time points.

8) The ICEWS05-15 [47] dataset captures a decade’s worth
of political events, spanning from 2005 to 2015, as part
of the ICEWS dataset. It offers a comprehensive look at
event data over an extended period.

9) The YAGO11k [48] dataset is an extraction from the
larger YAGO3 knowledge graph, curated to highlight
facts that incorporate temporal information. It presents
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time annotations in various formats, such as specific
dates, start and end times, and intervals.

10) The Wikidata12k [48] dataset is a refined subset of the
expansive Wikidata knowledge graph, selected to em-
phasize temporally annotated facts. It features a diverse
range of time expressions, from individual time points to
broader temporal intervals.

Evaluation Metrics: Given knowledge graphG = (s, r, o), the
model performance is measured by ranking the obtained scores
in terms of Mean Reciprocal Rank (MRR), and Hitting Rate
before k (Hits@k, k ∈ {1, 3, 10}). Hits@k is the ranking of the
true entity of the triplet in the candidate entities. If the ranking
is less than or equal to k, then it is recorded as 1; otherwise, it
is recorded as 0. The formula is as follows:

Hist@k :
1

|Ttest|
∑

ti∈Ttest

f (ranki) , (19)

f(x) =

{
1, x <= k

0, x > k
, (20)

where Ttest is the test dataset, |Ttest| is the number of triplet in
the test dataset. ti represents the ith predicted triplet. ranki is
the ranking of the correct entity among the candidate entities.
MRR is the sum of the inverse of the subject entity prediction
and object entity prediction rankings by replacing them with the
inverse of their rankings. That is:

MRR :
1

2 |Ttest|
∑

ti∈Ttest

(
1

ranksi
+

1

rankoi

)
, (21)

where ranksi and rankoi represent the ranking of the correct
subject and object entity, separately.

Baselines: To evaluate the effectiveness of TGformer, the
datasets presented above will be regarded as experimental
datasets. The following three categories of excellent mod-
els will be adopted as the comparison approaches for TG-
Former, which are Triplet-based models, Graph-based mod-
els, and Transformer-based models. The Triplet-based mod-
els include TransE [9], DistMult [32], ComplEx [13], Ro-
tatE [14], TuckER [10], ConvE [11], HypER [33], QuatE [57],
InteractE [12], DualE [58], B-CP [50], CirlularE [51], and
NFE [34]. Graph-based models are provided for R-GCN [17],
KBGAT [22], SACN [24], CompGCN [18], DisenKGAT [8],
REP-OTE [52], SE-GNN [23], SHGNet [16], DRGI [35].
Transformer-based models are a powerful category of models
that have recently arisen. For fairness, some models that do
not utilize the text of entities as auxiliary information are cho-
sen as comparison methods, such as StAR [53], SAttLE [42],
CoKE [37], Ruleformer [38], N-Former [39], Knowformer [54],
and SDFormer [55].

Hyperparameters: For the TGformer model, different combi-
nations of hyperparameters are tried to acquire suitable config-
urations for the test and validation datasets. The range of grid
search hyperparameters was as follows: the dimension of entity
and relation embedding range [100, 200, 256, 300, 400, 512],
batch size range [256, 512, 1024, 2048], learning rate range
[0.001, 0.0001, 0.0002, 0.0004]. The number of transformer

layers and multi-attention heads is set in the ranges [1, 2, 3,
4, 5], and [1, 2, 4, 6, 8], respectively. The number of neighbor
triplet in [0, 1, 2, 3, 4, 5]. Semantic matching method TuckER has
a hidden dropout range of [0, 0.1, 0.2, 0.3, 0.4, 0.5]. In order to
achieve better model performance, the parameters of TGformer
are set differently for different datasets, as shown in Table III.
All experiments were performed on a computer server equipped
with Quadro RTX 8000.

B. Main Results and Analyses

1) Evaluation on the Static KGs: The outcomes of the link
prediction task are presented in Table IV, illustrating the im-
pressive performance of Tformer and its variants, particularly
TGformer, in comparison to the baseline models on both
the FB15k-237 and WN18RR datasets. TGformer consistently
achieves optimal or near-optimal results across all evaluation
metrics in these datasets. Notably, our method significantly
outperforms both triplet-based and graph-based methods. On
WN18RR, in comparison to transformer-based models like
Ruleformer [38] and N-Former [39], TGformer exhibits substan-
tial improvements with a 3.6% increase in MRR, a 6.3% increase
in Hits@1, and a 3.5% increase in Hits@3, while Ruleformer
and N-Former show improvements of 1.4%, 2.7%, and 1.6% in
the respective metrics. Even on FB15k-237, TGformer consis-
tently delivers competitive results across all evaluation metrics
compared to the best-performing models in other approaches.

The reason for a stagnant but stable performance on FB15k-
237 may be that the fusion of multilevel graph structure bias
is still a challenge for a more complex structured dataset like
FB15k-237. Specifically, as shown in Table II, there are only
14541 entities in over 300,000 triplets in FB15k237, but there
are 40943 entities in less than 100,000 triplets in WN18RR.
Therefore, the graph structure of FB15k-237 is dense. This
would cause the number of co-occurring entities generated in
FB15k-237 to be much more than WN18RR for the TGformer
model, which is not conducive to discovering the truly valuable
neighbor triplets. Furthermore, referring to [76], only consid-
ering the information in the training set, many triplets in the
FB15k-237 dataset are unpredictable. Exploring more efficient
methods for bias injection of graph structure in dense graphs is
left for future work.

As shown in Table V, for the two larger datasets FB15k
and WN18, TGformer achieves optimal results on all metrics.
Specifically, on the FB15k dataset, TGformer improves the
MRR by 2.5% and 4.4% over the triplet-based method DualE
and the Graph-based method DRGI, respectively. For the two
small-scale datasets UMLS and Kinship, it can be seen from
Table VI that TGformer also achieves optimal results on all
metrics. Specifically, on the UMLS and Kinship datasets, our
TGformer outperformed the DRGI of the Graph-based method
by 6.9% and 8.5% on MRR, respectively. The high performance
of TGformer on both large-scale and small-scale datasets proves
that TGformer has excellent generalisation capabilities.

2) Evaluation on the Temporal KGs: The results of the link
prediction task, as detailed in Table VII, demonstrate the ex-
ceptional performance of TGformer. When compared to the
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TABLE III
THE DETAILED MODEL PARAMETERS OF TGFORMER IN DIFFERENT DATASETS

TABLE IV
LINK PREDICTION RESULTS ON FB15K-237 AND WN18RR

baseline models on the ICEWS14 and ICEWS05-15 datasets,
TGformer consistently secures the highest scores across all
metrics. Specifically, on the ICEWS14 dataset, TGformer shows
significant enhancements over leading models such as QDN [66]
and TPAR [68], with a 10.7% boost in MRR, a 16.0% boost
in Hits@1, and an 8.1% increase in Hits@3. Comparatively,
QDN and TPAR report increases of 9.4%, 15.3%, and 6.7% in
the same metrics, respectively. Similarly, on the ICEWS05-15
dataset, TGformer maintains a strong competitive edge, deliv-
ering results that rival the top-performing models from other
methodologies across all evaluated metrics.

The link prediction results on the temporal knowledge
graphs YAGO11k and Wikidata12k (for details, see Table VIII)

have demonstrated that TGformer is well-adapted to scenarios
involving temporal knowledge graphs. Compared to the baseline
models on the YAGO11k and Wikidata12k datasets, TGformer
has shown significant improvements in most of the evaluation
metrics, especially in Hits@1. Specifically, on the YAGO11k
dataset, TGformer has achieved notable enhancements over
leading models such as TGeomE++ [65] and PTBox [74],
with increases of 4.8% and 28.4% in MRR, and 14.4% and
3.6% in Hits@3, respectively. Similarly, on the Wikidata12k
dataset, TGformer has maintained a strong competitive edge,
with specific improvements of 41.1% and 62.1% in MRR, and
35.6% and 48.3% in Hits@3, respectively. These experimental
results substantiate that TGformer is adept at adapting to the
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TABLE V
LINK PREDICTION RESULTS ON FB15K AND WN18

TABLE VI
LINK PREDICTION RESULTS ON UMLS AND KINSHIP

TABLE VII
LINK PREDICTION RESULTS ON ICEWS14 AND ICEWS05-15

temporal knowledge graph context and has achieved outstanding
performance.

3) Complex Relations Modeling: There are numerous com-
plex relations within KGs, and accurately predicting these com-
plex relations is a crucial aspect of model evaluation. To further
assess the model’s performance, we evaluated TGformer against
several representative and advanced baselines in predicting
missing entities on FB15K-237. Following the classification of
relations in KGs into four types, namely 1-to-1, 1-to-N, N-to-1,
and N-to-N, as per TransE [9], we conducted experiments to

assess the performance, as presented in Table IX, with the
best-performing values marked in bold.

In summary, TGformer demonstrates exceptional perfor-
mance in predicting missing entities for complex relations such
as 1-to-N and N-to-N relations. Specifically, within the 1-to-N
relations category, the TGformer model achieves over 3% and
better prediction results than the best baseline in terms of MRR.
For N-to-N relations, TGformer outperforms DisenGAT [8],
and SE-GNN [23] by 2.2% and 2.3% in MRR, respectively.
An interesting observation is the significant performance gap
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TABLE VIII
LINK PREDICTION RESULTS ON YAGO11K AND WIKIDATA12K

TABLE IX
PREDICTION RESULTS OF COMPLEX RELATIONS ON FB15K-237 DATASET

Fig. 3. Comparison of Hits@3 predictions for triplets with different indegree nodes in FB15k-237.

between TGformer’s performance on 1-to-1 and the other com-
plex relations(1-to-N, N-to-1, N-to-N). This phenomenon can be
attributed to TGformer’s selection of contextual triplets based
on the subject entity. It’s worth noting that this performance gap
might be related to the inherent limitations of the link prediction
task itself, which is based on the prediction of object entities

given (subject entity, relation, ?). Nonetheless, the overall per-
formance of TGformer on FB15k-237 remains competitive.

To conduct a more detailed analysis of TGformer’s per-
formance in modeling complex relations, we conducted link
prediction experiments for each type of complex relation in
WN18RR. The specific experimental results are presented in
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TABLE X
COMPARISON OF SINGLE-TYPE RELATION MRR PERFORMANCE ON THE WN18RR DATASET

Table X. For each relation in WN18RR, TGformer consis-
tently outperformed previous methods across various evalua-
tion metrics. Notably, TGformer excels in predicting 1-to-1,
N-to-1 and N-to-N relations. In particular, for N-to-1 relations,
TGformer competes effectively with the current leading open-
source method, SE-GNN [23]. Specifically, for relations such as
also_see and synset_domain_topic_of , TGformer improved
the MRR scores by 2.0% and 3.5%, respectively. These results
effectively demonstrate that TGformer enhances the model’s
performance across most types of complex relations.

4) Analysis of Nodes With Different Indegree Ranges: In
knowledge graphs, a node’s degree functions as a quantifiable
measure for gauging the comprehensiveness and diversity of
the contextual landscape within which the node is positioned.
Consequently, for a more in-depth analysis of TGformer’s per-
formance, it is imperative to investigate its correlation with
node degrees. As depicted in Fig. 3, we compare TGformer’s
performance with that of several advanced Knowledge Graph
Embedding (KGE) models in the FB15k-237 dataset across
various degree ranges. Notably, TGformer demonstrates re-
markable superiority in all in-degree ranges (except [0, 100)).
Furthermore, it is discernible that TGformer exhibits improved
performance as the in-degree of the nodes increases. These
observations highlight TGformer’s proficiency in effectively
capturing contextual relationships within knowledge graphs,
demonstrating optimal performance with an enriched contextual
environment.

C. Ablation Study

1) Influence of Different Structural Modules: To assess the
contribution of each component, we conducted ablation experi-
ments on TGformer, as presented in Table XI. It is evident that
TGformer, with all components, exhibited superior performance
across all metrics in both the FB15k-237 and UMLS datasets.
The substantial drop in performance when removing graph-level
features underscores the importance of incorporating knowledge
graph structures. Notably, in FB15k-237 and UMLS, graph-level
features outweigh the semantic matching module’s significance,
with the latter playing a more prominent role in UMLS.

2) Effect of Different Approaches of Semantic Matching: In
TGformer, Different semantic matching methods are also a key

TABLE XI
ABLATION STUDY ON FB15K-237 AND UMLS

TABLE XII
THE IMPACT OF HOW DIFFERENT SPECIES OF SEMANTIC MATCHING METHODS

ON THE FB15K-237, WN18RR, AND UMLS

factor in the performance of the model. To explore how to
utilize semantic matching optimally, we applied four different
approaches to compute the semantic matching score by referring
to a variety of previous excellent triplet-based models [10],
[11]. We evaluated the impact of these four semantic match-
ing methods on the performance of TGformer on FB15k237,
WN18RR, and UMLS. The results are shown in Table XII. The
experimental results show that the TGformer with TuckER to
calculate the semantic matching score works best.

3) Effect of the Number of Contextual Triplets: Since the
co-occurring entity may exist in more than one contextual
triplet, TGformer randomly selects the same number of different
Contextual triplets to model the embedding of the co-occurring
entity in each training round. When constructing a graph-level
representation of the co-occurring entity, randomly selecting
contextual triplets is a data enhancement strategy that allows the
co-occurring entity to incorporate multi-context information to
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Fig. 4. Effect of the number of contextual triplets.

Fig. 5. Effect of embedding dimension & the number of attention head.

increase the generalizability of TGformer. Fig. 4 illustrates the
effect of different choices of the number of contextual triplets on
the performance of TGformer for different datasets. Intuitively,
to obtain better model performance, the number of contextual
triplets chosen for the relatively sparse KGs like WN18RR is less
than that of the denser FB15k-237. Specifically, for WN18RR
and FB15k-237, the number of contextual triplets chosen for
TGformer modeling the embedding of the co-occurring entity
is chosen to be 2 and 3, respectively.

4) Effect of Embedding Dimension & the Number of Attention
Head: TGformer is a transformer-based model. In transformer,
the embedding dimension and the number of attention heads
are closely related, and the appropriate embedding dimension
and the number of attention heads are crucial for the model per-
formance. In order to explore their correlation with model per-
formance, we conducted a number of experiments on different
datasets to find the optimal embedding dimension and number
of attention heads for each KG dataset. As shown in Fig. 5, the
optimal embedding dimension and number of attention heads are
(256, 4) and (256,2) for FB15k-237 and WN18RR, respectively.

For UMLS and Kinship, the optimal embedding dimension and
number of attention heads are (400,4) and (200,2), respectively.

V. CONCLUTION

This paper presents a graph transformer framework for knowl-
edge graph embedding, which simultaneously fuses triple-level
and graph-level structural information to learn entity and rela-
tion embeddings. Concretely, a context-level subgraph is built
for each to-be-predicted triplet, with triplets as nodes linking
contextual triplets that have co-occurring entities. On this basis,
we design a knowledge graph transformer network (KGTN) in-
cluding a triplet-level transformer and a graph-level transformer.
KGTN understands the entities (relations) under different se-
mantic contexts while embedding the structural knowledge of
the static or temporal knowledge graphs into the transformer
to learn the optimized feature representation. Extensive exper-
iments demonstrate that TGformer outperforms other state-of-
the-art baselines on the link prediction task due to the fusion of
triplet-level information and graph-level information.
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In the future, we plan to incorporate textual description infor-
mation of entities and relations as auxiliary information in the
model to simulate the semantic embedding of entities (relations)
in the real world. In addition, we further explore the impact of
the quality and efficiency of negative sampling on KGE.
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